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1. Introduction

We consider the numerical approximation of the following controlled Stochastic Differential
Equation (SDE) defined in Rn (n ≥ 1) by

dxs = b(s, xs, αs)ds + σ(s, xs, αs)dWs, s ∈ (t,T ]
xt = x

(1.1)

where

b : [0,T ] × Rn ×A → Rn

(t, xt, αt))→ b(t, xt, αt)

is the drift term and

σ : [0,T ] × Rn ×A → Rn×d

(t, xt, αt))→ σ(t, xt, αt)

the d-dimensional diffusion coefficients. Note that Wt are d-dimensional independent Brownian
motion on (Ω,F , (Ft)t≥0,P), α = (αt)t≥0 is an F-adapted process, valued in A compact convex subset
of Rm (m ≥ 1) is the set of admissible controls satisfying some integrability conditions and/or state
constraints. Precise assumptions on b and σ to ensure the existence of the uniqueness solution xt

of (1.1) can be found in [9].
Given a function g : Rn → R and f : [0,T ] × Rn ×A → R, the value function is defined by

v(t, x) = sup
α∈A

E

[∫ T

t
f (s, xs, α) ds + g(xT )

]
, (t, x) ∈ [0,T ] × Rn. (1.2)

Remember that x is the initial condition in (1.1). Using the dynamic programming approach, the
problem (1.2) can be transformed into the following Hamilton-Jacobi-Bellman (HJB) equation (see [5,
12] for more explanations)vt(t, x) + sup

α∈A

[
Lαv(t, x) + f (t, x, α)

]
= 0 on [0,T ) × Rn

v(T, x) = g(x), x ∈ Rn
(1.3)

where

Lαv(t, x) =

n∑
i=1

(b(t, x, α))i
∂v(t, x)
∂xi

+

n∑
i, j=1

(a(t, x, α))i, j
∂2v(t, x)
∂xi ∂x j

, (1.4)

where a(t, x, α) = (
1
2

(σ(t, x, α))(σ(t, x, α))T )i, j the symmetric positive semi-definite diffusion
coefficient matrix. Eq (1.3) is a initial value problem. Although this initial value problem (1.3) is
defined on the unbounded region Rn, often it is restricted to a bounded region

U = (p1, q1) × (p1, q1) × · · · × (pn, qn), (1.5)

with pk and qk are constants for k = 1, 2, · · · , n for computational reasons. This initial value problem
with Rn in (1.3) being replaced by U has been discussed in the literature (see for example [11, 21]).
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There are two unknown functions in this equation, the value function v and the optimal control α.
However, in most practical situations, it is not analytically solvable therefore numerical approximations
are the only tools appropriate to provide reasonable approximations. Numerical approximation of HJB-
equation of type (1.3) is therefore an active research area and has attracted a lot of attentions [11, 13,
14, 18, 20]. When solving numerically HJB equation, the keys challenge are the low regularity of the
solution of HJB equation and the lack of appropriate numerical methods to tackle the degeneracy of
the differential operator in HJB equation. Indeed adding to the standard issue that we usually have
when solving degenerate PDE, we need to couple with an optimization problem at every grid point
and every time step. In practice, a feedback optimal control solution is defined in a region containing
the optimal trajectory is much preferred. This feedback solution gives a global optimal control defined
over a time-space region.

In terms of existing numerical methods, there are three basic threads of literature concerning HJB
equations. A standard approach is based on Markov chain approximation. In financial terms,
this approach is equivalent to an explicit finite difference method. However, these methods are
well-known to suffer from time step limitations due to stability issues [7]. A more recent approach is
called semi-Lagrangian schemes, these schemes work for general diffusions with coefficient matrices
that may be nondiagonal dominant and arbitrarily degenerate but also use finite difference
approximations [22].

For many stochastic optimal control problems such as Merton’s control problem, the linear operator
is degenerated when the spatial variables approach the region near to zero. This degeneracy has an
adverse impact on the accuracy when the finite difference method is used to solve the PDE (see [8],
chapter 26) as the monotonicity of the scheme is usually lost. However, when solving HJB equation,
the monotonicity also plays a key role to ensure the convergence of the numerical scheme toward the
viscosity solution. Indeed in the two dimensional Merton’s control problem, the matrix in the diffusion
part is of rank 1 near the origin and it has been found in [2,3] that the standard finite difference schemes
become non monotone and may not converge to the viscosity solution of the HJB.

The current work aims to propose an alternative novel monotone scheme based on fitted technique in
dimensions 1 and 2. This fitting technique is based on the idea proposed by [1] for convection-diffusion
equations and was upgraded in [4] to solve simple degenerated Black Scholes equations. The fitted
technique has for feature to tackle the degeneracy in the HJB equation. Our method is coupled with
implicit time-stepping method for temporal discretization method and the iterative method presented
in [11] for optimization problem at every time step. Note that to the best of our knowledge, such method
has not been used to solve the stochastic optimal control problem (1.3). The merit of the method is that
it is absolutely stable in time because of the implicit nature of the time discretization, easy to understand
and implement, and the corresponding matrices after spatial and temporal discretization are positive-
definite M-matrices. Therefore our alternative scheme is monotone. Numerical simulations prove that
our proposed method can be more accurate than the standard method based on finite difference spatial
discretization, thanks to the monotonicity properties of our scheme. The novel contribution of our
paper over the existing literature can be summarized as

• We have upgraded the fitted finite volume technique to spatial discretization of a more
generalized HJB equation coupled with the implicit time-stepping method for temporal
discretization method and the iterative method for the optimization problem at every time step.
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To best of our knowledge such combination has not yet proposed so far to solve stochastic optimal
control problems in the literature.
• We have proved that the corresponding matrices after spatial and temporal discretization are

positive-definite M-matrices, then our scheme is monotone. Indeed this is the key feature of our
novel scheme comparing to standard finite difference scheme where the monotonicity is lost
because of degeneracy and the convergence toward the viscosity solution is not longer
guarantee [2, 3].
• We have demonstrated by numerical experiments that the proposed scheme can be more accurate

than the standard finite difference scheme, and that accuracy increase in two dimensional domain
where the matrix in the diffusion part is of rank 1 near the origin. We have also applied our method
to approximate realistic optimal problem in finance, more precisely the optimal cash management
problem.

The rest of this article is organized as follows. In section 2, we will recall some results about the
well posedness problem. In section 3, we present the finite volume method with the fitting technique
for dimensions 1 and 2. We will also show that the system matrix of the resulting discrete equations
is an M-matrix. In section 4, we will present the temporal discretization and optimization problem in
dimensions 1 and 2. Numerical experiments using Matlab software will be performed in section 5 to
demonstrate the accuracy of the proposed numerical method. We conclude the work at section 6 by
summarizing our finding.

2. Well posedness problem

In this part, we will present results about existence and uniqueness of the value function. Firstly,
assume that b andσ are continuous and for every α ∈ A, b(·, ·, α) andσ(·, ·, α) are in C1([0,T ]×Rn). To
ensure the existence and uniqueness of the value function solution, we make the following assumptions.

Assumption 1. We assume that there exists C ≥ 0 such that for all α ∈ A, x, y ∈ Rn and t, s ∈ [0,T ],

|b(t, x, α) − b(s, y, α)| ≤ C (|x − y| + |t − s|)

|σ(t, x, α) − σ(s, y, α)| ≤ C (|x − y| + |t − s|)
(2.1)

Assumption 2. We assume that there exists C ≥ 0 such that for every α ∈ A, x ∈ Rn and t, s ∈ [0,T ],

|b(t, x, α)| ≤ C (1 + |x|)

|σ(t, x, α)| ≤ C (1 + |x|) .
(2.2)

Let T > 0, U ⊂ Rn be an open bounded set and S (n,R) the set of symmetric matrix n × n. We set
O = (0,T ) ×U and ∂O the parabolic boundary of O defined by : ∂O = ∂U × (0,T ) ∪ (U) × {T }.

Assumption 3. Let f : O × A −→ R and g : O −→ R be two continuous functions such that there
exists C ≥ 0 such that, for all (t, x), (s, y) ∈ O, α ∈ A

| f (t, x, α) − f (s, y, α)| ≤ C (|x − y| + |t − s|)

| f (t, x, α)| ≤ C (1 + |x|)

|g(t, x)| ≤ C (1 + |x|) .
(2.3)
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The value function v from O → R is now given by

v(t, x, α) = sup
α ∈A

E

[∫ τ

t
f (s, xs, α(s)) ds + g(τ, xτ)

]
, (2.4)

where the diffusion process xs is on the form (1.1). Using the dynamic programming approach
(see [12]), the value function v leads to the following HJB equationvt(t, x) + sup

α∈A

[
Lαv(t, x) + f (t, x, α)

]
= 0 on O

v(T, x) = g(x) on ∂O,
(2.5)

where

Lαv(t, x) =

n∑
i=1

(b(t, x, α))i
∂v(t, x)
∂xi

+

n∑
i, j=1

(a(t, x, α))i, j
∂2v(t, x)
∂xi ∂x j

, (2.6)

a(t, x, α) =

(1
2

(σ(t, x, α))(σ(t, x, α))T
)

i, j
the symmetric positive semi definite diffusion coefficient

matrix.
Let us consider the following equation without final condition

vt(t, x) + sup
α∈A

[
Lαv(t, x) + f (t, x, α)

]
= 0 on O (2.7)

We denote

US C(Ō) =
{
v : O → R| v upper semi-continuous onO

}
,

LS C(O) =
{
v : O → R| v lower semi-continuous onO

}
.

(2.8)

Definition 1. [17] A function u ∈ US C
(
O
)

is a viscosity subsolution of Eq (2.7) if and only if u

is such that for every test function ρ ∈ C∞
(
O
)
, u − ρ has a strict local maximum at (t, x) ∈ O with

u(t, x) = ρ(t, x), implies
∂tρ(t, x) + sup

α∈A

[
Lαρ(t, x) + f (t, x, α)

]
≤ 0, (2.9)

A function u ∈ LS C
(
O
)

is a viscosity supersolution of Eq (2.7) if and only if u is such that for every

test function ρ ∈ C∞
(
O
)
, u − ρ has a strict local minimum at (t, x) ∈ O with u(t, x) = ρ(t, x), implies

∂tρ(t, x) + sup
α∈A

[
Lαρ(t, x) + f (t, x, α)

]
≥ 0, (2.10)

A function u ∈ C
(
O
)

is a viscosity solution of Eq (2.7) if it is both, a viscosity subsolution and a
viscosity supersolution.

Having stated the notion of a viscosity solution to a parabolic PDE, we now turn towards the notion
of a viscosity solution to a parabolic final value problem with Dirichlet boundary data on the parabolic
boundary.

vt(t, x) + sup
α∈A

[
Lαv(t, x) + f (t, x, α)

]
= 0 on O (2.11)

v(T, x) = g(x) on ∂O, (2.12)
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Definition 2. A function v ∈ US C
(
O
)

is a viscosity subsolution of (2.11) if v is a viscosity subsolution
in the sense of the definition (1) and v ≤ g.

Likewise, a function v ∈ LS C
(
O
)

is a viscosity supersolution of (2.11) if v is a viscosity subsolution
in the sense of the definition (1) and v ≥ g on ∂O.

A function v on C
(
O
)

is a viscosity solution if v is a viscosity supersolution and a viscosity
subsolution.

Theorem 1. Let assumptions (1),(2) and (3) hold, there is at most one viscosity solution in the sense
of definition (2) to the HJB final value problem.vt(t, x) + sup

α∈A

[
Lαv(t, x) + f (t, x, α)

]
= 0 on O

v(T, x) = g(x), on ∂O.
(2.13)

Proof. The proof of existence and uniqueness can be found in [15, 17, 19]. �

3. Spatial discretization

As we already know, the resolution of the HJB Eq (2.13) involves a spatial discretization, a temporal
discretization and an optimisation problem at every grid point and each time step. The goal of this
section is to provide the spatial discretization of the HJB Eq (2.13) solving our stochastic optimal
control problem. Details in this section can be found in [6], where such methods have been used to
solve the degenerated Black Scholes equation for option pricing with constant coefficients.

3.1. Spatial discretization based on fitted finite volume method in dimension 1

Consider the more generalized HJB Eq (2.13) in dimensions 1 (n = 1) which can be written in the
form

∂v(t, x)
∂t

+ sup
α∈A

[
∂

∂x

(
a(t, x, α) x2∂v(t, x)

∂x
+ b(t, x, α) x v(t, x)

)
+ c(t, x, α) v(t, x)

]
= 0

(3.1)

where a(t, x, α) > 0 is bounded. Indeed this divergence form is not a restriction as the differentiation is
respect to x and not respect to the control α, which may be discontinuous in some applications.

As usual, we truncate the problem in the finite interval I = [0, xmax]. Let the interval I = [0, xmax] be
divided into N1 sub-intervals Ii := (xi, xi+1), i = 0 · · ·N1 − 1 with 0 = x0 < x1 < · · · · · · < xN1 = xmax.

We also set xi+1/2 =
xi + xi+1

2
and xi−1/2 =

xi−1 + xi

2
for each i = 1 · · ·N1 − 1. These mid-points form

a second partition of [0, xmax] if we define x−1/2 = x0 and xN1+1/2 = xmax. Integrating both size of (3.1)
over Ji =

(
xi−1/2, xi+1/2

)
and taking αi = α(xi, t), we have∫ xi+1/2

xi−1/2

∂v
∂t

dx +

∫ xi+1/2

xi−1/2

sup
αi∈A

[
∂

∂x
x
(
a(t, x, αi) x

∂v
∂x

+ b(t, x, αi) v
)

+ c(t, x, αi) v
]

dx = 0 (3.2)

Applying the mid-points quadrature rule to the first and the last point terms, we obtain the above

∂vi(t)
∂t

li + sup
αi∈A

[[
xi+1/2ρ(v)

∣∣∣xi+1/2 − xi−1/2ρ(v)
∣∣∣
xi−1/2

]
+ c(t, xi, αi) vi li

]
= 0, (3.3)
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for i = 1, 2, · · ·N1 − 1, where li = xi+1/2 − xi−1/2 is the length of Ji. Note that vi denotes the nodal
approximation to v(t, xi) and ρ(v) is the flux associated with v defined by

ρ(v) := a(t, x, αi) x
∂v
∂x

+ b(t, x, αi) v. (3.4)

Clearly, we now need to derive approximation of the flux defined above at the mid-point xi+1/2, of the
interval Ii for i = 0, 1, · · ·N1 − 1. This discussion is divided into two cases for i ≥ 1 and i = 0 on
I0 = [0, x1].
Case I: Approximation of ρ at xi+1/2 for i ≥ 1.

The term
(
a(t, x, αi) x

∂v
∂x

+ b(t, x, αi) v
)

is approximated by solving the two point boundary value

problem (
a(t, xi+1/2, αi) x

∂v
∂x

+ b(t, xi+1/2, αi) v
)′

= 0, x ∈ Ii

v(xi) = vi(t), v(xi+1) = vi+1(t).
(3.5)

Integrating (3.5) yields the first-order linear equations

ρi(v)(t) = a(t, xi+1/2, αi) x
∂v
∂x

+ b(t, xi+1/2, αi) v = C1 (3.6)

where C1 denotes an additive constant. As in [6], the solution is given by

v(t) =
C1

b(t, xi+1/2, αi)
+ C2 x

−

b(t, xi+1/2, αi)
a(t, xi+1/2, αi) . (3.7)

Note that in this deduction we have assumed that b(t, xi+1/2, αi) , 0. By setting βi(t) =
b(t, xi+1/2, αi)
a(t, xi+1/2, αi)

,

using the boundary conditions in (3.5) yields

vi(t) =
C1

b(t, xi+1/2, αi)
+ C2 x−βi(t)

i and vi+1(t) =
C1

b(t, xi+1/2, αi)
+ C2 x−βi(t)

i+1 . (3.8)

Solving the following linear system with respect to C1 and C2 yields
vi(t) =

C1

b(t, xi+1/2, αi)
+ C2 x−βi(t)

i

vi+1(t) =
C1

b(t, xi+1/2, αi)
+ C2 x−βi(t)

i+1

(3.9)

yields

ρi(v)(t) = C1 =
b(t, xi+1/2, αi)

(
xβi(t)

i+1 vi+1(t) − xβi(t)
i vi(t)

)
xβi(t)

i+1 − xβi(t)
i

(3.10)

ρi(v)(t) provides an approximation to the ρ(v)(t) at xi+1/2. Similarly the approximation of ρ(v)(t) at
xi−1/2 is given by

ρ(v)(t)
∣∣∣∣∣
xi−1/2

=
b(t, xi−1/2, αi)

(
xβi−1(t)

i vi(t) − xβi−1(t)
i−1 vi−1(t)

)
xβi−1(t)

i − xβi−1(t)
i−1

(3.11)
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Case II: This is the degenerated zone. The aims here is to approximate ρ at x1/2 in the sub-interval
I0 = [0, x1] for i = 0. In this case, the following problem is considered(

a(t, x1/2, α1) x
∂v
∂x

+ b(t, x1/2, α1) v
)′

= C2 in [0, x1]

v(0) = v0(t), v(x1) = v1(t)
(3.12)

where C2 is an unknown constant to be determined. Following [6], integrating (3.12) yields

ρ0(v)|1/2(t) = a(t, x1/2, αi) x1/2
∂v
∂x

+ b(t, x1/2, α1) v = b(t, x1/2, α1) v0(t) + C2 x1/2. (3.13)

Since x1/2 =
x1 + x0

2
with x0 = 0, we have C2 x1 = (a(x1/2, t, α1)+b(t, x1/2, α1))(v1(t)−v0(t)). Therefore

we have

ρ0(v)|1/2(t)

=
1
2

[
(a(t, x1/2, α1) + b(t, x1/2, α1))v1(t) − (a(t, x1/2, α1) − b(x1/2, t, α1))v0(t)

]
.

(3.14)

By replacing ρ by its approximated value 3.10, 3.11 and 3.14, (3.3) becomes for i = 0, 1, · · · ,N1 − 1

dvi(t)
dt

+ sup
αi∈A

1
li

[
xi+1/2ρi(v)(t)

∣∣∣∣∣
xi+1/2

− xi−1/2ρi(v)(t)
∣∣∣∣∣
xi−1/2

+ ci(t, αi) vi(t) li

]
= 0 (3.15)

By setting τ = T − t and including the boundary conditions, we have the following system of Ordinary
Differential Equation (ODE) coupled with optimisation problem.

−dv(τ)
dτ

+ sup
α∈AN1−1

[A(α, τ) v(τ) + G(α, τ)] = 0

v(0) given,
(3.16)

which can be rewritten as 
dv(τ)

dτ
+ inf

α∈AN1−1
[E(α, τ) v(τ) + F(α, τ)] = 0

v(0) given,
(3.17)

whereAN1−1 = A×A × · · · × A︸                ︷︷                ︸
N1−1

, v(τ) = (v1(τ), · · · , vN1−1(τ)) and

F(α, τ) = (F1(α1, τ), · · · , FN1−1(αN1−1, τ)) includes all Dirichlet boundary and final conditions,
A(α, τ) = −E(α, τ) and G(α, τ) = −F(α, τ) are defined as for i = 1, · · · ,N1 − 1

Ei,i+1(αi, τ) = −xi+1/2
bi+1/2(τ, αi) xβi(τ)

i+1

li (xβi(τ)
i+1 − xβi(τ)

i )
, (3.18)

Ei,i(αi, τ) =

xi+1/2
bi+1/2(τ, αi) xβi(τ)

i

li (xβi(τ)
i+1 − xβi(τ)

i )
+ xi−1/2

bi−1/2(τ, αi) xβi−1(τ)
i

li (xβi−1(τ)
i − xβi−1(τ)

i−1 )
− ci(τ, αi)

 , (3.19)
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Ei,i−1(αi, τ) = −xi−1/2
bi−1/2(τ, αi) xβi−1(τ)

i−1

li (xβi−1(τ)
i − xβi−1(τ)

i−1 )
, (3.20)

E1,1(α1, τ) = x1+1/2
b1+1/2(τ, α1) xβ1(τ)

1

l1 (xβ1(τ)
2 − xβ1(τ)

1 )
+

1
4 l1

x1(a1/2(τ, α1) + b1/2(τ,α1)) − c1(τ, α1) (3.21)

E1,2(α1, τ) = −x1+1/2
b1+1/2(τ, α1) xβ1(τ)

2

l1 (xβ1(τ)
2 − xβ1(τ)

1 )
(3.22)

G(α, τ) =



−
1

4 l1
x1(a1/2(τ, α1) − b1/2(τ, α1)) v0

0
...

0

−xN1−1/2

bN1−1/2(τ, αN1−1) x
βN1−1(τ)
N1

lN1−1 (x
βN1−1(τ)
N1

− x
βN1−1(τ)
N1−1 )

vN1


.

Theorem 2. Assume that c given in (3.1) is negative and let h = max
1≤i≤N1

li. If h is relatively small then

the matrix E(α, τ) in the system (3.17) is an M-matrix for any α ∈ AN1−1.

Proof. Let us show that E(α, τ) has positive diagonal, non-positive off diagonal, and is diagonally
dominant. We first note that

bi+1/2(τ, α)

xβi(τ)
i+1 − xβi(τ)

i

=
ai+1/2(τ, α) βi(τ)

xβi(τ)
i+1 − xβi(τ)

i

> 0, (3.23)

for i = 1, · · · ,N1 − 1, and all bi+1/2(τ, α) , 0, bi−1/2(τ, α) , 0, with ai+1/2(τ, α) > 0 and ai−1/2(τ, α) > 0.
This also holds when bi+1/2(τ, α)→ 0 and bi−1/2(τ, α)→ 0, that is

lim
bi+1/2(τ,α)→0

bi+1/2(τ, α)

xβi(τ)
i+1 − xβi(τ)

i

=
bi+1/2(τ, α)

eβi(τ) ln(xi+1) − eβi(τ) ln(xi)
=

bi+1/2(τ, α)
βi(τ) ln(xi+1) − βi(τ) ln(xi)

= ai+1/2(τ, α)
(
ln

xi+1

xi

)−1

> 0,

lim
bi−1/2(τ,α)→0

bi−1/2(τ)

xβi−1(τ)
i − xβi−1(τ)

i−1

=
bi−1/2(τ, α)

eβi−1(τ) ln(xi) − eβi−1(τ) ln(xi−1)

=
bi−1/2(τ, α)

βi−1(τ) ln(xi) − βi−1(τ) ln(xi−1)
= ai−1/2(τ, α)

(
ln

xi

xi−1

)−1

> 0.

(3.24)

Using the definition of E(α, τ) given above, we see that

Ei,i > 0, Ei,i+1 6 0, Ei,i−1 6 0 i = 2, · · · ,N1 − 1,∣∣∣Ei,i

∣∣∣ ≥ ∣∣∣Ei,i−1

∣∣∣ +
∣∣∣Ei,i+1

∣∣∣
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because xβi(τ)
i+1 ≈ xβi(τ)

i + xβi(τ)−1
i βi(τ) h, xβi−1(τ)

i−1 ≈ xβi−1(τ)
i − xβi−1(τ)−1

i βi−1(τ) h and∣∣∣Ei,i

∣∣∣ − ∣∣∣Ei,i+1

∣∣∣ − ∣∣∣Ei,i−1

∣∣∣
= −

 bi+1/2(τ)

xβi(τ)
i+1 − xβi(τ)

i

︸           ︷︷           ︸
>0

(
hβi βi xβi−1

i

)︸        ︷︷        ︸
→0︸                            ︷︷                            ︸

→0

+

 bi−1/2(τ, α)

xβi−1(τ)
i − xβi−1(τ)

i−1

︸               ︷︷               ︸
>0

(
hβi−1 βi−1 xβi−1−1

i

)︸              ︷︷              ︸
→0︸                                      ︷︷                                      ︸

→0

− ci(τ, αi).

Note that for i = 1, we have E1,1 ≥ 0 if a1/2(τ, α1) + b1/2(τ, α1), are nonnegative and c1(τ, α1) < 0. So
E(α, τ) is diagonally dominant and is therefore an M-matrix. �

Indeed the assumption c < 0 can be relaxed, but if positive it should not be more that a certain
threshold c0 > 0 depending of our numerical scheme. Indeed this is not restrictive as from numerical
experiments the threshold c0 > 0 is always the best comparing to finite difference scheme where its not
monotonicity does not depend on coefficients.

3.2. Spatial discretization based on fitted finite volume method in dimension 2

Here we consider the generalized HJB Eq (2.13) in dimension 2 which can be written in the form

∂v(t, x, y)
∂t

+ sup
α∈A

[
∇ · (k(t, x, y, α)) + c(t, x, y, α) v(t, x, y)

]
= 0, (3.25)

where k(t, x, y, α) = A(t, x, y, α) · ∇v(t, x, y) + b v(t, x, y) is the flux,

b = (x b1(t, x, y, α), y b2(t, x, y, α))T and A =

(
a11 a12

a21 a22

)
, (3.26)

We will assume that a21 = a12. We also define the following coefficients, which will help us to build
our scheme smoothly a11(t, x, y, α) = a(t, x, y, α) x2, a22(t, x, y, α) = a(t, x, y, α)y2 and a12 = a21 =

d1(t, x, y, α) x y. Although this initial value problem (3.25) is defined on the unbounded region R2, we
often restrict our consideration to a bounded region. As usual the two dimensional domain is truncated
to Ix × Iy, where Ix = [0, xmax] and Iy = [0, ymax] be divided into N1 and N2 sub-intervals:

Ixi := (xi, xi+1), Iy j := (y j, y j+1), i = 0, · · · ,N1 − 1, j = 0, · · · ,N2 − 1

with 0 = x0 < x1 < · · · · · · < xN1 = xmax and 0 = y0 < y1 < · · · · · · < yN2 = ymax. This defines a mesh on
Ix × Iy with all the mesh lines perpendicular to one of the axes.
We also set

xi+1/2 =
xi + xi+1

2
, xi−1/2 =

xi−1 + xi

2
, y j+1/2 =

y j + y j+1

2
, y j−1/2 =

y j−1 + y j

2
,

for each i = 1, · · · ,N1 − 1 and each j = 1, · · · ,N2 − 1. We denote N = (N1 − 1) × (N2 − 1). These
mid-points form a second partition of Ix × Iy if we define x−1/2 = x0, xN1+1/2 = xmax, y−1/2 = y0 and
yN2+1/2 = ymax. For each i = 0, 1, · · · ,N1 and j = 0, 1, · · · ,N2, we set hxi = xi+1/2 − xi−1/2 and
hy j = y j+1/2 − y j−1/2.
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We now discuss the finite volume method for (3.25). Integrating both size of (3.25) over
Ri, j =

[
xi−1/2, xi+1/2

]
×

[
y j−1/2, y j+1/2

]
, we have∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

∂v(t, x, y)
∂t

dx dy

+

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

sup
α∈A

[
∇ · (k(v(t, x, y, α))) + c(t, x, y, α) v(t, x, y)

]
dx dy = 0,

(3.27)

for i = 1, 2, · · · ,N1 − 1, j = 1, 2, · · · ,N2 − 1. Applying the mid-points quadrature rule to the first and
the last point terms, we obtain the above

dvi, j(t)
dt

li, j + sup
αi, j∈A

[∫
Ri, j

∇ ·
(
k(v(t, x, y, αi, j)

)
dx dy + ci, j(t, αi, j) vi, j(t) li, j

]
= 0 (3.28)

for i = 1, 2, · · ·N1 − 1, j = 1, 2, · · ·N2 − 1 where li, j =
(
xi+1/2 − xi−1/2

)
×

(
y j+1/2 − y j−1/2

)
is the length

of Ri, j, and vi, j(t) denotes the nodal approximation to v(t, xi, y j). We now consider the approximation
of the middle term in (3.28). Let n denote the unit vector outward-normal to ∂Ri, j. By Ostrogradski
Theorem, integrating by parts and using the definition of flux k(v), we have∫

Ri, j

∇ · (k(v)) dx dy =

∫
∂Ri, j

k(v(t, x, y, αi, j)) · n ds

=

∫ (xi+1/2,y j+1/2)

(xi+1/2,y j−1/2)

(
a11

∂v
∂x

+ a12
∂v
∂y

+ x b1 v
)

dy

−

∫ (xi−1/2,y j+1/2)

(xi−1/2,y j−1/2)

(
a11

∂v
∂x

+ a12
∂v
∂y

+ xb1 v
)

dy

+

∫ (xi+1/2,y j+1/2)

(xi−1/2,y j+1/2)

(
a21

∂v
∂x

+ a22
∂v
∂y

+ y b2 v
)

dx

−

∫ (xi+1/2,y j−1/2)

(xi−1/2,y j−1/2)

(
a21

∂v
∂x

+ a22
∂v
∂y

+ y b2 v
)

dx.

(3.29)

We shall look at (3.29) term by term. For the first term we want to approximate the integral by a
constant as ∫ (xi+1/2,y j+1/2)

(xi+1/2,y j−1/2)

(
a11

∂v
∂x

+ a12
∂v
∂y

+ x b1 v
)

dy

≈

(
a11

∂v
∂x

+ a12
∂v
∂y

+ x b1 v
)
|(xi+1/2,y j) · hy j .

(3.30)

To achieve this, it is clear that we now need to derive approximations of the k(v(x, y, t, αi, j)) · n defined
above at the mid-point

(
xi+1/2, y j

)
, of the interval Ixi for i = 0, 1, · · ·N1 − 1. This discussion is divided

into two cases for i ≥ 1 and i = 0 on I0 = [0, x1]. This is really an extension of the one dimensional
fitted finite volume presented in the previous section.

Case I: For i ≥ 1.
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Remember that a11(t, x, y, α) = a(t, x, y, α) x2, we approximate the term
(
a11

∂v
∂x

+ x b1 v
)

by solving

the following two points boundary value problem(
a(t, xi+1/2, y j, αi, j) x

∂v
∂x

+ b1(t, xi+1/2, y j, αi, j) v
)′

= 0,

v(t, xi, y j) = vi, j(t), v(t, xi+1, y j) = vi+1, j(t).
(3.31)

Integrating (3.31) yields the first-order linear equations

a(t, xi+1/2, y j, αi, j) x
∂v
∂x

+ b1(t, xi+1/2, y j, αi, j) v = C1 (3.32)

where C1 denotes an additive constant. Following the one dimensional fitted finite volume presented
in the previous section, we have

C1 =
b1i+1/2, j(t, αi, j)

(
xβi, j(t)

i+1 vi+1, j − xβi, j(t)
i vi, j

)
xβi, j(t)

i+1 − xβi, j(t)
i

. (3.33)

Therefore,

a11
∂v
∂x

+ a12
∂v
∂y

+ x b1 v

≈ xi+1/2

b1i+1/2, j(t, αi, j)
(
xβi, j(t)

i+1 vi+1, j − xβi, j(t)
i vi, j

)
xβi, j(t)

i+1 − xβi, j(t)
i

+ d1 y
∂v
∂y

 , (3.34)

where b1(t, xi+1/2, y j, αi, j) = b1i+1/2, j(t, αi, j), a(t, xi+1/2, y j, αi, j) = ai+1/2, j(t, αi, j),

βi, j(t) =
b1i+1/2, j(t, αi, j)
ai+1/2, j(t, αi, j)

and a12 = a21 = d1(t, x, y, α) x y. Finally, we use the forward difference,

∂v
∂y

∣∣∣∣∣
(xi+1/2,y j)

≈
vi, j+1 − vi, j

hy j

Finally, [
a11

∂v
∂x

+ a12
∂v
∂y

+ x b1 v
]
(xi+1/2,y j)

· hy j ≈ xi+1/2×b1i+1/2, j(t, αi, j)
(
xβi, j(t)

i+1 vi+1, j − xβi, j(t)
i vi, j

)
xβi, j(t)

i+1 − xβi, j(t)
i

+ d1i, j(t, αi, j) y j
vi, j+1 − vi, j

hy j

 · hy j .

(3.35)

Similarly, the second term in (3.29) can be approximated by[
a11

∂v
∂x

+ a12
∂v
∂y

+ x b1 v
]
(xi−1/2,y j)

· hy j ≈ xi−1/2×b1i−1/2, j(t, αi, j)
(
xβi−1, j(t)

i vi, j − xβi−1, j(t)
i−1 vi−1, j

)
xβi−1, j(t)

i − xβi−1, j(t)
i−1

+ d1i, j(t, αi, j) y j
vi, j+1 − vi, j

hy j

 · hy j .

(3.36)
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Case II: For j ≥ 1.

For the third term we want to approximate the integral by a constant, that is∫ (xi+1/2,y j+1/2)

(xi−1/2,y j+1/2)

(
a21

∂v
∂x

+ a22
∂v
∂y

+ y b2 v
)

dx

≈

(
a21

∂v
∂x

+ a22
∂v
∂y

+ y b2 v
)
|(y j+1/2,xi) · hxi .

(3.37)

Following the first case of this section, we have[
a21

∂v
∂x

+ a22
∂v
∂x2

+ y b2 v
]
(xi,y j+1/2)

· hxi ≈ y j+1/2×b2i, j+1/2(t, αi, j)
(
y j+1

β̄i, j(t)vi, j+1 − y j
β̄i, j(t) vi, j

)
y j+1

β̄i, j(t) − y j
β̄i, j(t)

+ d1i, j(t, αi, j) xi
vi+1, j − vi, j

hxi

 · hxi .

Similarly, the fourth term in (3.29) can be approximated by[
a21

∂v
∂x

+ a22
∂v
∂y

+ y b2 v
]
(xi,y j−1/2)

· hxi ≈ y j−1/2×
b2i, j−1/2(t, αi, j)

(
yβ̄i, j−1(t)

j vi, j − yβ̄i, j−1(t)
j−1 vi, j−1

)
yβ̄i, j−1(t)

j − yβ̄i, j−1(t)
j−1

+ d1i, j(t, αi, j) xi
vi+1, j − vi, j

hxi

 · hxi ,

(3.38)

for j = 1, · · · ,N2 − 1, where β̄i, j(t) =
b2i, j+1/2(t, αi, j)
āi, j+1/2(t, αi, j)

with a22(t, x, y, α) = ā(t, x, y, α) y2.

Case III: Approximation of the flux at I0. Note that the analysis in case I does not apply to the
approximation of the flux on [0, x1] because (3.31) is degenerated. Therefore, we reconsider the
following form (

a(t, x1/2, y j, α1, j) x
∂v
∂x

+ b1(t, x1/2, y, α1, j) v
)′
≡ C2 in [0, x1] (3.39)

v(x0, y j) = v0, j, v(x1, y j) = v1, j,

where C2 is an unknown constant to be determined. Integrating (3.39), we can deduce that[
a11

∂v
∂x

+ a12
∂v
∂y

+ x b1 v
]
(x1/2,y j)

· hy j

≈ x1/2

(
1
2

[
(ax1/2, j(t, α1, j) + b1x1/2, j(t, α)) v1, j − (ax1/2, j(t, α1, j) − b1x1/2, j(t, α1, j)) v0, j

]
+d11, j(t, α1, j) y j

v1, j+1 − v1, j

hy j

)
· hy j .

(3.40)

Case IV: Approximation of the flux at J0.
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Using the same procedure for the approximation of the flux at I0, we deduce that

[
a21

∂v
∂x

+ a22
∂v
∂y

+ y b2 v
]
(xi,y1/2)

· hxi ≈

y1/2

(
1
2

[
(āi,y1/2(t, αi,1) + b2i,y1/2(t, α)) vi,1 − (āi,y1/2(t, αi,1) − b2i,y1/2(t, αi,1)) vi,0

]
(3.41)

+d1i,1(t, αi,1) xi
vi+1,1 − vi,1

hxi

)
· hxi .

By replacing the flux by his value for i = 1, · · · ,N1 − 1 and j = 1, · · · ,N2 − 1, Eq (3.28) becomes

dvi, j

dt
+

sup
αi, j∈A

1
li, j

xi+1/2

b1i+1/2, j(t, α)
(
xβi, j(t)

i+1 vi+1, j − xβi, j(t)
i vi, j

)
xβi, j(t)

i+1 − xβi, j(t)
i

 hy j

+xi+1/2

(
d1i, j(t, αi, j) y j

vi, j+1 − vi, j

hy j

)
· hy j

−xi−1/2

b1i−1/2, j(t, αi, j)
(
xβi−1, j

i vi, j − xβi−1, j(t)
i−1 vi−1, j

)
xβi−1, j(t)

i − xβi−1, j(t)
i−1

+ d1i, j(t, αi, j) y j
vi, j+1 − vi, j

hy j

 · hy j

+y j+1/2

b2i, j+1/2(t, αi, j)
(
y j+1

β̄i, j(t) vi, j+1 − y j
β̄i, j(t)vi, j

)
y j+1

β̄i, j(t) − y j
β̄i, j(t)

+ d1i, j(t, αi, j) xi
vi+1, j − vi, j

hxi

 · hxi

−y j−1/2

b2i, j−1/2(t, αi, j)
(
y j
β̄i, j−1(t)vi, j − y j−1

β̄i, j−1(t) vi, j−1

)
y j
β̄i, j−1(t) − y j−1

β̄i, j−1(t)

+d1i, j(t, αi, j) xi
vi+1, j − vi, j

hxi

)
· hxi + ci, j(t, αi, j) vi, j li, j

]
= 0

(3.42)

By setting τ = T − t and including the boundary conditions, we have the following system


sup
α∈AN

[
ei, j

i−1, j(τ, α) vi−1, j + ei, j
i, j(τ, α) vi, j + ei, j

i+1, j(τ, α) vi+1, j + ei, j
i, j−1(τ, α)vi, j−1

+ei, j
i, j+1(τ, α)vi, j+1

]
−

dvi, j

dτ
= 0, with vi, j(0) given,

where for i = 1, · · · ,N1 − 1, j = 1, · · · ,N2 − 1 and N = (N1 − 1) × (N2 − 1), AN = A×A × · · · × A︸                ︷︷                ︸
(N1−1)×(N2−1)

.
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We have

e1, j
0, j = −

1
4 l1, j

hy j x1(ax1/2, j(τ, α1, j) − b1x1/2, j(τ, α1, j)) v0, j

e1, j
1, j =

1
4 l1, j

hy j x1(ax1/2, j(τ, α1, j) + b1x1/2, j(τ, α1, j)) −
1
2

c1, j(τ, α1, j)

+ d11, j(τ, α1, j) xi
hy j

l1, j
+ x1+1/2hy j

b11+1/2, j(τ, α1, j) xβ1, j(τ)
1

l1, j

(
xβ1, j(τ)

2 − xβ1, j(τ)
1

)
e1, j

2, j = −d11, j(τ, α1, j) xi
hy j

l1, j
− x1+1/2hy j

b11+1/2, j(τ, α1, j) xβ1, j(τ)
2

l1, j

(
xβ1, j(τ)

2 − xβ1, j(τ)
1

)
ei,1

i,0 = −
1

4 li,1
hxi y1(āi,y1/2(τ, αi,1) − b2i,y1/2(τ, αi,1)) vi,0

ei,1
i,1 =

1
4 li,1

hxi y1(āi,y1/2(τ, αi,1) + b2i,y1/2(τ, αi,1) −
1
2

ci,1(τ, αi,1)

+ d1i,1(τ, αi,1) y j
hxi

li,1
+ y1+1/2hxi

b2i,1+1/2(τ, αi,1) yβ̄i,1(τ)
1

li,1

(
yβ̄i,1(τ)

2 − yβ̄i,1(τ)
1

)
ei,1

i,2 = −d1i,1(τ, αi,1) y j
hxi

li,1
− y1+1/2hxi

b2i,1+1/2(τ, αi,1) y2
β̄i,1(τ)

li,1

(
y2
β̄i,1(τ) − y1

β̄i,1(τ)
)

ei, j
i+1, j = −d1i, j(τ, αi, j) xi

hy j

li, j
− xi+1/2hy j

b1i+1/2, j(τ, αi, j) xβi, j(τ)
i+1

li, j

(
xβi, j(τ)

i+1 − xβi, j(τ)
i

)
ei, j

i−1, j = −xi−1/2hy j

b1i−1/2, j(τ, αi, j) xβi−1, j(τ)
i−1

li, j

(
xβi−1, j(τ)

i − xβi−1, j(τ)
i−1

)
ei, j

i, j+1 = −d1i, j(τ, αi, j)) y j
hxi

li, j
− y j+1/2hxi

b2i, j+1/2(τ, αi, j)) y j+1
β̄i, j(τ)

li, j

(
y j+1

β̄i, j(τ) − y j
β̄i, j(τ)

)
ei, j

i, j−1 = −y j−1/2hxi

b2i, j−1/2(τ, αi, j)) y j−1
β̄i, j−1(τ)

li, j

(
y j
β̄i, j−1(τ) − y j−1

β̄i, j−1(τ)
) ,

ei, j
i, j = d1i, j(τ, αi, j)) xi

hy j

li, j
+ xi+1/2hy j

b1i+1/2, j(τ, αi, j)) xβi, j(τ)
i

li, j

(
xβi, j(τ)

i+1 − xβi, j(τ)
i

)
+ xi−1/2hy j

b1i−1/2, j(τ, αi, j)) xβi−1, j(τ)
i

li, j

(
xβi−1, j(τ)

i − xβi−1, j(τ)
i−1

) − ci, j(τ, αi, j))

d1i, j(τ, αi, j)) y j
hxi

li, j
+ y j+1/2hxi

b2i, j+1/2(τ, αi, j)) y j
β̄i, j(τ)

li, j

(
y j+1

β̄i, j(τ) − y j
β̄i, j(τ)

)
+ y j−1/2hxi

b2i, j−1/2(τ, αi, j)) y j
β̄i, j−1(τ)

li, j

(
y j
β̄i, j−1(τ) − y j−1

β̄i, j−1(τ)
) .

(3.43)
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As for one dimension case, (3.43) can be rewritten as the ODE coupled with optimization problem
dv(τ)

dτ
+ inf

α∈AN
[E(τ, α) v(τ) + F(τ, α)] = 0,

with v(0) given,
(3.44)

or 
dv(τ)

dτ
= sup

α∈AN
[A(τ, α) v(τ) + G(τ, α)]

with v(0) given,
(3.45)

where A(τ, α) = −E(τ, α), E(τ, α)(I, J) =
(
ei, j

i′, j′

)
, i′, i = 1, · · · ,N1 − 1, j′, j = 1, · · · ,N2 − 1,

n1 = N1 − 1, n2 = N2 − 1; I := I(i, j) = i + ( j − 1)n1 and J := J(i′, j′) = i′ + ( j′ − 1)n1,
v =

(
v1,1, · · · , v1,N2−1, · · · , vN1−1,1, · · · , vN1−1,N2−1

)
and G(τ, α) = −F(τ, α) includes boundary condition.

Theorem 3. Assume that the coefficients of A given by (3.26) are positive, c < 0 and let
h = max

1≤i≤N1
1≤ j≤N2

{hxi , hy j}. If h is relatively small then the matrix E(τ, α) =
(
ei, j

i, j

)
i=1,··· ,N1−1

j=1,··· ,N2−1,

in (3.44) is an

M-matrix for any α ∈ AN .

Proof. The Proof follows the same lines of that of Theorem 2. �

4. Temporal discretization and optimization

This section is devoted to the numerical time discretization method for the spatially discretized
optimization problem using the fitted finite volume method. Let us re-consider the differential equation
coupled with optimization problem given in (3.16) or (3.45) by

dv(τ)
dτ

= sup
α∈AN

[A(τ, α)v(τ) + G(τ, α)] , (4.1)

v(0) given.

For temporal discretization, we use a constant time step ∆t > 0, of course variable time steps can be
used. The temporal grid points given by ∆t = τn+1 − τn for n = 1, 2, . . .m − 1. We denote v(τn) ≈ vn,
An(α) = A(τn, α) and Gn(α) = G(τn, α).

For θ ∈
[

1
2 , 1

]
, following [11], the θ-Method approximation of (4.1) in time is given by

vn+1 − vn = ∆t sup
α∈AN

(
θ [An+1(α) vn+1 + Gn+1(α)]

+(1 − θ) [An(α) vn + Gn(α)]) ,

this also can be written as

inf
α∈AN

(
[I + ∆t θ En+1]vn+1 + Fn+1(α) + [I + ∆t θ En]vn + Fn(α)

)
= 0. (4.2)

As we can notice, to find the unknown vn+1 we need also to solve an optimization problem. Let

αn+1 ∈

(
arg sup
α∈AN

{
θ∆t

[
An+1(α) vn+1 + Gn+1(α)

]
+ (1 − θ) ∆t [An(α) vn + Gn(α)]

})
. (4.3)
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Then, the unknown vn+1 is solution of the following equation

[I − θ∆t An+1(αn+1)] vn+1 = [I + (1 − θ) ∆t An(αn+1)] vn

+ [θ∆t Gn+1(αn+1) + (1 − θ)∆t Gn(αn+1)],
(4.4)

Note that when θ = 1
2 the time-stepping scheme becomes the Crank-Nicolson scheme and when θ = 1

it is the Implicit scheme. Both of these schemes are unconditionally stable, and they are second and
first-order accuracy respectively. Unfortunately (4.2) and (4.3) are nonlinear and coupled and we need
to iterate at every time step. The following iterative scheme close to the one in [11] is used.

1. Let
(
vn+1

)0
= vn,

2. Let v̂k =
(
vn+1

)k
,

3. For k = 0, 1, 2 · · · until convergence (‖v̂k+1
− v̂k
‖ ≤ ε, given tolerance) solve

αk
i ∈ (4.5)(
arg sup
α∈AN

{
θ∆t

[
An+1(α) v̂k + Gn+1(α)

]
i
+ (1 − θ) ∆t [An(α) vn + Gn(α)]i

})
αk = (αk)i (4.6)

[I − θ∆t An+1(αk)] v̂k+1 = [I + (1 − θ) ∆t An(αk)]vn (4.7)
+ [θ∆t Gn+1(αk) + (1 − θ)∆t Gn(αk)],

4. Let kl being the last iteration in step 3, set vn+1 := v̂kl , αn+1 := αkl .

Indeed to find the solution at time τn+1, we use the solution at time τn and the iterations in our algorithm.
We have used the Matlab optimisation toolbox and more precisely the Matlab function ” fminbnd” in
(4.5). Note that the optimization problem (4.5) is solved in each grid point at every iteration.

The monotonicity of system matrix of (4.2), more precisely [I + ∆t θEn+1] is given in the following
theorem.

Theorem 4. Under the same assumptions as in Theorem 2 and 3, for any given n = 1, 2, · · · ,m − 1,
the system matrix [I + ∆t θEn+1] in (4.2) is an M–matrix for each α ∈ AN .

Proof. The proof is obvious. Indeed as in Theorem 2 and 3, [I + ∆t θEn+1] is (strictly) diagonally
dominant since ∆t > 0. Then, it is an M–matrix. �

Note that a simple finite difference scheme generally does not give an M-matrix. The merit of the
proposed method is that it is unconditionally stable in time because of the implicit nature of the time
discretization. More precisely, following [10, Theorem 6 and Lemma 3], we can easily prove that the
scheme (4.4) is stable and consistent, so the convergence of the scheme is ensured (see [23]).

5. Numerical experiments

The goal of this section is carried out test problems in both 1 and 2 spatial dimensions to validate the
numerical scheme presented in the previous section. All computations were performed in Matlab 2013.
In our numerical experiments, we found that the fitted finite volume method and the finite difference

AIMS Mathematics Volume 6, Issue 4, 3053–3079.



3070

method converge after 2 or 3 iterations in our algorithm (4.5). We have used for tolerance ε = 10−6 in
our iterative algorithm.

We will present two problems with exact solution and one problem without exact solution modelling
cash management in finance.

Problem 1. Consider the following Merton’s stochastic control problem such that α = α(t) is a
feedback control belongs in [0, 1]

v(t, x) = max
α∈ [0,1]

E

{
1
p

xp(T )
}
. (5.1)

subject to
dxt = bαt(t, xt) dt + σαt(t, xt) dWt,

where bαt(t, xt) = xt
[
r + αt (µ − r)

]
, σαt(t, xt) = xt αt σ, 0 < p < 1 is coefficient of risk aversion, r, µ,

σ are constants, xt ∈ R and Wt Brownian motion. We assume µ > r. For this problem, using dynamic
programming the corresponding HJB equation is given by

vt(t, x) + sup
α∈[0,1]

[Lαv(t, x)] = 0 on [0,T ) × R+

v(T, x) =
xp

p
, x ∈ R+

(5.2)

where

Lαv(t, x) = (bα(t, x))
∂v(t, x)
∂x

+ (aα(t, x))
∂2v(t, x)
∂x2 , (5.3)

and aα(t, x) =
1
2

(
σα(t, x)

)2

.

The divergence form of the HJB (5.2) is given by

∂v(t, x)
∂t

+ sup
α∈ [0,1]

[
∂

∂x

(
a(t, x, α) x2∂v(t, x)

∂x
+ b(t, x, α) x v(t, x)

)
+ c(t, x, α) v(t, x)

]
= 0, where

(5.4)

a(t, x, α) =
1
2
σ2α2

b(t, x, α) = r + (µ − r)α − σ2α2

c(t, x, α) = −(r + α (µ − r) − σ2 α2).

The domain where we compare the solution is Ω = [0, xmax], where Dirichlet boundary conditions
is used at the boundaries. Of course the value of the boundary conditions are taken to be equal to the
exact solution. The exact solution given in [9] is given at every (τn, xi) by

v (τn, xi) = exp (p × (n × ∆t − T ) × ρ) ×
(xi)p

p
, (5.5)

ρ =

r +
(µ − r)2

σ2 (1 − p)
+

1
2

(p − 1)σ2
(

(µ − r)
σ2 (1 − p)

)2 , 0 < p < 1 (5.6)
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We use the following L2([0,T ] ×Ω) norm of the absolute error

‖vm − v‖L2[[0,T ]×Ω] =

m−1∑
n=0

N1−1∑
i=1

(τn+1 − τn) × li × (vn
i − v (τn, xi, ))2

1/2

, (5.7)

where vm is the numerical approximation of v computed from our numerical scheme. The 3 D graphs of
the implicit fitted finite volume ( θ = 1) with its corresponding exact solution are given at Figures 1 and
2 with parameters coming from [16]. For our computation, we have [0, 10] for computational domain
with N = 1500, r = 0.0449, µ = 0.0657, σ = 0.2537, p = 0.5255 and T = 1.

Figure 1. Implicit fitted finite
volume.

Figure 2. Ansatz analytical
solution.

We compare the fitted finite volume method and the finite difference method in Table 1.

Table 1. Comparison of the implicit fitted finite volume method and implicit finite difference
method. We have taken [0, 10] for computational domain with N = 1500, r = 0.0449,
µ = 0.0657, σ = 0.2537, p = 0.5255 and T = 1. By fitting the data from this table, we found
that the convergence orders in time are 0.91658 and 0.91438 respectively for the fitted finite
volume method and the finite difference method.

Time subdivision 200 150 100 50
Error of fitted finite volume method 3.34 E-01 6.81 E-01 1.01 E-00 1.33 E-00

Error of finite difference method 3.37 E-01 6.89 E-01 1.02 E-00 1.34 E-00

From Tables 1–3, we can observe that the implicit fitted finite volume is slightly accurate comparing
to the implicit finite difference method. Both fitted finite volume and finite difference method converge
with order 0.9 in time.
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Table 2. Comparison of the implicit fitted finite volume method and implicit finite difference
method. We have taken [0, 5] for computational domain with N = 1500, r = 0.0449, µ =

0.0657, σ = 0.2537, p = 0.5255 and T = 1.

Time subdivision 200 150 100 50
Error of fitted finite volume method 1.64 E-01 3.35 E-01 4.97 E-01 6.53 E-01

Error of finite difference method 1.66 E-01 3.38 E-01 5.03 E-01 6.61 E-01

Table 3. Comparison of the implicit fitted finite volume method and implicit finite difference
method. We have taken [0, 5] for computational domain with N = 2000, r = 0.0449, µ =

0.0657, σ = 0.2537, p = 0.5255 and T = 1.5. By fitting the data from this table, we found
that the convergence orders in time are 0.89522 and 0.8948 respectively for the fitted finite
volume method and the finite difference method.

Time subdivision 200 150 100 50
Error of fitted finite volume method 2.97 E-01 5.99 E-01 8.83 E-01 1.15 E-01

Error of finite difference method 3.00 E-01 6.05 E-01 8.91 E-01 1.17 E-01

Problem 2. Consider the following two dimensional Merton’s stochastic control model such that α1 =

α1(t) and α2 = α2(t) are a feedback control in [0, 1]

v(t, x, y) = max
(α1,α2)∈ [0,1]×[0,1]

E

{
1
p

xp(T ) ×
1
p

yp(T )
}
, (5.8)

subject to

dxt = b1
α1t(t, xt) dt + σα1t(t, xt) dW1t

dyt = b2
α2t(t, yt) dt + σα2t(t, yt) dW2t

(5.9)

where

b1
α1t(t, xt) = xt

[
r1 + α1t (µ1 − r1)

]
,

b2
α2t(t, yt) = yt

[
r2 + α2t (µ2 − r2)

]
,

σα1t(t, xt) = xt α1t σ, σα2t(t, yt) = yt α2t σ,

0 < p < 1 is coefficient of risk aversion, r1, µ1, r2, µ2 σ are constants, xt, yt ∈ R and ρ12 ∈ [0, 1) the
correlation of the two Brownian motion. We assume that µ1 > r1 and µ2 > r2. For this problem, using
dynamic programming the corresponding HJB equation is given by

vt(t, x, y) + sup
(α1,α2)∈[0,1]×[0,1]

[
Lα1,α2v(t, x, y)

]
= 0 on [0,T ) × R+ × R+

v(T, x, y) =
xp

p
×

yp

p
, x, y ∈ R+

(5.10)

where

Lαv(t, x, y) = (b1
α1(t, x))

∂v(t, x, y)
∂x

+ (b2
α2(t, y))

∂v(t, x, y)
∂y

+
1
2

(σα1(t, x))2 ∂
2v(t, x, y)
∂x2

+
1
2

(σα2(t, y))2 ∂
2v(t, x, y)
∂y2 + (σα1(t, x)) (σα2(t, y)) ρ12

∂2v(t, x, y)
∂x∂y

,
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and the two dimensional divergence form is given by

∂v(t, x, y)
∂t

+ sup
α∈ [0,1]×[0,1]

[
∇ · (k(t, x, y, α)) + c(t, x, y, α) v(t, x, y)

]
= 0, (5.11)

where k(t, x, y, α) = A(t, x, y, α)∇v(t, x, y) + b(t, x, y, α)v(t, x, y)

A =

(
a11 a12

a21 a22

)
,

a11(t, x, y, α) =
1
2
σ2 α2

1 x2, a22(t, x, y, α) =
1
2
σ2 α2

2 y2,

a12(t, x, y, α) = a21(x, y, t, α) =
1
2
σ2 α1 α2 ρ12 x y.

By identification,

a(t, x, y, α) =
1
2
σ2 α2

1

ā(t, x, y, α) =
1
2
σ2 α2

2

b1(t, x, y, α) = r1 + α1 (µ1 − r1) −
1
2
σ2 α1 α2 ρ12 − σ

2 α2
1,

b2(t, x, y, α) = r2 + α2 (µ2 − r2) −
1
2
σ2 α1 α2 ρ12 − σ

2 α2
2,

c(t, x, y, α) = −
[
r1 + (µ1 − r1)α1

]
−

[
r2 + (µ2 − r2)α2

]
+ σ2

(
α2

1 + α2
2 + α1 α2 ρ12

)
,

d1(t, x, y, α) =
1
2
σ2 α1α2 ρ12.

The two dimensional Ansatz exact solution [9] at
(
τn, xi, y j

)
is given by

v
(
τn, xi, y j

)
= exp (p × (n × ∆t − T ) × ρ) ×

(xi)p

p
×

(y j)p

p
,

ρ = sup
α1,α2 ∈[0,1]×[0,1]

[
r1 + r2 + (µ1 − r1)α1 + (µ2 − r2)α2

+
1
2
σ2 α2

1 (p − 1) +
1
2
σ2 α2

2 (p − 1) + σ2 α1 α2 ρ12 p
]
, 0 < p < 1/2.

We use the following L2([0,T ] ×Ω), Ω = [0, xmax] × [0, ymax] norm of the absolute error

‖vm − v‖L2[Ω×[0,T ]]

=

m−1∑
n=0

N1−1∑
i=1

N2−1∑
j=1

(τn+1 − τn) × hxi × hy j × (vn
i, j − v

(
τn, xi, x j,

)
)2


1/2

,
(5.12)

where vm is the numerical approximation of v computed from our numerical scheme.
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The 3 D graphs of the implicit fitted finite volume ( θ = 1 at the final time T = 1) with its
corresponding exact solution are given at Figures 3 and 4, with N1 = 25, N2 = 20, r1 = 0.0449/2,
µ1 = 0.0657/2, r2 = 0.0448/2, µ2 = 0.0656/2, σ = 0.2537/2, p = 0.5255/2 and ρ12 = 0.9.

Figure 3. Implicit fitted finite volume
at finite time T = 1.

Figure 4. Ansatz analytical solution
at finite time T = 1.

We compare the fitted finite volume method and the finite difference method in Table 4. As in
dimension 1, we can observe the accuracy of the fitted scheme comparing to the finite difference
scheme, thanks to the fitted technique. We can also observe that the accuracy is high when the number
of time subdivisions is small. For ρ12 = 0.9 the fitted finite volume and the finite difference converge
with order 1.3 in time.

Table 4. Errors table for fitted finite volume method and finite difference method in
dimension 2 with ρ12 = 0.9. By fitting the data from this table, we found that the convergence
order in time is 1.3 for both the fitted finite volume method and the finite difference method.

Time subdivision 200 150 100 50
Error of fitted finite volume method 2.90 E-03 6.50 E-03 1.15 E-02 2.09 E-02

Error of finite difference method 3.01 E-03 6.52 E-02 1.16 E-02 2.10 E-01

Problem 3. We consider a optimal cash management under a stochastic volatility Model problem
coming from [21]. We assume that the firm invests its cash in a bank account and a stock in a portfolio
of value wt at time t, and the proportion of wealth invested in the stock at time t is ut. The interest
rate earned in the bank account is r1, the return from the stock at time t has two components, the cash
dividend rate r2, the capital gain rate Rt. The dynamic of the capital gain rate Rt is assumed to be
governed by the stochastic process

dRt = [β1 Rt + f ] dt + σt dW1t, (5.13)

and the volatility σt with modeled by

dσt = ασt dt + βσt dW2t. (5.14)
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Suppose that the firm has a demand rate d(t) for cash at time t, and that the demand rate d(t) is normally
distributed with mean 0 and variance 0.2. We assume that ut ∈ [0, 1] and the wealth dynamics for this
cash management problem is given by

dwt = wt ut r2 dt + wt (1 − ut) r1 dt + wt Rt dt − d(t) wt dt. (5.15)

The objective of the firm is to maximize the expectation of the total holdings at the terminal time T .
The portfolio optimization problem is given by

J(T,w,R, σ) = max
u∈[0,1]
E {wT } . (5.16)

subject to


dwt = wt ut r2 dt + wt (1 − ut) r1 dt + wt Rt dt − d(t) wt dt,

dRt = [β1 Rt + f ] dt + σt dW1t

dσt = ασt dt + βσt dW2t

We assume that the two Brownian motions are correlated, that is dW1t dW2t = ρ dt. For this problem
of optimal cash management the analytical solution is not available, so our numerical scheme will to
provide approximated solution. Using dynamic programming, the corresponding HJB equation for this
optimal cash management problem (5.16) is given by

Jt + max
u∈[0,1]

{( f + β1 R) JR + w (u r2 + (1 − u) r1 + u R − d(t) Jw+

1/2
(
σ2 JRR + β2 σ2 Jσσ + 2 ρ βσ2 JσR

)
+ ασ Jσ

}
= 0,

(5.17)

with terminal condition J(T, ·) = wT . To simplify the problem, we assume that

J(t,w,R, σ) = wH(t,R, σ).

Therefore (5.17) is equivalent to

Ht + max
u∈[0,1]

{( f + β1 R) HR + (u r2 + (1 − u) r1 + u R − d(t)) H+

1/2
(
σ2 JRR + β2 σ2 Hσσ + 2 ρ βσ2 HσR

)
+ (ασ) Hσ

}
= 0

(5.18)

with terminal condition H(T,R, σ) = 1. The HJB Eq (5.18) is a problem with two state variables R
and σ. The divergence form of the problem (5.18) is then given by

∂H(t,R, σ)
∂t

+ sup
u ∈ [0,1]

[∇ · (k(t,R, σ, u)) + c(t,R, σ, u) H(t,R, σ)] = 0, (5.19)

where k(t,R, σ, u) = A(t,R, σ, u)∇H(t,R, σ) + b(t,R, σ)H(t,R, σ)

A =

(
a11 a12

a21 a22

)
,

a11 =
1
2
σ2, a22 =

1
2
β2 σ2, a12 = a21 =

1
2
σ2 ρ β.
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By identification,

a(t,R, σ) =
σ2

2 R2 , ā(t,R, σ) =
β2

2

b1(t,R, σ) =
f
R

+ β1 − σ
ρ β

R
, b2(t,R, σ) = α − β2

c(t,R, σ, u) = u r2 + (1 − u) r1 + u R − d(t) − β1 − α + β2.

Because we have a stochastic volatility model, to solve the PDE equation, we have considered the
following boundary conditions of Heston model

H(t, 0, σ) = 0,
H(t,R, σmax) = R,

∂H
∂R

(t,Rmax, σ) = 1.

(5.20)

Because the PDE has two second derivatives in the two spatial directions, four boundary conditions
are needed. This comes from the fact that the two second order derivatives give rise to two unknown
integration constants. To meet this requirement, at the boundary σ = 0 it is considered inserting σ = 0
into the PDE to complete the set of four boundary conditions:

Ht(t,R, 0)
+ max

u∈[0,1]
{( f + β1 R) HR(t,R, 0) + (u r2 + (1 − u) r1 + u R − d) H(R, 0, t)} = 0 (5.21)

The HJB equation is solved using some parameters values in [21] given in the following tabular

Table 5. Parameters values for the cash management problem.

f β1 β α r1 r2 ρ

0.12 0.96 0.3 −0.85 0.024 0.01 0.5

Figure 5 shows a sample of fitted finite volume solution of the wealth rate H at the point (1/2, 1/2)
from t = 1 to t = 10 with N1 = 10, N2 = 10, Rmax = 1/2, σmax = 1/2. We can estimate the mean
and moment of H using Monte Carlo Method by generating many samples of H. Table 6 presents the
optimal investment policy from t = 1 to t = 10.

Table 6. Optimal choice using fitted scheme and finite difference.

Time 1 2 3 4 5 6 7 8 9 10
Optimal choice using fitted scheme 1 1 1 1 1 1 1 1 1 1

Optimal choice using finite difference 1 0 1 1 1 1 0 0 1 1
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Figure 5. A fitted finite volume sample solution
of the wealth rate H at the point 1/2, 1/2.

6. Conclusions

We presented a fitted finite volume method to solve the HJB equation from stochastic optimal
control problems coupled with implicit temporal discretization. It was shown that the corresponding
system matrices are M-matrices, so the maximum principle is preserved for the discrete system.
Numerical experiments in 1 and 2 dimensions are performed to prove that the fitted scheme can be
more accurate comparing to the standard finite difference methods. We intent to extend our method in
high dimension.
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