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Abstract. Spar-buoy floating wind turbines (FWTs) have been deployed at full-scale off the
coast of Scotland. However, their deep draught restricts their wider-suitability for assembly
and installation at shallow water ports. Here a barge-type installation vessel is investigated
experimentally for supporting a FWT such that a draught reduction of up to 30% can be
achieved. Tests in irregular waves are conducted to understand the design loads required of
a mechanical linkage between the vessel and FWT. Overturning moments increase by over
double for a doubling in significant wave height, Hs, and peak overturning moment occurs at
the pitch eigenfrequency of the combined vessel and FWT. For Hs=1.5 m, these loads can be
accommodated for with a steel truss-frame structure. Collisions between vessel and FWT are
also tested for regular head waves and show that, whilst a number of collision forces exceed
those of the relevant design standards, these could be reduced to within the existing design
limits by use of a fender.

1. Introduction
Offshore wind is expected to be a one-trillion dollar global industry by 2040 [1], with a capacity
exceeding 70 GW in Europe alone by 2030 [2]. To date, the majority of wind power plants are
installed in shallow water locations with depths less than 40 m. To exploit the wind resource
at deep water sites requires floating installations, and these are currently in development. Most
recently, the world’s first demonstration park, Hywind Scotland, featuring five, 6 MW floating
wind turbines (FWTs) and utilising spar-buoy substructures, was installed off the coast of
Peterhead, Scotland by Equinor. Assembly of these turbines, which feature a draught of over 70
m, was completed using the world’s largest floating crane, Saipem 7000 at the deep water fjord
outside, Stord, Norway. Few such deep water ports exist worldwide and so there is significant
interest to make assembly of this floating technology more accessible. A number of novel
installation methods have recently been proposed, with the aim of also reducing the number
of weather-dependent offshore lifts, such as using a catamaran vessel supporting pre-assembled
towers [3], or by horizontal tow-out and up-ending of the turbine at site [4]. In 2014, Equinor
launched an innovation challenge, where several competing installation concepts for Hywind
were presented. Amongst the three winners was a reusable transport frame proposed by Atkins
[5], designed for both assembly and installation of spar-buoy FWTs. This installation method
is the focus of the current work. The vessel features a mechanical turbine-vessel linkage which
allows the FWT draught to be reduced for assembly and tow-out in shallower water. The FWT
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can then be ballasted to the operational draft once at the wind farm site. The linkage is thus
required to withstand overturning moments and possible collision loads induced by met-ocean
conditions during tow-out and installation at site. The experimental work presented, evaluates
the magnitude and occurrence of overturning moments between the connected vessel and FWT
and possible impulse loads expected to occur when the FWT is separated from the vessel. A
series of regular and irregular wave tests have been conducted on a 1:72 geometric scale model
at the MarinLab towing tank, Western Norway University of Applied Sciences, Norway. Tests
are presented for the full- and reduced-draught FWT for the following full-scale cases:

• connected FWT-vessel in irregular JONSWAP spectra with significant wave height, Hs

varied between 1.5-3.5 m, and peak spectral period, TP between 6.5-16.5 s;

• collision impulse between disconnected FWT and vessel under regular waves with
H=1.5 and 2.9 m and T varied between 6.5-16.5 s.

Section 2 details the experimental model set-up and facility used for testing. Measurements of
the moments of force between the connected FWT and vessel are presented in Section 3, with
collision loads in Section 4. Conclusions and points of further work are addressed in Section 5.

2. Experimental method
The MarinLab towing tank is a 50 m long, 3.0× 2.2 m section, test facility equipped with
a six-flap Edinburgh Designs wavemaker and a four camera Qualysis motion-capture system
with sampling frequency of 150 Hz. To simplify testing, a barge-type vessel, as opposed to
the semi-submersible presented by Atkins [5], was built with dimensions detailed in Høyven
[6] and summarised in Table 1. A diagram of the experimental set-up is shown in Figure 1.
The barge was scaled such as not to exceed a maximum beam width of 0.6 m, in order to
minimise the influence of blockage and reflections with tank walls. The FWT is Froude-scaled
from the full-scale Hywind turbine dimensions from [7], with model geometry simplified from
the original ‘flask’ form at the waterline, to a constant cylinder diameter of D = 0.2 m. Correct
scaling of ballast and rotational inertia are ensured via modelling in DNV-GL Sesam. Due
to material limitations, the draught of the model FWT could only be reduced by 18%, as
opposed to an expected 30% at full-scale [6]. Both vessels were lightly moored to the tank walls,
with four lines on the barge and two lines on the FWT. Each line had two springs connected
in serial, providing a combined stiffness of approximately 6.6 N/m per line. A load cell rig,
consisting of two tension/compression load cells (one Applied Measurements DDEN 250 N and
one HBM U9C 500 N capacity), was fitted to the barge, allowing horizontal collision loads and
overturning moments about the deck to be resolved. Two, 2000 N capacity, 12V RS Pro EM80
electromagnets attached to the load cell rig were used to automate release of the FWT from the
barge in synchronisation with the wave phase.

Resistance-type wave gauges are used to measure the wave elevation at the model (digital
signal) and also at 10 m in front of the model (both an analogue and digital signal were used here
for synchronisation), to capture the undisturbed wave signal. Reflections from the model are
noted to be very small at this upstream distance. The digital wave gauge signals are recorded
at 128 Hz, whilst all analogue wave and force data are recorded through a National Instruments
compact data acquisition system at 2000 Hz. For spectral analysis, all data are down-sampled
to 128 Hz in post-processing. Collision analysis is conducted using the full 2000 Hz signal.

2.1. Load cell calibration
A load cell rig is used to mount the load cells to the barge and minimise off-axis loading,
where load capacity is typically reduced to 50% of the rated capacity. To calibrate the rig,
the load cells are firstly calibrated separately in both compression and tension directions, with
five applied loads of between 0-200 N. The load cells are then assembled onto the rig, where a
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Table 1: Main dimensions and particulars of the barge and FWT in full and model scales.
Values in brackets ( ) indicate reduced-draught dimensions. Note the displacement mass of the
FWT includes the tower top head mass.

Particular, unit Notation Barge FWT
full model full model

Overall length, m LPP 100 1.389 - -
Beam, m LB 37 0.514 - -
Diameter, m D - - 14.4 0.2
Draught, m TB , TF 4 0.056 76 1.06 (0.86)
Displacement mass, kg mB , mF 1.30×107 33.85 1.15×107 30.06
Top head mass, kg mth - - 3.6×105 0.94
Centre of gravity above keel, m KGB , KGF 3.77 0.052 26.42 0.367 (0.507)

Figure 1: Side-view of connected barge and floating turbine model, showing direction of wave
propagation, location of upper (ULC) and lower (LLC) load cells and electromagnets, and overall
dimensions in millimetres.

second calibration is carried out at seven distances across the loading plate in both compression
and tension directions, see Figure 2(a). The rig is shown to behave very linearly, Figure 2(b),
with the difference between maximum measured and applied load not more than 5% at the
edge of the loading plate. The discontinuity in the curves is due to the difference in vertical
rig orientation when calibrating in tension and compression. A zero load offset is applied when
mounted horizontally to the barge.
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Figure 2: (a) Calibration of load cell rig, shown for compression, with seven load positions
measured from the centreline and (b) a sample calibration curve of the upper load cell (ULC) for
total calibration load varying between 0-200 N tension ( •) and compression ( ◦) applied
at position F4.

2.2. Wave calibration
All wave gauges are calibrated using a three-point calibration. Each set of wave spectra, Sxx,
are measured for a 20-minute period without the model installed. A gain correction is then
applied to ensure the wavemaker generates a measured spectral energy that is the same as the
theoretical spectra across all wave frequencies, f . Due to time-constraints, gain-correction was
not completed for spectra with 12.3 ≤ TP ≤ 14.9 s. Here, the same gain corrections from the
closest available spectrum (TP = 10.5 s or TP = 16.5 s, respectively) were used to correct these
spectra. This was found to give a very reasonable approximation to the requested spectra, as
shown in Figure 3 when compared to the upstream wave gauge.

2.3. Decay testing
Prior to all testing, decay tests in heave, roll and pitch were conducted for the moored barge
and FWT, both individually and connected (BFWT). The first eigenperiods for all decay tests
are shown in Table 2. The reduced draught turbine was unstable alone, due to a negative
metacentric height, and so no decay tests were conducted for this. A surge decay test for the
connected BFWT was also conducted.

The decay time-series curves were least-squares fitted with an exponential sinusoidal decay
curve, eq.(1):

yn = A sin
(√

1− ζ2ω0t+ φ
)
e−ζω0t (1)

where A is the magnitude of the start of the oscillation curve, ζ the damping ratio, ω0 = 2πf0
the un-damped natural frequency, and φ a phase shift. The heave response of the connected
BFWT is highly damped, and so not accurate. Indeed, the heave eigenperiod corresponds to
the frequency of the standing wave between the barge and tank walls triggered during the heave
decay test. Instead, it was observed during irregular wave testing that the peak heave response
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Figure 3: Comparison of measured, gain-corrected (black) and theoretical JONSWAP wave
spectra (grey) for Hs=3.5 m and TP = 1/f0 s ( ), Hs=1.5 m and TP=16.5 s ( ).
Normalisation of the wave frequency, f is against the full-draught combined vessel and FWT
pitch eigenfrequency, f0 - see Section 2.3.

Table 2: Full-scale natural periods, 1/f0 (s), and damping ratio, ζ, for the lightly-moored
barge, B, floating wind turbine (FWT) and combined vessel (BFWT) at full (FD) and reduced
(RD) draught.

Mode
B FWTFD BFWTFD BFWTRD

s [-] s [-] s [-] s [-]

Heave 8.5 0.02 18.5 0.02 8.5 0.03 8.6 0.03
Pitch 10.2 0.24 37.9 0.02 14.2 0.03 13.4 0.04
Roll 7.0 0.07 - - 21.2 0.01 22.6 0.01
Surge - - - - 284.3 0.13 293.7 0.10

occurres at the same frequency as the pitch eigenfrequency, due to mode coupling. From here
on, f0 defines the pitch eigenfrequency of the BFWT at the corresponding draught of the test.

2.4. Test matrix
Loads between the connected FWT and barge were studied for a series of JONSWAP irregular
wave-spectra, detailed in Table 3. Collision loads were investigated under regular long-crested
waves, with full-scale wave height, H and period, T detailed in Table 4. For H = 2.9 m, wave
periods greater than 12.3 s were not possible to test due to the load-carrying capacity of the
electromagnets being exceeded, causing premature release of the FWT from the barge.

Table 3: Matrix of JONSWAP irregular wave parameters, Hs (m), and TP (s), tested for
the connected barge and FWT at full-draught (FD) and reduced draught (RD). Spreading
parameter, γ, specified as 3.3 for all cases.

Hs

TP 6.5 8.5 10.5 12.3 13.2 1/f0 14.8 16.5

FD RD FD RD FD RD FD RD FD RD FD RD FD RD FD RD

1.5 ! ! ! ! ! ! - ! ! ! ! ! ! ! ! !

3.5 ! ! ! ! ! ! - ! ! - ! ! ! ! ! !
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Table 4: Matrix of regular sinusoidal wave height, H (m), and period, T (s), used for collision
testing of barge and full-draught FWT, where f0 is the full-draught combined BFWT pitch
eigenfrequency. A minimum of five repetitions for each case were recorded.

H

T
6.5 8.5 10.5 12.3 13.2 1/f0 14.8 16.5

1.5 ! ! ! ! ! ! ! !

2.9 ! ! ! ! - - - -

3. Moments between vessel and floating turbine
This section focuses on the loads occurring between the connected barge and FWT under
irregular waves. Such loads may be expected during tow-out or assembly and thus give an
indication of the design loads required of a mechanical linkage between the two.

3.1. Response of connected vessel
From the irregular sea-state test with Hs = 1.5 m and TP = 14.8 s, the measured combined barge
and floating wind turbine (BFWT) response amplitude operators (RAOs) in pitch and heave
are shown in Figure 4(a) and are compared to a full-scale panel model in DNV-GL HydroD.
Close agreement to the measured peak response is found at the respective pitch eigenfrequency.
Deviations above and below this frequency are likely due to non-linear effects in the experiment
and lack of accuracy in modelling of viscous forces. The peak response in pitch is greatest
for the reduced draught BFWT, however, the corresponding peak from the moment-RAO in
Figure 4(b), is less than the full-draught BFWT. This is presumably because despite net load
being transmitted from a higher vertical position in the reduced draught case, the fully-ballasted
vessel transmits greater net force. Here the moment-RAO is defined as the square-root of the
moment-spectrum divided by the wave spectrum.
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Figure 4: Response amplitude operators of the full (solid lines) and reduced (dashed lines)
draught BFWT, for: (a) heave, m/m (faint colours) and pitch, deg/m (bold colours) response,
compared with HydroD panel model (red thick lines in online version); and (b) moment response,
GNm/m. All RAO’s obtained as the square-root of the respective response spectrum divided
by input wave spectrum for Hs=1.5 m and TP=14.8 s.
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3.2. Load occurrence statistics
The time-series history of overturning moment from each irregular sea-state test is discretised
into 40 evenly-distributed bins of force-moment, Figure 5(a). The height of each bin indicates
the probability density of occurrence for each moment interval. A normal distribution function
is least-squares fit through the top-centres of each bin, providing the continuous probability
density function. The normal distribution is found to give excellent agreement to each fully-
developed sea-state, with only a small over-estimation (< 10%) of the occurrence of loads at the
extreme tails of the distribution, Figure 5(b).
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Figure 5: Probability density function ( ) obtained by least-squares fitting of the binned-
histogram (a) and corresponding normal probability plot against measured moment data ( )
(b) for TP=10.5 s, Hs=1.5 m.

In order to evaluate the distribution of extreme overturning moments between barge and
turbine, the values of three standard-deviations (3σ), representing 99.7% probability interval
of all load occurrences, is shown in Figure 6 for each sea-state, with full and reduced draught
FWTs. Peak overturning moment coincides with the corresponding pitch eigenfrequency, f0
of the combined barge and FWT, with an approximate doubling of load for a doubling in
significant wave height. It is also seen that loads are consistently ∼ 10 − 20% lower for the
reduced draught case than full-draught. These results suggest that operations will be limited by
the vessel’s natural pitch frequency and operational wave height. In typical North Sea conditions
[8], operationality would therefore be increased by a vessel with a greater pitch eigenperiod than
the 13.7 s of the current full-scale barge.

These wave-induced overturning moments compare with an expected 4.24 GNm wind-induced
overturning moment acting on the non-operating turbine, for a 10-metre mean wind-speed of
8 m/s (equivalent to a fully-developed sea-state with Hs = 1.5 m). This calculation is based on
the method in [9], assuming a 1/7th power-law shear profile to extrapolate wind-speed to hub-
height [10] and a normal turbulence model with a reference turbulence intensity of 7.7% based
on [11] for open-sea. Design loads are therefore dominated by wind-induced loads. Nevertheless,
these loads could be supported by a square-based truss-frame structure accommodated on the
barge deck. Following the method described in [12] for a simple Euler-Bernoulli beam, with
an equivalent beam second moment of area representing the truss, Ieq eq.(2) given by [13], and
using mild steel, the required footprint area is found to be 7 m2. This assumes four legs of 2.5 m
diameter forming the truss vertices, with cross-bracing forming the beam webbing.

Ieq =
3

2
AcL

2 (2)

Ac is the circular cross-section area in eq.(2) and L the centre-centre spacing of the truss legs.
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Figure 6: Comparison of 3σ normalised by maximum 3σ overturning moment versus normalised
wave frequency, f/f0 with Hs=1.5 m (�) and Hs=3.5 m (◦), for the full draught ( , filled
markers) and reduced draught ( , open markers) vessel. Here, max{3σ} = 1.49 GNm, full-
scale.

4. Collision loads
A typical time-series of total measured force, wave elevation upstream of the device and release
time for the electromagnets is shown in Figure 7(a). For all regular wave tests, consecutive
collisions occurring with a period greater than the surge frequency of the barge (given in
Table 2) are disregarded from the results, since these are likely a result of the light mooring
system which would not be present at full-scale. This typically gave a minimum of four valid
collisions occurring in each time-series, though for H = 1.5 m and T < 10.5 s, there were no
collisions in some repeats. The impulse, I, of each collision is calculated as the area under the
force-time curve, F (t) (Figure 7(b)), between the start, ti, and end, te, times of the collision
according to eq. (3). Positive forces are defined in tension.

I =

∫ te

ti

F (t)dt (3)

In order to evaluate sensitivity of the release phase of the electromagnets relative to the
wave phase, regular wave tests were conducted with H = 2.9 m, T = 6.5, 8.5 and 10.5 s, and
the release phase of electromagnets varied in steps of π/4. This was shown in [6] to have no
significant correlation to the magnitude of the collision impulse. For each of the remaining
regular wave cases from Table 4, a minimum of five repetitions were conducted, such that the
mean impulse could be calculated from typically 20 collisions for most cases.

Figure 8(a) shows that the maximum collision impulse coincides with the pitch eigenfrequency
of the combined BFWT. The impulse for H=1.5 m is around 50% of that measured for H=2.9 m
and so it is advantageous, indeed likely necessary, to operate in wave heights less than 3 m.
Similarly, it is advantageous to operate in wave periods shorter than the natural period of the
vessel. However, the impulse does not indicate the magnitude of peak load a mechanical linkage
would be required to withstand. Figure 8(b) compares the impulse to the corresponding peak
force from each collision with H=1.5 m. According to [14], the contact area between a service
vessel and FWT is required to withstand 2.5 times the mass displacement of the vessel; in this
case, 32.5 MN. From Figure 8(b), it is clear that a significant number of collisions exceed this
design load. However, these tests have been for theoretically rigid and elastic collisions. For the
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Figure 7: (a) Model-scale force-time series ( ) for H = 1.5 m, T = 10.5 s, showing magnet
release point ( ) and disregarded collisions ( ); (b) the area integrated under-the-curve for
obtaining the impulse load, I, of the first collision from (a).
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Figure 8: (a) Variation in impulse loads, I, with normalised wave frequency, f/f0 for wave
height, H=1.5 m (mean: ◦ and max: ) and H=2.9 m (mean: and max: ). Error
bars show ±σ; (b) peak absolute collision force between the FWT and barge versus impulse,
I, with least-squares linear-fit ( ) to all collisions (•) and maximum collision forces from
each regular wave set of H=1.5 m and T=6.5 (◦), 8.5(+), 10.5(�), 13.2(×), 14.2 (∆), 14.8 (*),
16.5 (•) s.

same impulse, the peak force could be reduced by around 50% by doubling the collision time,
such as with a spring-damper system, i.e. a fender. This would bring the majority of collisions
(over 95%) under the specified design load and therefore use of this installation method can be
considered mechanically feasible.

5. Conclusions
Model tests on a barge-type installation vessel for floating spar-buoy wind turbines (FWTs) were
conducted in order to investigate the feasibility of such an installation method. The barge allows
the draught of the FWT to be reduced by up to 30% at full-scale and 18% model-scale. This
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leads to a reduction in maximum overturning moment between the barge and FWT of around
10-20% compared to full-draught, across all wave peak periods tested. Such draught reduction is
therefore beneficial not only for viability of shallower tow-out routes, but also for reducing loads
on the mechanical linkage between vessel and FWT during tow-out. A truss-frame structure
accommodated on the deck-space of the vessel could be designed to withstand these loads. Peak
overturning moment occurred when the wave frequency aligned with the pitch eigenfrequency of
the combined vessel and FWT. A vessel with lower eigenfrequency, such as a semi-submersible or
frame, could be used to increase operationality in a wider range of sea-states. Collision loads in
regular head seas was also investigated. Here, peak impulse occurred at the pitch eigenfrequency
of the combined vessel and FWT. Use of a spring-damper fender could help reduce the maximum
collision force, where a doubling of the collision time reduces the maximum collision force by
around 50%. The experimental method employed in this work is general and applicable for other
vessel types. Future work is focused on testing a new vessel, with lower pitch eigenfrequency
and measuring loads in alternative wave headings. The acceleration of the top-head mass will
also be investigated to assess limitations on loading of the turbine nacelle and components.
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