
Received July 3, 2020, accepted July 26, 2020, date of publication July 29, 2020, date of current version August 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3012817

Mining Productive Itemsets in Dynamic Databases
XIANG LI1, JIAXUAN LI1, PHILIPPE FOURNIER-VIGER 2, M. SAQIB NAWAZ 2, JIE YAO2,
AND JERRY CHUN-WEI LIN 3, (Senior Member, IEEE)
1Department of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
2School of Humanities and Social Sciences, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
3Department of Computing, Mathematics and Physics, Western Norway University of Applied Sciences (HVL), 5063 Bergen, Norway

Corresponding author: Philippe Fournier-Viger (philfv8@yahoo.com)

This work was supported in part by the National Science Foundation of China; and in part by the Harbin Institute of Technology.

ABSTRACT Discovering frequent itemsets is a data analysis task used in numerous domains. It consists of
finding sets of items (itemsets) that frequently appear in a set of database records (also called transactions).
Though discovering frequent itemsets is useful, it can produce a large amount of spurious patterns. As a
result, the user may spend a great amount of time to analyze the itemsets found by a frequent itemset
mining algorithm to find truly interesting patterns. Hence, in recent years, a key research topic has emerged
which is to discover statistically significant patterns in databases. The most popular model for identifying
itemsets that are statistically significant is to discover non-redundant productive itemsets. The state-of-the-
art algorithm to extract this set of patterns is OPUS-Miner. A key drawback of that algorithm is that it
is designed to be applied to a static database. Moreover, a second drawback of OPUS-Miner is that it
discovers all patterns in a database. In other words, the user cannot search for itemsets containing some
specific items. This paper addresses these issues by defining the novel problem of discovering targeted non
redundant productive itemsets in dynamic databases. An algorithm named IDPI+ (Interactive Discovery of
Productive Itemsets) is presented, storing transactions in a tree structure, which can then be interactively
queried to identify productive and non redundant itemsets containing specific items. A structure named
Query-Tree is also introduced to process many queries at the same time. Moreover, to handle dynamic
databases, efficient transaction insertion and deletion algorithms are provided to update the tree. It was
observed in an experimental evaluation on benchmark datasets containing various types of data that IDPI+
can handle thousands of queries per second on a desktop computer. Moreover, it was found that IPDI+ is
more than an order of magnitude faster than a baseline algorithm.

INDEX TERMS Dynamic database, itemset mining, nonredundant itemsets, productive itemsets, query-tree,
significant patterns.

I. INTRODUCTION
Frequent pattern mining [1] is a traditional data mining
task, used to find frequently appearing patterns in data. The
assumption is that values that appear frequently together are
of interest to users. However, numerous frequent patterns
found in real-life applications are weakly correlated and unin-
teresting [37]. For example, assume that some items {bread}
and {cola} are frequently purchased by customers of a retail
store. Although these items are weakly correlated, the pattern
{bread, cola}may be frequent just because both items appear
frequently in transactions. Finding too many frequent but
weakly correlated patterns is a major problem in frequent
pattern mining as it is inconvenient for users to look at a large

The associate editor coordinating the review of this manuscript and

approving it for publication was Huiling Chen .

set of patterns.Moreover, spurious patterns can bemisleading
for decision-making.

To avoid finding spurious patterns, discovering statistically
significant patterns has become a key research topic in data
mining. Several significant pattern models were put forward
to handle various pattern types such as frequent itemsets [24],
[37], sequential patterns [30] and periodic patterns [27], [28].
The most well-known model for discovering statistically sig-
nificant frequent itemsets is that of non-redundant productive
itemsets. It consists of applying the Fisher exact test to assess
if an itemset is significantly correlated when considering all
of its bipartitions. In other words, an itemset is considered as
significant if its frequency is considerably higher than if all
its bipartitions were assumed to be independent. For example,
an itemset {alcool, diabetes}may be considered as significant
because the support of {alcool, diabetes} is much higher than

140122 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-7680-9899
https://orcid.org/0000-0001-9856-2885
https://orcid.org/0000-0001-8768-9709
https://orcid.org/0000-0002-7714-9693

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

if assuming that {alcool} and {diabetes} are independent.
On the other hand, an itemset {bread, cola} is not significant
because its frequency may not be much higher than when
assuming that {bread} and {cola} are independent. The state-
of-the-art algorithm to extract the non-redundant productive
itemsets from a dataset is OPUS-Miner (Optimized Pruning
for Unordered Search Miner) [37]. However, it has several
important limitations.

The first one is that to use OPUS-Miner, one must set a
parameter k . Then, the algorithm finds the top-k productive
itemsets having the highest leverage or lift in the whole
database. This is a problem because if k is set too low,
patterns that are not in the set of top-k patterns may still be
interesting but are not shown to the user. On the other hand,
if k is set to a large value, more patterns are shown to the
user but the runtime and memory consumption of OPUS-
Miner can greatly increase. Thus, a user may be frustrated
that he/she cannot guide the algorithm to search for some
specific items or itemsets to avoid considering all possibil-
ities. For example, using OPUS-Miner to analyze retail data,
a user cannot restrict the search to find significant patterns
containing specific items such as bread . In fact, OPUS-Miner
does not support interactive data mining. If a user would
like to determine if some itemset X is productive, he/she has
to run OPUS-Miner while setting k to a large value, in the
hope that X will appear in the top-k patterns. In case X is
not a top-k patterns, the user has to run the algorithm again
with a different value of k . This process of trial and error
to find patterns is time consuming, cumbersome as well as
inconvenient. And in some cases, even if a large k value is
used, the desired pattern X may still not be found. Thus,
a major limitation of OPUS-Miner is its inability to process
queries to verify if a set of itemsets of interest are productive
and non-redundant.

For many applications, processing targeted queries is
important as users want to find patterns containing a small
set of items contained in the database rather than finding
patterns containing any combinations of items. In FIM (Fre-
quent Itemset Mining), tree structures have been developed
to efficiently process targeted queries on static or dynamic
database such as the IT (Itemset Tree) data structure [19], and
variations of the IT such as the Min-Max IT [20], Flagged
IT [21] and the Memory Efficient IT [14]. These structures
can be used to quickly answer queries about specific itemsets
such as (1) identifying all frequent itemsets that contain some
items, and (2) obtaining the frequency of a specific itemset.
Thus, these structures can be used to interactively explore
patterns in a database by performing several targeted queries,
and refining the queries after obtaining the result of each
query. The IT can be updated incrementally by adding new
transactions, and can be used to efficiently answer queries.1

Although the IT structure and its variations have several

1It is important to note that the IT is different from the popular FP-tree
(Frequent Pattern tree) structure used by the FP-Growth [16] algorithm,
which is not designed for answering targeted queries or interactive data
mining.

applications, such as real-time prediction of missing items in
shopping carts [12], it is not designed to find patterns that
are statistically significant, and hence tends to find many
spurious patterns. Moreover, although the IT can be updated
by inserting new transactions to learn new trends in the data,
no mechanisms are provided to remove old transactions, and
thus forget old trends from the data. Thus, as an IT is used
over time, its size continuously grows, which decreases its
performance for answering queries.

Lastly, another limitation of the OPUS-Miner algorithm is
that some patterns that are interesting to the user may not have
a high p value for the Fisher exact test. But to apply OPUS-
Miner, the user must set a maximum p value. This p value
is defined for single items and is then reduced for itemsets
containing more than one item by applying the Bonferroni
correction. As a result, many itemsets may be discarded by
the maximum threshold. But in some cases, it is desirable to
show patterns to the user with their p values to let the user
decide if the patterns are interesting even if these patterns are
not top-k patterns in terms of p values.

In this paper, aforementioned limitations of OPUS-Miner
are addressed by proposing a novel approach called IDPI+
(Interactive Discovery of Productive Itemsets). It is designed
to efficiently answer user queries such as to check if some
itemsets are productive and non redundant. The proposed
approach is designed to work on a dynamic database where
new transactions may be inserted. Moreover, unlike previous
work on the IT structure, the proposed approach allows the
deletion of old transactions to forget old trends. The pro-
posed approach efficiently answers queries by relying on a
novel query processing algorithm. Queries are handled using
a novel structure named Query-Tree (QT), which can also
process multiple queries at once to reduce its runtime. The
proposed approach was evaluated on several benchmark real-
life datasets used in the FIM literature. Experimental results
show that IDPI+ can process up-to 1,000 queries per second
on a desktop computer, and that IDPI+ can be from 2 to
up-to 27 times faster than a baseline IT-based approach. The
baseline approach determines whether an itemset in a query
is productive and non redundant by computing the support of
an itemset and all its subsets using the standard IT structure.
Whereas, IDPI+ uses the novel QT structure and MEIT
(Memory Efficient Itemset-Tree) to store and compute the
support of itemset and all its subsets.

The following sections are organized as follows. Related
work is reviewed in Section II. Section III presents prelimi-
naries and the problem definition. Then, Section IV describes
the proposed algorithm. Lastly, Section V presents the exper-
imental evaluation, and Section VI draws a conclusion.

II. RELATED WORK
The problem of discovering frequent itemsets in transaction
databases was formalized by Agrawal and Srikant [1]. It con-
sists of discovering sets of items that are frequently purchased
together in a set of customer transactions. It was shown that
this problem is computationally expensive because it has a

VOLUME 8, 2020 140123

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

very large search space. For example, if a retail store has
10,000 distinct items on sale, then there are 210000−1 possible
itemsets. To reduce the search space, the first algorithm,
named Apriori [1], applies a property called the Apriori prop-
erty or downward-closure property to reduce the search space.
This property states that the support (occurrence frequency)
of an itemset cannot be greater than the support of its sub-
sets. Hence, if an itemset is infrequent, it is unnecessary to
consider its supersets, and a large part of the search space can
be eliminated to speed up the discovery of frequent itemsets.
Although the Apriori algorithm can find all frequent itemsets
in a database, it was shown to be quite inefficient. The reasons
are that it performs a breadth-first search and can generate
a very large number of candidate itemsets that do not exist
in the database. As a result, Apriori can have long execution
times [13]. To more efficiently find frequent itemsets, sev-
eral frequent itemsets mining algorithms have been proposed
such as ECLAT (Equivalence Class Transformation) [39],
FP-Growth (Frequent Pattern-Growth) [16], H-Mine [31]
and LCM (Linear time Closed itemset Miner) [36]. To avoid
generating candidates, the FP-Growth algorithm introduced a
structure named FP-tree (Frequent Pattern tree), which com-
presses a database in a tree-like structure consisting of a tree
and a header table with pointers linking nodes representing
the same items in the tree. Then, FP-Growth recursively
discovers all frequent itemsets in a database by recursively
creating projected FP-Trees from the original FP-Tree, and
enumerating itemsets in each tree. H-Mine and LCM also
relies on the concept of database projection but adopt dif-
ferent database representations, that is a hyper-structure and
an horizontal database, respectively. The ECLAT algorithm is
different from the aforementioned algorithms as it uses a ver-
tical database representation to avoid repeatedly scanning the
database. Although frequent itemset mining has been initially
used for analyzing customer transactions, it has been applied
in numerous other domains. Moreover, besides the above
algorithms, many other frequent itemset mining algorithms
have been developed in recent years [13].

Even though FIM is popular, an important limitation is that
frequent itemsets are not always interesting to the user as a
pattern may be frequent but contain items that are weakly
correlated. In the literature on pattern mining, numerous mea-
sures have been proposed to measure the interestingness of
patterns. For example, the occupancy [35] measure assesses
if an itemset represents a large part of the transactions where
it occurs. To find itemsets that are correlated, some simple
correlation measures have first been considered [2], [11],
[33]. A measure called bond [11] is defined as the number of
transactions that contain an itemset X , divided by the number
of transactions that contain at least one item of X . In that
case, a large bond value means that items in that itemset
may be positively correlated. Other measures similar to the
bond include the affinity [38], all-confidence [29], coherence
and mean [2], [33], among others [15]. All these measures
are useful in some situations but have poor performance
in other situations. A major drawback of these measures is

that they are not based on statistical tests. Thus, they cannot
be used to determine if items in an itemset are correlated
in a statistically significant way. Thus, discovering itemsets
having a high bond, affinity or coherence value can be highly
misleading. Moreover, measures like the bond and affinity
can be viewed as rough correlation measures since they do
not systematically check that subsets of an itemset are also
correlated.

Recently, researchers have addressed these limitations of
early work on mining correlated patterns by proposing mod-
els tomine correlated patterns that are statistically significant.
Different ways of integrating statistical tests in the pattern
mining process have been proposed [24], [37]. Among those,
the model of discovering productive patterns has attracted the
most attention. The main idea, which will be explained in
more details in the following section, is to apply the Fisher
exact test on an itemset to assess if all its bipartitions are sig-
nificantly correlated. It was shown that the model of mining
productive patterns can eliminate many spurious patterns to
discover statistically significant itemsets [37].

In that study, the Fisher Exact test was selected because it
is non-parametric test for testing independence, which works
well even on small sample sizes, provides an exact p value,
and is designed for testing if the proportions of two nominal
variables are independent (here, the support values of two
bipartitions). Compared to other tests such as the Chi-Square
test and G-test, the Fisher test is said to be more accurate
for small sample sizes (e.g. less than 1000) but may be less
for larger sample sizes [25]. For itemset mining, the support
values of itemsets can vary depending on the datasets, but
may sometimes be very small. Thus, the Fisher test is deemed
particularly appropriate for this context. In accordance with
this, for mining positive and negative dependency rules,
the Fisher test was found to produce better patterns than the
Chi-Square test [17]. However, a limitation of the Fisher test
is that it is somewhat conservative [25], [37]. Also as for
other tests, there is an assumption that each observation is
independent from others. To address the problem of multiple-
testing, the OPUS-Miner algorithm adds a correction to the
Fisher test [37].

In recent years, the productive itemset mining model has
been extended from frequent itemsets [24], [37] to other types
of patterns such as sequential patterns [30] and periodic pat-
terns [27]. To our knowledge, the state-of-the-art algorithm
for identifying productive itemsets is OPUS-Miner [37]. It is
a top-k algorithm where the user must specify a parameter k
and the algorithm returns the k most statistically significant
correlated patterns. Some of the major limitations of OPUS-
Miner are that it does not let the user guide the search for
patterns. In other words, the user cannot search for targeted
patterns such as to quickly determine if a given itemset
{bread,milk} is productive. Moreover, another limitation is
that OPUS-Miner can only be applied on static databases (it
is a batch algorithm).

To find patterns in dynamic database, several solutions
have been proposed in the field of FIM. First, several

140124 VOLUME 8, 2020

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

incremental mining algorithms have been designed to find
and update the set of frequent itemsets when transactions
are deleted, modified or inserted [18], [22], [23], [26] in a
transaction database. Several of these algorithms maintain
itemsets that are almost-frequent in memory to avoid rescan-
ning the database when it is updated. Second, some stream
mining algorithms [3]–[5], [32], [34] have been proposed to
update frequent itemsets for potentially infinite transaction
streams, that is when the database cannot be read more than
once. Popular algorithms of this type include estDec [3] and
estDec+ [32], which use structures to maintain patterns and
calculate upper-bounds on calculation errors of itemset sup-
port values. However, a drawback of these algorithms is that
they are designed to maintain all frequent itemsets in memory
over time rather than for processing targeted queries made by
the user on some specific itemsets. Thus, these algorithms
maintain many itemsets in memory that are uninteresting to
the user, which can results in long runtimes.

As an alternative to incremental and stream mining algo-
rithms, algorithms have been designed to efficiently answer
targeted queries made on a dynamic database [14], [19],
[20]. The idea is to adopt a lazy approach by maintaining a
special structure called Itemset-Tree and then only extracting
frequent itemsets when a query is made by a user. This
approach has the advantage that not all frequent itemsets must
be maintained in memory. The first approach of this type,
to our best knowledge, is the Itemset-Tree [19]. Note that
the Itemset-Tree structure is fundamentally different from
the FP-Tree structure, as in the former, each node represents
the intersection of one or more transactions, and can contain
multiple items, while in the latter, each node is an item and
transactions are represented by paths in the tree. Using the
Itemset-Tree structure, targeted queries made by users can be
very efficiently processed such as (1) finding all itemsets that
contain some given items and are frequent, and (2) calculating
the support of an itemset. The Itemset-Tree structure can
be viewed as an important component to build interactive
pattern mining systems where a user may explore a database
by executing multiple queries, while refining queries after
obtaining the result of each query. Some improved versions of
the Itemset-Tree structure were proposed such as theMemory
Efficient Itemset-Tree [14], the Flagged Itemset-Tree [21]
and the Min-Max Itemset-Tree [20], which are designed
to reduce memory usage, find all frequent itemsets more
efficiently and improve the speed for processing queries,
respectively. An Itemset-Tree can be incrementally updated
by inserting new transactions. However, a major drawback of
the Itemset-Tree is that no transaction deletion operation is
provided. Thus, it is impossible to remove old transactions.
But deleting transactions is a necessary operation for real-
time applications where the user wants to discover recent
patterns and forget old trends in the data. Because of this
limitation, an Itemset-Tree may continuously grow over time,
and one may need to rebuild an Itemset-Tree from scratch to
remove old transactions, which can be very costly. Another
major problem of the Itemset-Tree structure is that it is not

designed to find patterns that are statistically significant.
Hence, it can yield several spurious patterns and telling apart
spurious patterns from interesting patterns may become a
difficult task for users.

To address these limitations of previous work, the follow-
ing section presents the novel problem of discovering tar-
geted statistically significant itemsets in a dynamic database
where both transaction insertions and deletions are per-
formed. Then, Section IV presents the proposed approach.

III. PRELIMINARIES AND PROBLEM STATEMENT
The following paragraphs first presents preliminaries about
frequent itemset mining and important definitions about pro-
ductive and non redundant patterns. Then, based on these
definitions, the proposed problem is defined. Then, the fol-
lowing section presents the novel IDPI+ approach to solve
this problem.
Definition 1 (Transaction Database): Let I represents a

set of items (symbols), denoted as I = {i1, i2, . . . , in}. A set
of transactions denoted as D = {T1,T2, . . . ,Tm} is called
a transaction database. Each transaction Td of D is a set of
items (Td ∈ I), and d is an integer called the TID (transaction
identifier) of Td .
Example 1: The transaction database D of Table 1 con-

tains five transactionsD = {T1,T2,T3,T4,T5} and five items
I = {a, b, c, d, e}. The first transaction T1 consists of items
a and b. In the context of market basket analysis, T1 can be
interpreted as the purchase of items a and b by a customer.
Table 1 is used as running example in the rest of this paper
to illustrate definitions and how the proposed approach is
applied.

TABLE 1. A transaction database.

Definition 2 (Itemset): An itemset Y is a set of items Y ∈ I
that is unordered and where each item cannot appear more
than once. An itemset having a cardinality of k is also called
an itemset of length k .
Definition 3 (Suffix of an Itemset): Consider an itemset

Y = {a1, a2, . . . , ak}, which is sorted according to a total
order a1 � a2 . . . ak (e.g. the alphabetical order), for the con-
venience of processing itemsets. Furthermore, let an integer r
(1 ≤ r ≤ k) be the position of an item in the itemset Y . Then,
the suffix of Y for a position r is the subset of Y defined as
suf (Y , r) = {ar+1, ar+2, . . . , ak}.
Example 2: Consider that Y = {b, c, d} and that b � c �

d . It is found that suf (Y , 1) = {c, d}.
Definition 4 (Cover of an Itemset): Each itemset Y has a

cover, defined as the set of transactions that contains Y . It is
formally defined as cov(Y ,D) = {Ti|Ti ∈ D∧Y ⊆ T }. In the

VOLUME 8, 2020 140125

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

following, cov(Y ,D) will be denoted as cov(Y) for the sake
of brevity.
Example 3: The set of transactions {T1,T2,T4} is the

cover of itemset {b}, that is cov(b) = {T1,T2,T4}. The cover
of itemset {a, b, d} is cov(a, b, d) = ∅ as this itemset does
not appear in the database.

Most studies on FIM are designed based on the assumption
that frequent itemsets are useful or interesting. A measure
called support is used to evaluate the occurrence frequency
of an itemset.
Definition 5 (Support of an Itemset): Let there be a set of

items Y ⊆ I . Its support is the number of transactions where
it appears, and is written as sup(Y). In other words, sup(Y) =
|cov(Y)|.
Example 4: Because Y = {a, b} appears in transactions

T1 and T4, its cover is cov(Y) = {T1,T4}. Furthermore, its
support is sup(Y) = 2.
The traditional task of FIM is applied to a transaction

database and requires that the user sets a minsup thresh-
old. Then, all the frequent itemsets of that transaction
database are enumerated, that each itemset having a support
greater or equal to minsup [1], [16].
Definition 6 (Mining Frequent Itemsets): Let there be a

minimum support threshold (minsup) specified by the user (a
positive integer) and a databaseD containing a set of transac-
tions. Mining frequent itemsets in D consists of enumerating
all its frequent itemsets. The set of frequent itemsets in D is
defined as FI = {X |sup(X) ≥ minsup ∧ X ⊆ I }.
A drawback of FIM is that multiple spurious patterns may

be discovered. For this reason, recent studies were done
on devising techniques to discover patterns that are statisti-
cally significant. In particular, the Opus-Miner algorithmwas
designed [37] to find a set of statistically significant itemsets
in a database, called the productive itemsets.
Definition 7 (Bipartition): Let there be three non empty

itemsets A,B and C . It is said that {B,C} is a bipartition of A
if and only if B ∩ C = ∅ and B ∪ C = A. An itemset A may
have multiple bipartitions. The set of all these bipartitions is
denoted as bipart(A).
Example 5: Consider that A = {a, b, c}. The set

of all bipartitions of A is bipart(A) = {{{a, b}, {c}},
{{a, c}, {b}}, {{b, c}, {a}}}.
Definition 8 (Productive Itemset): An itemset A is called

a productive itemset in a database D if it contains more than
one item and P(A ⊆ R) > max

{B,C}∈bipart(A)
P(B ⊆ R) × P(C ⊆

R), where the probability that B is drawn from the same
distribution as D is denoted as P(A ⊆ R).
Example 6: Consider the Mushroom database, often used

in frequent itemset mining. This database contains data about
different mushroom species and their attributes. The database
is available at www.philippe-fournier-viger.
com/spmf/. Consider the item a = stalk color above the
ring is white and the item b = stalk color below the ring is
white. The itemset {a, b} has a support of sup({a, b}) = 3688.
The itemset {a} has a support of sup({a}) = 4640.The itemset

{b} has a support of sup({b}) = 4744. Thus, the p-value of the
itemset {a, b} is 0.137891. Hence, this itemset is productive
if we consider a maximum p-value of 0.05.

A productive itemset is considered as interesting because
each of its bi-partitions contributes to its support. For
instance, if the itemset {high_sugar_consumption, diabetes}
is found to be productive, this indicates that the support
(probability) of having a high sugar consumption and dia-
betes is greater than if we assume that they are independent.
Now, consider an itemset Y = {high_sugar_consumption,
diabetes, right_handed} indicating that a right handed indi-
vidual having a high sugar consumption has diabetes. That
itemset Y may be frequent in a population but it may not be
productive since the bipartition {{high_sugar_consumption,
diabetes}, {right_handed}} does not have a strong correlation
with the support of Y . In other words, the support of that
bipartition does not explain the support of Y , when assum-
ing independence. By discovering only productive itemsets
instead of all frequent itemsets, one can thus eliminate many
spurious patterns. To check the statistical significance of
itemsets and find productive itemsets, Opus-Miner applies the
Fisher exact test. Besides, after mining productive itemsets,
the concept of redundancy can be applied to filter redundant
itemsets before presenting the result to the user. This allows
selecting a smaller set of itemsets called the non redundant
productive itemsets [37].
Definition 9: Let there be an itemset Y . This itemset is non

redundant if there is no subset X ⊂ Y such that X and Y have
the same support (sup(X) = sup(Y). Otherwise, Y is called
redundant.
Example 7: Consider the transaction database D of

Table 1. The itemset {b, e} is redundant because {e} ⊂ {b, e}
and sup({b, e}) = sup({e}) = 2. The itemset {b, c} is non-
redundant since none of its proper subsets has the same sup-
port, that is sup({b, c}) = 2, while sup({b}) = 5, sup({c}) = 3
and sup(∅) = 8.

Eliminating redundant itemsets is useful to filter unec-
essary information. For example, consider the itemset
{woman, pregnant, heart_disease}. This itemset obviously
has the same support as {pregnant, heart_disease} and hence
is redundant. In the FIM literature, that notion of non redun-
dant itemsets has also been studied under the names of key
itemsets [12] and generator itemsets. The motivation for dis-
covering key itemsets is that they are the smallest itemsets
that can be used to describe a set of transactions based on the
MDL (MinimumDescription Length) principle. For instance,
in the context of customer behavior analysis, a key itemset
may describe the smallest set of products purchased by some
group of persons.
Property 1: Let there be a non redundant itemset X . All

subsets of X are also non redundant itemsets [12].
Based on the above discussion, it is desirable to find

productive itemsets that are non redundant. However, it is
not an easy task from a computational perspective. For an
itemset Y having r items, checking it is productive and non

140126 VOLUME 8, 2020

www.philippe-fournier-viger.com/spmf/
www.philippe-fournier-viger.com/spmf/

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

redundant requires to calculate the support of each bipartition
in bipart(Y). This means that the occurrence frequency of
each non empty subset of Y must be computed. If Y has r
items, then there are 2r − 1 subsets of Y that are non empty.
For instance, if we assume that r = 8, then the support of
28 − 1 = 255 itemsets needs to checked to determine if Y
is productive. A second problem of OPUS-miner is that it
is designed to find the top-k productive itemsets in a static
database. Because it is a batch algorithm, it cannot be applied
to a dynamic database without running the algorithm again
from scratch if the database is updated, which is inefficient.
Moreover, choosing an appropriate value of k to find interest-
ing patterns is not easy. If k is small, then interesting patterns
may be missed, while a large k value can yield too many
itemsets and runtime andmemory consumptionmay increase.
To verify whether an itemset Y is productive or not, a user
hence needs to run the algorithmwith a value of k that is large
enough so that Y will be among the top-k itemsets. Since Y
may not be in the top-k itemsets, a user may have to run the
algorithm numerous times, which is cumbersome as it may
require a lot of time. The solution to this problem presented in
this paper is to design a novel data structure and algorithm for
processing queries to check if some itemset(s) are productive
and non-redundant.
Definition 10 (Problem Definition): The problem studied

in this paper is called the interactive discovery of non-
redundant productive itemsets. It consists of answering
queries about a dynamic database that have the form ‘‘Is
an itemset Y non redundant and productive?’’. The problem
should be solved using a data structure that can be efficiently
updated by inserting transactions and deleting transactions to
cope with the dynamic aspect of the database.

IV. THE DESIGNED APPROACH
The approach presented in this paper for processing queries
about non redundant and productive itemsets is named
IDPI+. It is composed of three main parts: (1) a variation
of the Itemset-Tree structure [19] to compress the dynamic
database, which is adapted to support both transaction inser-
tions and deletions, (2) a novel structure called Query Tree is
used to gather information related to the support of itemsets
to answer queries, and (3) an algorithm that efficiently answer
queries by comparing the two aforementioned structure.

An overview of how the IDPI+ approach is used and its
internal processes is presented in Figure 1. The first operation
that a user can do is to insert transactions to be able to perform
queries on these transactions. The IDPI+ approach inserts
these transactions into a compressed structure calledMemory
Efficient Itemset-Tree (MEIT). A MEIT can be updated by
deleting transactions or inserting novel transactions. This pro-
cess is explained in section IV-A. The second operation that
a user can do is to submit queries to determine if one or more
itemsets are non redundant and productive. The first step
to answer queries is to build a novel structure called Query
Tree (QT) to store the queries. This process is explained in
section IV-B. Then, the next step is to compare the MEIT

with the QT to compute the support of X and its subsets. This
process is described in section IV-C. Finally, the last step is
to use the information about the support of itemsets stored
in the QT to determine if an itemset is productive and non
redundant using the Fisher test. This process is described in
section IV-D. Finally, the result of the queries are shown to
the user.

The main algorithm of the proposed IDPI+ approach is
shown in Algorithm 1. It takes a transaction databaseD and a
set of queries as input. The output is the result of the queries.
Each steps of the algorithm are described in the following
subsections.

Algorithm 1 IDPI+
input: D: a transaction database, QD: a set of queries

1 MEIT = buildMEIT(D); // Build MEIT (if not
previously built) - Section IV-A

2 QT = buildQueryTree(QD); // Build the Query
Tree - Section IV-B

3 GetSupportUsingQueryTree
({QT .root},MEIT .root); // Get support of
itemsets - Section IV-C

4 CheckRedundantAndProductive(QT.root);
// - Section IV-D

A. USING AN ITEMSET-TREE TO COMPRESS THE
DATABASE
The approach presented in this paper consists of first storing
the input database in an IT to compress it. However, as it
is known that an IT can still be quite large, it is desirable
to further reduce memory usage. For this reason, this paper
relies on an improved structure called MEIT (Memory Effi-
cient IT) [14], designed to remove redundant information
from an IT. The IT is a well-known structure in FIM that
was proposed to handle the interactive mining of frequent
itemsets in a dynamic transaction database. This section first
describes the IT structure and how it is constructed. Then,
the section presents the MEIT variation of the IT structure,
which is deemedmore appropriate for the problem of interest.
Finally, the section proposes a novel delete operation for the
MEIT structure, which allows to update a MEIT by delet-
ing transactions. The delete operation is especially useful in
practice to remove old transactions, and thus forget old trends
from the data.

1) THE ITEMSET-TREE DATA STRUCTURE
An IT is a tree-based data structure containing a set of nodes.
The process of creating an IT for a database D consists of
first creating an empty IT and then to insert each transaction
of that database into the tree. Each node f of an IT is described
using three fields. First, a value f .it stores an itemset Y that
is a transaction or the intersection of one or more transactions
fromD. It is assumed that items in f .it and all other nodes are

VOLUME 8, 2020 140127

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

FIGURE 1. Overview of the proposed IDPI+ approach.

sorted according to a total order such as the lexicographical
order. Second, a field f .sup stores sup(Y). Third, pointers
to child nodes of f are stored in a field f .childs. Note that
this latter field may be empty if a node has no child. When
an IT is first created, it contains only a node called its root,
which is denoted as IT .root , representing the empty itemset
(IT .root.it = ∅). The total ordering of items in itemsets
allow to define a key concept of leading items. Let there be
two itemsets X = {c1, c2, . . . ck} and Y = {d1, d2, . . . dl}.
These itemsets are said to be sharing the same leading items
if there exists an integer 1 ≤ v ≤ argmin({k, l}) such that
c1 = d1, c2 = d2, . . . cv = dv.

2) INSERTING A TRANSACTION IN AN ITEMSET-TREE
An itemset-tree is initially empty, only containing a root node.
Thereafter, the Add-Transaction (Algorithm 7) algorithm is
called to insert each transaction of a databaseD in the itemset-
tree. This algorithm was proposed in previous work [19] and
is hence only briefly presented in this paper. The algorithm
receives as input an itemset-tree IT and a transaction T .
The algorithm starts from the root and traverses a branch by
recursively calling itself to locate the node that represents the
transaction in the tree. At the same time, the sup value of
each node in that branch is increased by 1. Moreover, if no
node is found for the transaction T , a new node is created.
For each subtree IT rooted in the visited branch, five cases
are considered. In the first case, the transaction T is equal to
the itemset stored in the root of IT . This means that the node
representing T is found and its count is increased by 1 (line
1 to 2). In the other cases, the algorithm checks each sub-tree
ITT that is a children of IT .root and share some leading items
with T . In the second case, if there does not exist such sub-tree
ITT , a node representing T is inserted as a child of IT with a

count of 1 (line 4). In the third case, if ITT .root.itemset is a
proper subset of T , it means that the node representing T may
be in the subtree ITT . Thus, the algorithm is recursively called
to explore ITT (line 5). In the fourth case, if the transaction
T is a proper subset of ITT .root.itemset , then a new node
g representing T is inserted between the nodes IT .root and
ITT .root . The new node has a support of ITT .root.sup + 1
(line 6). In the fifth case, a new node g representing T ∩
ITT .root.itemset is inserted between the nodes IT .root and
ITT .root , with a support of ITT .root.sup+ 1. Then, a node h
is added as a child of g such that h.sup = 1 and h.itemset = T
(line 7). The process of inserting a transactions is illustrated
next with an example.

Algorithm 2 Add-Transaction-IT
input: IT : an itemset-tree, T : a transaction

1 IT .root.sup← 1+ IT .root.sup;
2 if IT .root.itemset = T then return;
3 Find a sub-tree ITT of IT .root.itemset such that T and
ITT .root.it share some leading items;

4 if there exists no such ITT then Add a node g such that g
is a child of IT .root , g.sup = 1 and g.itemset = T ;

5 else if ITT .root.itemset ⊂ T then
Add-Transaction-IT(ITT ,T);

6 else if T ⊂ ITT .root.itemset then Add a node g such
that g is a parent of ITT .root , g is a child of IT .root
g.sup = ITT .root.sup+ 1 and g.itemset = T ;

7 else Add a node g as a parent of ITT .root such that
g.sup = ITT .root.sup+ 1,
g.itemset = T ∩ ITT .root.itemset . In addition, add a
node h such that h is a child of g, h.sup = 1 and
h.itemset = T ;

140128 VOLUME 8, 2020

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

Example 8: Consider the database depicted in Table 1.
Figure 2 illustrates the process of creating the corresponding
itemset-tree by inserting these transactions, one by one. The
tree after inserting transaction {a, b} is presented in Fig-
ure 2(a). It can be observed that a node was added as child
of the root, containing the itemset {a, b} and its support
value of 1. The tree after inserting the transaction {b, e} is
depicted in Figure 2(b). Another child node has been added
under the root. This node represents the itemset {b, e} and
indicates that its support is 1. Then, the transaction {a, c, d} is
inserted. The tree after this update is presented in Figure 2(c).
Then, Figure 2(d) shows the tree after inserting transactions
{a},{a, b}, {a, c} and {b, e}. Finally, the tree after inserting
the last transaction ({b, c}) is presented in Figure 2(e). The
correspondingMEIT for the IT in Figure 2(e) is shown in Fig-
ure 2(f).

The cost of this algorithm is linear in terms of time [19].
In particular, to insert a transaction, the algorithm traverses
one branch of the tree, which contains no more than z nodes,
where z is the number of items in the longest transaction
stored in the tree. Moreover, the algorithm increments the
counts in the branch by one, and inserts at most one or two
nodes.

3) MEMORY EFFICIENT ITEMSET-TREE
The designed IDPI+ approach relies on a variation of the
itemset-tree, which is called the memory efficient itemset-
tree (MEIT) [14]. It is briefly described in the next para-
graphs. Then, the paper further explain how the MEIT
structure is improved in IDPI+ by proposing a novel delete
operation.

The motivation for proposing the MEIT was to reduce the
memory requirement of the itemset-tree. The main differ-
ences between these structures are the following. Each node
of an itemset-tree is either a transaction or the intersection of
some transactions. A problem with this representation is that
a lot of memory is wasted because each IT node contains the
items of its parent node. For instance, it can be observed in the
IT of Figure 2(e) that the IT node of the itemset acd contains
the items ab of its parent, which is redundant. Similarly,
the node ab contains the item a of its parent node. The MEIT
addresses this issue by removing the redundancy between
a node and its parent by not storing a parent’s items in its
child nodes. For instance, the MEIT corresponding to the IT
of Figure 2(e) is shown in Figure 2(f). In an experimental
evaluation on several benchmark databases, it was found
that a MEIT can in some cases utilizes 50% less memory
than an itemset-tree [14]. After building a MEIT, it can be
utilized to quickly determine what is the support of any
itemset Y . This information is very useful in the context of
this paper since it is used to check if an itemset is non-
redundant and productive. Furthermore, another interesting
property of a MEIT, is that new transactions can be added
in real-time. This allows to use an MEIT for interactive
data mining.

a: INSERTING A TRANSACTION IN A MEIT
To insert a transaction in an MEIT, Algorithm 9 is applied.
This latter is very similar to the algorithm for adding a trans-
action to an itemset-tree and has a similar complexity [14].

Algorithm 3 Add-Transaction-MEIT
input: ITN : an itemset-tree node, T : a transaction

1 TTprefix = suf(T ,ITN .itemset.length);
2 TTsuffix = TT -TTprefix;
3 ITN .sup← ITN .sup+ 1;
4 if T = ITN .itemset then exit;
5 Let ITNC be a sub-tree of ITN such that ITNC .itemset
and T share some leading items;

6 if there does not exist such node ITNC then Add a child
node g to ITN where g.sup = 1 and g.itemset = T ;

7 else if ITNC .itemset ⊂ T then Construct(T , ITNC);
8 else if T ⊂ ITT .root.it then Create a new node g as a
son of IT .root and a father of ITT .root where
g.itemset = T and g.sup = ITT .root.sup+ 1;

9 else Insert a node g such that g is a parent of ITT .root ,
g.sup = ITT .root.sup+ 1 and g.itemset = T ∩ ITT .root .
In addition, insert a new node h such that h.sup = 1,
h.itemset = T , and h is a child of g.;

b: DELETING A TRANSACTION IN A MEIT
The original IT and MEIT were designed to support trans-
action insertions. This is useful to update a tree with new
transactions. For example, consider transactions made in a
retail store. If new transactions are made by customers, they
can be added to the tree to learn new trends about customer
behavior. However, the IT andMEIT do not provide any algo-
rithm to remove transactions, and thus are unable to forget old
transactions. Because of this, the original MEIT and IT may
continuously grow over time and as a result their performance
can deteriorate. This section addresses this issue by proposing
an efficient algorithm to delete transactions from a MEIT.
That algorithm can be used to remove old transactions from
a MEIT. A benefit of doing this is to forget old trends, while
keeping the tree small over time and avoiding rebuilding the
tree from scratch to remove transactions, which can be time-
consuming.

The proposed algorithm for deleting transactions is named
Delete-Transactions. The pseudocode is shown in Algo-
rithm 19. It takes as input a transaction to be deleted DT ,
a MEIT node named ITN (initially set as the root node),
the parent node of ITN called ITNP (initially set to null),
and k , the number of occurrences of DT to be deleted. The
parameter k is used because a MEIT can contain the same
transaction multiple times. If the parameter k is set to 1,
it means to remove one occurrence of DT from the tree.
If the parameter k is set to∞, then all occurrences of DT are
removed from the tree. The output of theDelete-Transactions
algorithm is num, the number of occurrences of T that were

VOLUME 8, 2020 140129

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

FIGURE 2. Itemset-Tree construction for the database of Table 1.

deleted. The variable num is used to handle the case where
a tree contains less than k occurrences of the transaction
DT to be deleted. For example, assume that DT is {a, b, c},
its support is sup({a, b, c}) = 2, and k = 4 (the number
of occurrences of DT to be deleted is 4). Then, num =
min(k, sup(DT)) = min(4, 2) = 2. If num = 0 is returned,
it means that the tree did not contain the transaction DT
and thus that no transaction was deleted. Table 2 provides a
summary of the notation used in Algorithm 19. Additionally,
a flowchart of the deletion process is shown in Figure 3.

TABLE 2. Notation used in the Delete-Transactions algorithm.

The Delete-Transactions algorithm first traverses the tree
to identify the node LNOT that represents the last item of
the transaction DT in the MEIT. Then, the algorithm starts
from that node and recursively deletes each item of the
transaction by going upward in the tree. To identify LNOT ,
the algorithm starts from ITN (initially set to ITR) and checks
if it matches DT [i], where (1 ≤ i ≤ DT .length) (e.g. for

DT = {a, b, c},DT [1] = a,DT [2] = b.DT [3] = c). If yes,
childs of ITN and its descendants are recursively considered
by checking if ITN = ITN .child and i is incremented until
LNOT is found. Otherwise, if there exits a node ITN that
does not match DT [i], it means that DT is not in the MEIT
and the algorithm returns 0, indicating that no transaction was
removed from the MEIT.

Otherwise, the LNOT (node that represent the last item
of DT) is found. Then, the algorithm checks if the LNOT
represents a true transaction (Figure 3(C.b)). A true trans-
action is a transaction that exists in the MEIT. For example,
assume that DT = {b}, and consider the tree of Figure 4(g).
There are three transactions that exist in the subtree rooted at
b: an occurrence of transaction {b, c} and two occurrences
of transaction {b, e}. When the algorithm searches for the
LNOT of {b}, it will consider that the nodes representing
{b, c} or {b, e} may be the LNOT of DT , which is incorrect.
The transaction {b} does not exist in these subtrees. Thus,
the algorithm will return 0 because the LNOT represents a
false transaction (Figure 3(C.b)), i.e. a transaction that does
not exist in the tree. Otherwise, if LNOT represents a true
transaction (Figure 3(3 C.a)), the algorithm calculates the
number of transactions that will be deleted from the tree, that
is num = min(k, sup(DT)). Then, the algorithm checks if all
occurrences of the transaction DT represented by the node
LNOT must be deleted. If k ≥ sup(DT) then all transactions
must be deleted (Figure 3(C.a.a)). Otherwise, only some
occurrences of transactions DT are deleted from the MEIT
(Figure 3(C.a.b)). In the case where all occurrences ofDT are
removed (Figure 3(C.a.a)), the algorithm checks if the MEIT
must be restructured. There are three cases.
• Case 1. If ITN = LNOT has no child and its parent
has only one child, the node ITN is directly deleted, and
ITN ’s parent will be merged.

140130 VOLUME 8, 2020

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

FIGURE 3. Flowchart of the transaction deletion process.

• Case 2. If ITN only has one child and ITN represents a
false transaction, then ITN .child is merged with ITN .
The itemset of ITN becomes (ITN .it = ITN .it ∪
ITN .child .it). Then, the algorithm checks if ITN ’s par-
ent needs to be merged.

• Case 3. If ITN has two or more childs and represents
a false transaction, it is not necessary to restructure the
tree.

The process of deleting transactions using the Delete-
Transactions algorithm is illustrated using three examples
representing these three cases, respectively.
Example 9 (Case 1): Consider the MEIT of Figure 4(a)

and that the Delete-Transactions algorithm is called with
DT = {b, c} and k = 1. Then, ITN is initially set to be
the MEIT’s root. The algorithm first calls itself recursively
to find the node LNOT . This node ITN = LNOT = {c1}
is highlighted in gray color in Figure 4(a). Then, num is
calculated as min(sup(ITN) = 1, k = 1) = 1. This
means that all occurrences of transaction DT need to be
deleted. Thus, ITN is removed. The result is shown in Fig-
ure 4(b). Thereafter, because ITN .parent (node b3) has only
one child and ITN .parent represents a false transaction,
the node ITN .parent is merged with its child ITN (node

e2). The itemset of ITN .parent becomes ITN .parent.it =
(ITN .parent.it ∪ ITN .it) = be3, as shown in Figure 4(c).
The current call to the Delete-Transactions algorithm returns
num = 1 and ITN = ITN .parent = be3. Then, the algorithm
updates the support value of ancestor nodes by recursively
moving upward from ITN = ITN .parent until reaching the
root. For each node ITN encountered, the support is updated
as sup(ITN) = sup(ITN) − 1 because one transaction has
been deleted. The tree obtained after deleting the transaction
{b, c} is shown in Figure 4(d).
Example 10 (Case 3): Consider the MEIT of Figure 4(e)

and that the Delete-Transactions algorithm is called with
DT = {a} and k = 1. Initially, ITN is the MEIT’s root.
The algorithm first calls itself recursively to find LNOT . The
node LNOT = {a5} is colored in gray in Figure 4(e). The
node LNOT represents a true transaction (the transaction a
exists in the tree). Then, num is calculated asmin(sup(DT) =
1, k = 1) = 1. This means that all occurrences of trans-
action DT need to be deleted. This is done by updating the
support of LNOT as sup(LNOT) = sup(LNOT) − 1. Then,
because LNOT has more than one child, the MEIT does not
need to be restructured. The result after this step is shown
in Figure 4(f). Then, the algorithm updates the support value

VOLUME 8, 2020 140131

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

Algorithm 4 Delete-Transaction
Input : T : a transaction to be deleted, ITN : a MEIT

node, ITNP: the parent node of ITN , k: the
number of occurrences of T to be deleted

Output: num: the number of ocurrences of T that were
deleted (e.g. 0 means that no transaction was
deleted).

— Find the node representing the transaction T —
if ITN .itemset 6⊂ T then return 0;

1 if ITN .itemset ⊂ T then
2 Tsuffix = suf(T , |ITN .itemset|);
3 foreach child ITNC of ITN do
4 res = Delete-Transaction

(Tsuffix,ITNC ,ITN ,k);
5 if res 6= 0 then ITN .sup = ITN .sup− res;

return res;
6 end
7 end
8 childSup = the sum of the sup values of ITN ’s children;
9 if ITN .itemset = T then
10 if childSup = ITN .sup then return 0;
11 end
— Update the node ITN representing transaction T —
if (ITN has more than one child)
∨(k + childsup < ITN .sup) then

12 ITN .sup = ITN .sup - min(k ,ITN .sup− childsup);
return k;

13 end
14 else if ITN has only one child then Merge (ITN ,
ITN .child);

15 else
16 Remove ITN from ITNP.child .list;
17 if ITNP has only one child (after the deletion) and

ITNP.sup = ITNP.child .sup+ ITN .sup then
Merge (ITNP, ITNP.child);

18 end
19 return ITN .sup− childSup;

of ancestor nodes of LNOT by recursively moving upward
from ITN = ITN .parent until reaching the root. For each
node ITN encountered, the support is updated as sup(ITN) =
sup(ITN)− 1 because one transaction has been deleted. The
tree obtained after deleting the transaction {a} is shown in
Figure 4(g).
Example 11 (Case 2): Consider the MEIT of Figure 4(h)

and that the Delete-Transactions algorithm is applied with
DT = {a, c} and k = 1. Initially, ITN is the MEIT’s root.
The algorithm first calls itself recursively to find the node
representing transaction LNOT . This node LNOT = {c2}
is colored in gray in Figure 4(h). Then, DT is deleted and
LNOT = c1. Because LNOT represents a false transaction
and has only one child, the node LNOT is merged with its
child. This is done by calling the Merge procedure (Algo-

Algorithm 5Merge
input: ITN : a MEIT node, ITNC : the child of ITN

1 ITN .itemset = ITN .itemset ∪ ITNC .itemset;
2 ITN .child .list = ITNC .child .list;

rithm 2) with node LNOT = {c2} and its child node ITNC =
{d1}. This procedure merges the itemset of LNOT .child with
that of LNOT to obtain LNOT .it = LNOT .it∪LNOT .child .it .
As a result, the node LNOT .child = {d1} is merged with
{c1} to obtain a node {cd1}. Then, the algorithm updates
the support value of ancestor nodes of LNOT by recursively
moving upward from ITN = ITN .parent until reaching the
root. For each node ITN encountered, the support is updated
as sup(ITN) = sup(ITN) − 1 because one transaction has
been deleted. The tree obtained after deleting the transaction
{a, c} is shown in Figure 4(j).

c: DELETION COST
The cost of deleting a transaction T from the MEIT using the
Delete-Transactions algorithm is the cost of finding the node
representing the transaction T in the tree, and then to delete
the node and/or merge a node in the tree. Finding the node
requires to traverse a branch from the tree, which contains
no more than z nodes, where z is the number of items in
the longest transaction stored in the tree. When traversing
a node, the algorithm may search for a child node. This is
implemented using a binary search, which has O(log(w))
complexity, where w is the child count. In the worst case, w
is equal to the number of transactions but is usually much
smaller since transactions often share many items. Then,
to update the tree, at most one node is deleted and at most one
node is merged by updating the parent node. Then, the counts
of all nodes from the current node to the root are updated. The
number of updated node is the transaction T ’s length.

B. REPRESENTING QUERIES USING THE QUERY-TREE
STRUCTURE
Another component of the proposed IDPI+ approach is a
tree-like structure, named theQuery Tree (QT). This structure
is introduced to decrease the time for counting the support of
itemsets using a MEIT. Consider that one wishes to evalu-
ate a query to determine if an itemset Y is productive and
non-redundant. Answering the query requires to find out the
support of the itemset Y and all its (non empty) subsets. The
traditional approach for deriving the support of itemsets using
a MEIT is to perform a distinct query to count the support of
each itemset. But that approach is inefficient because each
node of the MEIT may be traversed multiple times.

To address this problem, this paper proposes an alternative
approach, which consists of first building a QT to store the
itemset Y and its subsets. Afterward, the itemsets’ support
is efficiently calculated by traversing the MEIT only once to

140132 VOLUME 8, 2020

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

FIGURE 4. Deleting transactions {b, c} (from a) to d)), {a} (from e) to g)) and {a, c} (from h) to j)) from a MEIT.

compare it with the QT. This process is performed by a query
processing algorithm, described in the following section.

The Query Tree structure. A Query Tree is a tree-based
data structure, which initially contains only a root node rep-
resenting the empty set. Then, other nodes can be added. The
following fields are used to describe each node h from a QT.
First, h.itemset contains an itemset Y . Second, h.sup is used to
store its support sup(Y). Third, h.childs contains an ordered
list of pointers to the child nodes of h if h has childs. It is
important to note that pointers are sorted by a total order �,
which can be any total order such as the alphabetical order.
Finally, h.pos contains a position (an integer initialized to
zero). The purpose of h.pos will be explained later.

Constructing a Query Tree. The QT of an X is built by
adding X and each non-empty subset of X in a QT. This is
achieved by using a modified version of Algorithm 7 for each
non empty subset of X . In the modified algorithm, the support
field of each node is not updated (it remains equal to 0) and
the algorithm sorts the child nodes of each node according
to the � order. The structure of a QT is different in four
aspects from that of an IT: (1) a QT stores itemsets rather than
transactions, (2) the sup field is used differently, (3) the childs
field is sorted, and (4) the pos field is introduced to match a
query to an MEIT for answering queries (the next subsection
describes the matching algorithm).
Example 12: For example, Figure 5 shows a QT that is

constructed to determine if the itemsets {a, b, d} and {a, c}
are non redundant and productive. In Figure 5, each node g
contains an item, and the subscript and superscript in a node
indicate g.sup and g.pos, respectively.

FIGURE 5. The Query Tree of {a, b, d } and {a, c}.

Construction cost. The cost of constructing a Query Tree
for a set of queries is the cost of inserting each itemset
from the queries and their subsets into the tree. For inserting
an itemset, the cost is similar to that of applying the Add-
Transactions-IT algorithm (Algorithm 7). A branch of the tree
must be traversed to update the sup field of nodes, and insert
zero, one or two nodes. For each itemset X in a query, 2|X |

subsets ofX are inserted in theQT resulting in the insertion of
at most 2|X | nodes. However, if multiple itemsets representing
different queries are inserted in the Query Tree, some subsets
may be shared by multiple itemsets. The nodes representing
these subsets are only created once, thus reducing the size of
the Query Tree. Moreover, although the number of subsets
exponentially increases with the size of an itemset, users typ-
ically do not perform queries for very large itemsets, which
ensures that the Query Tree remains small. For example, if a
user performs a query for an itemset with five items, only
25 = 32 nodes are created in the corresponding Query Tree.

VOLUME 8, 2020 140133

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

C. CALCULATING THE SUPPORT OF ITEMSETS AND THEIR
SUBSETS USING A QUERY-TREE
A Query Tree can be used to verify if an itemset Y is
non redundant and productive. The first step to evaluate
such query is to create the Query Tree of that itemset,
as presented in the previous sub-section. Thereafter, the
GetSupportUsingQueryTree procedure is invoked to compare
the Query Tree with the MEIT to calculate the support of Y
and that of its subsets (line 3). The Query Tree stores this
information in the Query Tree’s nodes.

The procedure GetSupportUsingQueryTree is presented in
Algorithm 25. It receives as input a MEIT node (initially,
the root), and the list of Query Tree nodes QL ordered by
� (initially, the root node). The procedure compares the
QT with the MEIT by performing a depth-first search on
the MEIT to update the support values of all itemsets in
the QT. In the MEIT, each node is visited at most once.
To compare a MEIT node ITN with a QT node QTN ,
the main challenge is that an itemset stored in a MEIT
node is not completely stored (for example, Figure 2(f) left-
most node represents the itemset {a, b, c} but only {c} is
stored in that node), while itemsets in QT nodes are fully
stored. To explain the difference between these two item-
set representations, the concept of suffix of an itemset is
used (presented in Definition 3). For QTN , the pos field
indicates that only the items suf (QTN .itemset,QTN .pos)
should be compared with the items in ITN . For instance,
if QTN .itemset = {a, b, c}, QTN .pos = 2, and ITN = {b},
it indicates that only items {b, c} of QTN .itemset should be
compared with ITN . In the following, the notation QTNsuffix
denotes suf (QTN .itemset,QTN .pos). When comparing ITN
and QTN , five distinct cases are encountered:
Case 1. The first case is that suf (QTN .itemset,QTN .pos)
⊆ ITN .itemset , that is the itemset represented by ITN is a
superset of QTN .itemset . The support of ITN is then added
to the support of QTN . Moreover, all child nodes of QTN
are inserted into the list QL (while preserving the � order)
with pos equal to the number of items in QTN , so that these
nodes will be processed later. Lastly, QTN is removed from
QL. Case 2. If ITN .itemset and QTNSuffix have items in
common such that all other items of QTNSuffix are greater
than the largest item in ITN .itemset when considering the
� order, it indicates that QTN .itemset is not a subset of the
itemset represented by ITN but that it may be included in
those represented by ITN ’s childs. In this case, the pos value
of QTN is stored in a map, and pos is incremented by the
number of items that QT and ITN have in common. Case 3.
The third case is that an item i ofQTNsuffix does not appear in
ITN .itemset and i is smaller than the last item in ITN .itemset
when considering the � order. This case indicates that QTN
is not a subset of the itemset represented by ITN and those
represented by its childs. Hence, QTN is removed from the
QL list.

Case 4. If the first item in QTN .itemset is greater than the
last item in ITN according to the � order, it means that the
itemsets represented by QTN and its siblings in QL may be

included in those represented by ITN and its childs. In this
case,QTN and its siblings must remain inQL to be processed
next when considering ITN ’s childs.

Case 5. Otherwise, it is necessary to compare the siblings
that succeed to QTN according to the � order, with ITN .
Example 13: We illustrate how to calculate the support of

itemsets using a QT in this example. Consider the itemset
{a, b}. Figure 6 shows how the QT of that itemset is updated
by traversing the MEIT with a depth-first search. Five steps
(A), B), C), D), E)) are used to illustrate the comparison
of the QT with the MEIT’s five nodes respectively. The
content of the QL and QT before the comparison is shown
in the first and second lines respectively, whereas, the MEIT
is shown in the third line. The node colored in light gray
is the current node ITN that is used for comparison. Now
initially (Figure 6(a)), all QT values are set to zero. The list
QL only contains the root of the Query Tree that represents
the empty itemset. This current node (QTN) is compared
with the root of the MEIT (ITN). Because it is found that
QTN .itemset ⊆ ITN .itemset (∅ ⊆ ∅), the procedure to
handle case 1 is applied. Hence, the support of ITN is added
to that of QTN . Moreover, QTN ’s childs are inserted in QL
with pos equal to the number of items in QTN , and QTN is
removed from QL. QL now contains two nodes: a00 and b00.
TheQL next node a00 is considered asQTN . The reason is that
the first item of {a} is greater than the last item of ITN . For this
reason, case 4 is used, where the main loop is stopped. The
states of QL and QT after this step are shown in Figure 6(b).
Next, GetSupportUsingQueryTree is recursively called for
comparing nodes in QL with the first child of ITN . This
makes a3 the node ITN . This QL current node, QTN = a00,
is compared with ITN . Since QTN .itemset ⊆ ITN .itemset
({a} ⊆ {a}), the procedure to handle case 1 is applied again.
Therefore, ITN ’s support is added to that of QTN . Moreover,
QTN childs are inserted in QL with pos equal to the number
of items in QTN , and QTN is removed from QL. Now QL
contains two nodes: ab10 and b00. Then, QL’s next node ab

1
0

is considered as QTN . Case 5 is used to process the QL’s
next node b00. As the first item of {b} is greater than the last
item of ITN = {a}, case 4 is used, where the main loop
is stopped. The current states of QL and QT are depicted
in Figure 6(c). This depth-first search process is repeated for
other nodes of theMEIT. The final QT is shown in Figure 6(f).
It is found in the final tree that the support of itemsets {a}, {b}
and {a, b} are 3, 4, and 2, respectively. This makes the itemset
{a, b} non redundant. Now the Fisher test can be used with
these support values to examine whether the itemset {a, b} is
productive or not. This step is not explained in this example
because the considered database is too small to check if an
itemset is productive.

1) CORRECTNESS
The GetSupportUsingQueryTree procedure calculates the
support of all itemsets stored in a QT. To show that this
procedure is correct, we must show that the support of

140134 VOLUME 8, 2020

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

FIGURE 6. Updating the query tree of {a, b} by traversing the MEIT.

each itemset is calculated correctly. Initially, the support of
all itemsets in the QT are initialized to zero. Then, each
itemset (QT Node) is compared with the database transac-
tions to calculate its support. The transactions are stored in
a compact form in the MEIT. The naive approach would
be to compare each QT node with each transaction of the
MEIT. But this would be inefficient because an itemset
may only appear in a few transactions. Hence, it would
result in performing many unnecessary comparisons. The
GetSupportUsingQueryTree procedure is thus designed to
avoid comparing a transaction with an itemset if it does not
contain the itemset, when possible. The procedure performs a
depth-first search on the MEIT to use each MEIT node once
to update the support of itemsets in the QT. Each MEIT node
represents a database transaction or the intersection of some
transactions.

To make sure that the support of an itemset is correctly
calculated, we must show that the itemset is not compared
with a transaction (or MEIT node) more than once to update
its support (condition1), and that it is compared with all the
transactions (or MEIT nodes) containing the itemset (condi-
tion2). The next paragraphs show that this is true for the five
cases of the algorithm.

In Case 1, when a QT node is found to be contained in
the current MEIT node, the current QT node is replaced by
its childs in the QueryList. The reason for doing this is to
ensure that all transactions represented by the MEIT node are
compared with all itemsets appearing in those transactions.
Thus, for a QT node, representing an itemset X , if X is
included in the transactions represented by the MEIT node,
then its supersets will be added to the QueryList, and will
also be compared with that node next (condition1). This also
does not influence condition2.

In Case 3, it is found that the query itemset contains an
item that is not contained in the transactions represented by
the current MEIT node, and that the item is smaller than the
last item in the currentMEIT node. This means that theMEIT
node and its childs do not contain the current query itemset.
Thus, the query itemset does not need to be compared with
these nodes. For this reason, the query itemset is deleted from
the QueryList to reduce the number of comparisons, and this
does not influence condition1 and condition2.
In Case 4, it is found that the first item of a query itemset

is greater than the last item of the itemset represented by
the current MEIT node. This means that the query itemset is
not included in the itemset represented by the MEIT node.
Moreover, all itemsets following the query itemset in the
QueryList are also not included in the itemset represented
by the MEIT node. For this reason, all these itemsets do not
need to be compared with the MEIT node. But the supersets
(childs) of the MEIT node may contain these itemsets. For
this reason, the algorithm only skips the comparisons with
the current MEIT node. This does not influence condition1
and condition2.

In Case 2 and Case 5, the algorithm does not perform
any operations that influence how itemsets of the QT are
compared with MEIT nodes. In particular, no itemsets are
added or deleted from the QueryList. Thus, Case 2 and
Case 5 do not influence condition1 and condition2.

2) SPACE COMPLEXITY
The space complexity of this algorithm is analyzed as follows.
Three data structures are used: the MEIT, the QT and the
QueryList. Let N be the number of nodes in the MEIT. To
build theMEIT, transactions are inserted one by one. For each
insertion, at most two nodes are created in the MEIT. Thus,

VOLUME 8, 2020 140135

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

Algorithm 6 GetSupportUsingQueryTree
input: QL: a QT node list (initially containing only the

QT root node), ITN : a MEIT node (initially the
root node)

1 if QL is empty then exit;
2 QTNsuffix = suf (QTN .itemset,QTN .pos);
3 foreach QTN ∈ QL do
4 if QTNsuffix ⊆ ITN .itemset // Case 1
5 then
6 QTN .sup + = ITN .sup; foreach child QTNC of

QTN do
7 QL.add(QTNC); // while

preserving the � order in QL
8 tjmap[QTNC] = QTNC .pos;
9 QTNC .pos = |QTN .itemset|;
10 end
11 QL.delete(QTN);
12 end
13 else if QTNsuffix ∩ ITN .itemset 6= ∅ ∧ ∀i ∈

QTNsuffix \ ITN .itemset, i > ITN .itemset.last
// Case 2

14 then
15 tjmap[QTNC .itemset] = QTNC .pos;
16 QTN .pos + = |QTNsuffix ∩ ITN .itemset|;
17 end
18 else if

∃i ∈ QTNsuffix \ ITN .itemset ∧ i < ITN .itemset.last
then

19 QL.delete(QTN); // Case 3
20 end
21 else if QTN .itemset.first > ITN .itemset.last then

break; // Case 4
22 else continue; // Case 5
23 end
24 foreach ITNC ∈ ITN do
GetSupportUsingQueryTree(QL, ITNC);

25 foreach QTN ∈ tjmap do QTN .pos = tjmap[QTN];

the number of node in the MEIT is no more than 2 × |D|,
and each node stores an itemset and a support count. The size
of the QT depends on the number of queries and their size.
For a query to determine if an itemset X is productive, 2|X |
nodes are inserted in the tree, that is one for each subset of
X . However, if multiple queries are inserted in the QT, some
nodes in the QT may be shared by multiple queries. Thus,
an upper-bound on the size of the QT is Z × 2|L| where L
is the maximum query length. In practice, many queries may
share the same subsets, as it will be shown in the experiments.
Moreover, not all items from the database are inserted in the
Query Tree but only those appearing in the queries. The size
of the QueryList must be less than the size of the QT, since
each QT node cannot appear more than once in the QueryList
at any time.

3) TIME COMPLEXITY
The time complexity of the algorithm is analyzed as follows.
The algorithm processes each node of theMEIT once. It com-
pares the node with each node in the QueryList in linear time.
Let M be the average QueryList length M for each MEIT
node that is processed. The time complexity of the algorithm
is thus O(MN).

D. CHECKING IF QUERIED ITEMSETS ARE PRODUCTIVE
AND NON-REDUNDANT USING THE QUERY-TREE WITH
SUPPORT COUNTS
Let there be a query to check if an itemset X is productive and
non redundant. After building the Query Tree (as described in
section IV-B) and collecting the support of X and its subsets
in the QT (as described in section IV-C), the next step is to
check ifX is productive and non-redundant. This is performed
by calling the algorithmCheckRedundantAndProductivewith
the root of the QT as parameter.

The algorithm CheckRedundantAndProductive (Algo-
rithm 7) takes as input a QT node QTN . The algorithm
performs a depth-first search on the QT to evaluate if each
itemset stored in a QT node is non redundant and productive.
To determine if an itemset is non redundant and productive,
it is necessary to know its support and that of its subsets.
To have this information, the algorithm traverses the tree by
considering the childs of each node in reverse � order. This
ensures that when a node representing an itemset is visited, all
the nodes representing its subsets have already been visited.

When visiting a node QTN , the algorithm first saves its
support QTN .sup in a map called MapItemsetSupport (line
1). Then, the algorithm checks if QTN .itemset is non redun-
dant. An itemset is non redundant if it contains a single
item or if it has no subsets having the same support according
toMapItemsetSupport (line 2). If QTN .itemset is non redun-
dant and contains more than one item, then the itemset may
be productive. To verify this, the Fisher test is applied by call-
ing the Fisher procedure with sup(X), sup(Y) and QTN .sup
for each bipartition {X ,Y } of QTN .itemset . The values of
sup(X) and sup(Y) are obtained from MapItemsetSupport .
The Fisher procedure performs the Fisher exact test and is
the same as in theOpus-Miner algorithm [37]. For this reason,
it is not described here. This procedure returns a p value that
is compared with a critical value α < 0.05 to determine
if the test is significant. As suggested in Opus-Miner [37],
the value of α is corrected for multiple testing based on the
length of QTN .itemset . This value is calculated according to
Equation 1 [37], where s = a|QTN .itemset|.

a|s| = max
x⊆s

 ω∑
i=0

(
#(x,D)

#(x, s\x,D)

)(
#(¬x,D)

#(¬x, s\x,D)+ i

)
(

n
#(s\x,D)

)

(1)

If the p value is not greater than this α value, then
QTN .itemset is a productive itemset and is output (line 3).

140136 VOLUME 8, 2020

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

Then, a loop is performed to continue the depth-first search
for each child ofQTN (line 4 to 6). Note that only the childs of
non redundant itemsets are explored since an itemset cannot
be non redundant if it has a redundant subset (by Property 1).
When the algorithm terminates all the non redundant and
productive itemsets have been output. The time cost of this
algorithm is proportional to the number of nodes in the QT
since each node in the QT is visited once.

Note that the algorithm can be modified to also output the
non productive itemsets and their p values to the user. This
is useful to understand why an itemset was considered non
productive.

Algorithm 7 CheckRedundantAndProductive
input: QTN : a QT node

1 Insert (QTN .itemset,QTN .sup) in a map
MapItemsetSupport;

2 if |QTN .itemset| = 1
∨ 6 ∃(X , sup(X)) ∈ MapItemsetSupport such that
sup(X) = QTN .sup then

3 if |QTN .itemset| > 1∧
Fisher(sup(X), sup(Y),QTN .sup)
≤ α|QTN .itemset|∀{X ,Y } ∈ bipart(QTN .itemset) then
Output QTN .itemset as a non redundant productive
itemset;

4 foreach child ITNC of QTN in reverse � order do
5 CheckRedundantAndProductive(INTC);
6 end
7 end

V. EXPERIMENTAL EVALUATION
To evaluate the performance of IDPI+, we performed sev-
eral experiments. Various parameters are varied in the
experiments to investigate their influence on the proposed
approach’s overall performance. Experiments were per-
formed on a computer with a Xeon E3-1270 processor, run-
ning Windows 10 and 64 GB of RAM.

Since IDPI+ is the first algorithm for processing queries
to determine if itemsets are non redundant and productive,
it is not possible to directly compare its performance with
prior work. For this reason, a baseline algorithm is used for
comparison. Let there be a query to determine if an itemset
X is productive and non redundant. The baseline computes
the support of X and all its subsets using a standard IT (as
presented in Section IV-A). Thus, the baseline performs a
distinct query on the IT to calculate the support of each
itemset. Differently from the baseline, the proposed IDPI+
approach uses the proposed Query-Tree structure to store X
and all its subsets. Then, IDPI+ compute the support ofX and
all its subsets at the same time by comparing the Query-Tree
with a MEIT. Both the baseline and the IDPI+ approaches
are implemented in C++.

Experiments were carried on real-life and synthetic
datasets commonly used in the association rule mining litera-

ture, namely Mushroom, Connect, Accidents, Pumsb, Retail
and Chess. They represent the main types of data typically
encountered in real-life scenarios (dense, sparse, and long
transactions). Let |D|, |I | and A represents the number of
transactions, distinct items and average transaction length.
Datasets’ characteristics are presented in Table 3.

TABLE 3. Characteristics of the datasets.

A. COMPARISON OF THE TIME TO PROCESS DIFFERENT
NUMBER OF RANDOM QUERIES
The first experiment aims to evaluate the time required by
the proposed approach to process queries. The proposed
approach and the baseline were applied on each database
to process sets of random queries of various size ranging
from 500 to 5,000 queries. The time required to process the
queries was measured. For this experiment, the number of
items per query is randomly selected between two and four.
The reason for using itemsets with two to four items is that
in real-life, long itemsets may not be useful and are also not
likely to be productive because all bipartitions of a productive
itemset must be positively correlated. Note that Subsection V-
B presents an experiment where the influence of query length
on runtime is evaluated with longer queries. Besides, note that
itemsets containing a single item cannot be productive and
thus are not evaluated in the experiment.

The results are shown in Figure 7. For each dataset,
a chart is presented, indicating the time to apply the baseline
(denoted as IT) and the IDPI+ algorithm (denoted as IDPI+).
Moreover, to better understand the cost of operations per-
formed by IDPI+, the time required by its two most costly
operations is also illustrated. These operations are building
a Query Tree (denoted as BuildQueryTree) and calculating
the support of itemsets using the GetSupportUsingQuery-
Tree procedure by comparing a Query Tree with the MEIT
(denoted as GetSup).

Several observations are made based on these results. First,
it can be seen that as the number of queries is increased,
the runtime also increases in a more or less linear way, both
for IDPI+ and the baseline. Second, it can be seen that IDPI+
is always faster than the baseline. For the Mushroom, Con-
nect, Accidents, Pumsb, Retail and Chess datasets, IDPI+
is up to about 10, 10, 27, 10, 2, and 6 times faster than the
baseline, respectively. This shows that the proposed Query
Tree structure is useful to reduce the runtimewhen processing

VOLUME 8, 2020 140137

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

FIGURE 7. Time to process n random queries of two to four items.

multiple queries. Third, it can be observed that for some
datasets, the time to build query trees is greater than for other
datasets. For example, the time required to build query trees
on the Retail dataset is longer than on the Chess dataset. The
main reason is that for Retail, itemsets inserted in a query
tree may not share many subsets because there is many items.
Thus, many nodes may need to be created in the Query Tree
for each query, resulting in long execution times. On the other
hand, for datasets like Chess containing few items, itemsets
in queries share many subsets and thus the size of a Query
Tree is smaller. This explains why building a Query Tree
for a dataset containing fewer different items is faster than
for datasets having more items. The influence of the number
of items on the time for building query trees will be further
investigated in Section V-C using large sets and random

synthetic queries. Fourth, it is observed that on a desktop
computer, the IDPI+ approach can process about 100 to
1000 queries per second, which is considered as satisfying,
as it can support the interactive exploration of patterns by
one or more users performing multiple queries.

B. COMPARISON OF THE TIME TO PROCESS RANDOM
QUERIES OF DIFFERENT ITEMSET LENGTH
In the previous section, the runtime of the proposed IDPI+
approach was compared with that of the baseline for ran-
dom queries of two to four items on each real-life dataset.
To evaluate the influence of query length on the runtime,
two additional sets of experiments were performed using
random queries of 5 to 7 items and 8 to 10 items, respectively.
As in the previous experiment, the runtime of IDPI+ and the

140138 VOLUME 8, 2020

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

baseline were recorded for processing n random queries for
each dataset, where n was varied from 500 to 5,000 queries.

Results are shown in Figure 8 and Figure 9, respectively
for queries of 5 to 7 items, and 8 to 10 items. Moreover, for
the convenience of the reader, Table 4 provides a summary
of all results from the previous subsection and this section.
Overall it is observed that IDPI+ was faster than the baseline
IT model for processing random queries with varied items.
For example, IDPI+ was up to 11 times faster than the base-
line on the Mushroom dataset, 24 times faster on Connect,
14 times faster on Accidents, 3 times faster on Pumsb and
4 times faster on the Chess dataset. For the Retail dataset,
the processing time of IDPI+ was up to twice faster than the
IT but sometimes the difference was negligible.

From the results of Figure 8 and Figure 9, several obser-
vations are made. First, as the size of queries is increased,
the cost of answering queries often greatly increases. The
reason is that larger itemsets have more subsets, and thus
more bi-partitions needs to be checked, which is reasonable
for the problem of mining productive and non redundant
patterns. Second, it can be observed that generally IDPI+
is faster than the baseline. However for large queries and on
the Retail dataset, the baseline approach is faster for queries
of 8 to 10 items, while it is not the case for shorter queries.
This is considered good since most of the time IDPI+ is
faster than the baseline and for real-life applications, very
large itemsets are rarely productive (since all their bipartitions
must be positively correlated), and less likely to be useful for
users. The reason why IDPI+ performs less well on Retail
is that it is a sparse dataset with many different items. As a
result, it is less likely that two itemsets will share the same
subsets in the Query Tree, which thus reduces the perfor-
mance improvement obtained by IDPI+ compared to the
baseline.

The speed of processing queries is generally influenced by
(1) the length of itemsets, (2) whether they share subsets, and
(3) the database’s nature. It is important to point out here that
if a QT would be reused multiple times to query the same
database (e.g. to perform queries on different days), the query
processing time would be reduced as it would not required to
rebuilt the QT.

C. EVALUATION OF THE TIME TO BUILD A QT
The previous subsections compared the time for processing
queries using the proposed IDPI+ algorithm and a baseline
algorithm, for various number of queries and query lengths.
This subsection presents an experiment where we evaluate
the time that IDPI+ spends for building a QT for different
number of items and queries. The goal of this experiment is
to determine if building the QT is costly and how the perfor-
mance is influenced by the number of items and queries. In
this experiment, queries are generated randomly and are thus
not specific to any datasets.

Figure 10 shows the time for building a QT when the
number of queries is varied from 5,000 to 40,000, and the
number of items is varied from 500 to 5,000. Generally, it is

TABLE 4. Time for processing n queries using IDPI+ and the baseline
approach.

observed that the time for building a QT increases linearly
with the number of queries and items. The time to build
the QT increases with the number of queries because more
itemsets are inserted in the QT and more nodes are added
to the QT. It is reasonable that the time increases with the
number of items. The reason is that to insert a query in a
QT to find productive itemsets, it is required to insert all the
subsets of the query to also calculate their support values.
If the number of items is increased, it is less likely that two
queries will share the same subsets. If two queries share some
subsets then the time to build theQT is reduced because nodes
representing these subsets are created only once. It is to be
noted that if the query tree is not used for finding productive
itemsets, then the subsets of each query would not need to be
inserted in the QT. In that case, the number of items would
not influence the runtime much.

VOLUME 8, 2020 140139

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

FIGURE 8. Time to process n random queries of five to seven items.

D. EVALUATION OF THE TIME TO DELETE A TRANSACTION
FROM THE MEIT
Another experiment was performed to evaluate the cost of
deleting transactions from the MEIT using the novel trans-
action deletion algorithm. Deleting transactions is important
to be able to perform queries on a database that is fre-
quently updated, as it allows removing old transactions to
forget old trends. To evaluate the cost of deleting transac-
tions, the time for inserting all transactions and removing all
transactions was measured for each dataset. Table 5 shows
the total time for inserting and removing all transactions for
each dataset, as well as the average number of transactions
removed per second.

It is first observed that removing transactions from the
MEIT is very fast, compared to inserting transactions. For

theMushroom, Connect, Accidents, Pumsb, Retail and Chess
datasets, deleting transactions is respectively 3.84, 3, 2.22,
2.18, 2.31 and 2.34 times faster than inserting all transactions.
The reason is that the delete operation is more simple than
the insertion operation, since no new nodes are created. It
is also observed that several hundreds of transactions can be
deleted per second for each dataset, which can be considered
as satisfying performance for applications where a database
is frequently updated. Moreover, since the time for deleting
transactions is generally much shorter than the time for insert-
ing transactions, the delete operation is useful, as it is faster
to remove transactions from a MEIT than to rebuild it from
scratch after some updates.

Globally, the experiments described in Section 5 have
shown that the proposed IDPI+ approach is more efficient

140140 VOLUME 8, 2020

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

FIGURE 9. Time to process n random queries of eigth to ten items.

than the baseline approach for answering queries about pro-
ductive and non redundant itemsets. It was also shown that
the cost of inserting and removing transactions is very small,
and thus that the approach is suitable for dynamic databases.

TABLE 5. Time to insert and delete transactions, and average number of
transactions removed per second on various datasets.

FIGURE 10. Time to build a QT for different number of queries and items.

E. MEMORY COST
Another experiment was performed to specifically evaluate
memory consumption. The memory usage of IDPI+ and the

VOLUME 8, 2020 140141

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

baseline was compared on several real datasets. Results are
shown in Table 6 (measured in MB). The column IT/MEIT
node count indicates the number of node in the IT and MEIT.
The column IT shows the memory usage of the IT structure,
used by the baseline to store transactions. The columnMEIT
shows the memory usage of the MEIT structure, used by the
IDPI+ approach to store transactions. Lastly, the columns
5K, 10K, . . . 30K depict the memory usage of the Query-Tree
structure used by the IDPI+ approach to store various number
of random queries.

TABLE 6. Memory usage of IT, MEIT and QT (MB).

It is observed that the MEIT can reduce memory usage
compared to the IT, which is in accordance with a previous
study [14]. This shows the benefit of using the MEIT instead
of the IT in the proposed approach. Second, it is observed
that using the Query Tree to store multiple queries requires
a moderate amount of memory. In some cases, it requires
less memory than the MEIT and in some cases more. This
is reasonable because the number of queries is very large in
this experiment (from 5K to 30K), and all subsets of queried
itemsets must be stored in the Query Tree. Also, because
queries were randomly generated, itemsets are less likely to
share common subsets, which increases the size of the QT.

Overall, memory usage is considered as reasonable since
the amount of memory of IDPI+ remains small compared to
the memory available on a modern desktop computer, even
for large number of queries. Moreover, although additional
memory is required to store the Query Tree in the proposed
approach, using this structure can greatly decrease the run-
time of query processing, as shown in previous experiments.

VI. CONCLUSION
In this paper, the problem of discovering non redundant and
productive itemsets in dynamic transaction databases was
defined first. IDPI+ approach was proposed to efficiently
process targeted queries by users to examine if some patterns
are non redundant and productive. In the proposed approach,
theMEIT structure and a novel Query Tree structure was used
to efficiently process queries. Unlike previous Itemset-Tree
structure based approaches, which process queries one by
one, the novel Query Tree structure allows to process multiple
queries at the same time to improve the query answering per-
formance. Moreover, a novel delete operation has been intro-
duced to remove transactions. Thus, the proposed approach
is suitable for real-life dynamic databases where transactions

are inserted and removed, to learn new trends and forget old
trends appearing in the data. An extensive experimental eval-
uation was performed. It was shown that the IDPI+ algorithm
can be up to 27 times faster than a baseline approach, and that
the insert and delete operation are efficient. It can also be used
on a modern desktop computers to process up to thousands of
queries per second using a reasonable amount of memory.

The solution developed in this work can be seen as a build-
ing block to develop a pattern mining software that can find
statistically significant patterns in an interactive way. In fact,
a user may performsmultiple queries and refine queries based
on the results of previous queries. Thus, this process can be
viewed as interactive.

The proposed IDPI+ approach has several advantages as
outlined above but also several limitations that could be
addressed in future work. First, time and memory efficiency
could still be improved, especially to deal with very large
databases. This could require designing a parallel or dis-
tributed version of IDPI+ or some alternative algorithms.
Second, the query type supported by IDPI+ is useful but lim-
ited. It would be interesting to extend IDPI+ to support addi-
tional types of queries such as finding all productive itemsets
not containing some items. Third, IDPI+ is designed to find
positive correlations rather than negative correlations but neg-
ative correlations can also reveal interesting information [17].
Thus, adapting IDPI+ for negative correlations or finding
negative patterns is an interesting possibility. Fourth, IDPI+
could be extended to handle other statistical tests. Fifth,
the type of patterns considered in this paper (itemsets) is
simple and not suitable for all applications. For instance,
some more complex pattern types such as episodes [6],
[7] or sequential patterns could be considered [30] to handle
datasets with temporal or sequential information. Besides,
variations of the itemset mining problem could be studied to
include additional information such as weights or contextual
information. Sixth, the algorithm aims to always find an exact
solution, which can be costly. To address this issue, design-
ing structures and algorithms that can provide approximate
answers with an upper bound on the error in shorter time
could be interesting.

In future work, we will aim to address some of these
limitations. And in particular, we will focus on developing a
user interface to support the interactive exploration of patterns
in databases.

REFERENCES
[1] R. Agrawal and R. Srikant, ‘‘Fast algorithms for mining association rules

in large databases,’’ in Proc. 20th Intl. Conf. Very Large Databases, 1994,
pp. 487–499.

[2] M. Barsky, S. Kim, T. Weninger, and J. Han, ‘‘Mining flipping correlations
from large datasets with taxonomies,’’ Proc. VLDB Endowment, vol. 5,
no. 4, pp. 370–381, Dec. 2011.

[3] J. H. Chang and W. S. Lee, ‘‘Finding recent frequent itemsets adaptively
over online data streams,’’ in Proc. 9th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2003, pp. 487–492.

[4] Y. Chi, H. Wang, S. Y. Philip, and R. R. Muntz, ‘‘Catch the moment:
Maintaining closed frequent itemsets over a data stream sliding window,’’
Knowl. Inf. Syst., vol. 10, no. 3, pp. 265–294, 2006.

140142 VOLUME 8, 2020

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

[5] Z. Farzanyar, M. Kangavari, and N. Cercone, ‘‘Max-FISM: Mining
(recently) maximal frequent itemsets over data streams using the sliding
window model,’’ Comput. Math. Appl., vol. 64, no. 6, pp. 1706–1718,
Sep. 2012.

[6] P. Fournier-Viger, Y. Wang, P. Yang, J. C.-W. Lin, and U. Yun, ‘‘TKE:
Mining top-k frequent episodes,’’ in Proc. 33rd Int. Conf. Ind., Eng. Other
Appl. Appl. Intell. Syst., 2020, pp. 22–25.

[7] P. Fournier-Viger, P. Yang, J. C.-W. Lin, and U. Yun, ‘‘HUE-SPAN: Fast
high utility episode mining,’’ in Proc. 14th Int. Conf. Adv. Data Mining
Appl., 2019, pp. 169–184.

[8] P. Fournier-Viger, C. Cheng, J. C.-W. Lin, U. Yun, and R. U. Kiran, ‘‘TKG:
Efficient mining of top-k frequent subgraphs,’’ in Proc. 7th Int. Conf. Big
Data Anal., 2019, pp. 209–226.

[9] P. Fournier-Viger, J. Li, J. C.-W. Lin, T. T. Chi, and R. U. Kiran, ‘‘Min-
ing cost-effective patterns in event logs,’’ Knowl.-Based Syst., vol. 191,
Mar. 2019, Art. no. 105241.

[10] P. Fournier-Viger, J. Li, J. C.-W. Lin, and T. T. Chi, ‘‘Discovering and
visualizing patterns in cost/utility sequences,’’ in Proc. 21st Int. Conf. Data
Warehousing Knowl. Discovery, 2019, pp. 73–88.

[11] P. Fournier-Viger, J. C. W. Lin, T. Dinh, and H. B. Le, ‘‘Mining correlated
high-utility itemsets using the bond measure,’’ in Proc. Int. Conf. Hybrid
Artif. Intell. Syst., 2016, pp. 53–65.

[12] P. Fournier-Viger, C. W. Wu, and V. S. Tseng, ‘‘Novel concise representa-
tions of high utility itemsets using generator patterns,’’ in Proc. Int. Conf.
Adv. Data Mining Appl., 2014, pp. 30–43.

[13] P. Fournier-Viger, J. C.-W. Lin, B. Vo, T. T. Chi, J. Zhang, and H. B. Le,
‘‘A survey of itemset mining,’’ Wiley Interdiscipl. Rev., Data Mining
Knowl. Discovery, vol. 7, no. 4, Jul. 2017, Art. no. e1207.

[14] P. Fournier-Viger, E. Mwamikazi, T. Gueniche, and U. Faghihi, ‘‘Memory
efficient itemset tree for targeted association rule mining,’’ inProc. 9th Intl.
Conf. Adv. Data Mining Appl., 2013, pp. 95–106.

[15] L. Geng and H. J. Hamilton, ‘‘Interestingness measures for data mining:
A survey,’’ ACM Comput. Surv., vol. 38, no. 3, p. 9, Sep. 2006.

[16] J. Han, J. Pei, Y. Yin, and R. Mao, ‘‘Mining frequent patterns without
candidate generation: A frequent-pattern tree approach,’’ Data Mining
Knowl. Discovery, vol. 8, no. 1, pp. 53–87, Jan. 2004.

[17] W. Hämäläinen, ‘‘Kingfisher: An efficient algorithm for searching for
both positive and negative dependency rules with statistical significance
measures,’’ Knowl. Inf. Syst., vol. 32, no. 2, pp. 383–414, Aug. 2012.

[18] J.-L. Koh and S. F. Shieh, ‘‘An efficient approach for maintaining associ-
ation rules based on adjusting FP-tree structures,’’ in Proc. 9th Int. Conf.
Database Syst. Adv. Appl., 2004, pp. 417–424.

[19] M. Kubat, A. Hafez, V. V. Raghavan, J. R. Lekkala, and W. K. Chen,
‘‘Itemset trees for targeted association querying,’’ IEEE Trans. Knowl.
Data Eng., vol. 15, no. 6, pp. 1522–1534, Nov. 2003.

[20] J. Lavergne, R. Benton, and V. V. Raghavan, ‘‘Min-max itemset trees for
dense and categorical datasets,’’ in Proc. 20th Int. Symp. Methodologies
Intell. Syst., 2012, pp. 51–60.

[21] Y. Li andM. Kubat, ‘‘Searching for high-support itemsets in itemset trees,’’
Intell. Data Anal., vol. 10, no. 2, pp. 105–120, Apr. 2006.

[22] C.-W. Lin, T.-P. Hong, and W.-H. Lu, ‘‘The pre-FUFP algorithm for
incremental mining,’’ Expert Syst. Appl., vol. 36, no. 5, pp. 9498–9505,
Jul. 2009.

[23] C. K.-S. Leung, Q. I. Khan, Z. Li, and T. Hoque, ‘‘CanTree: A canonical-
order tree for incremental frequent-pattern mining,’’ Knowl. Inf. Syst.,
vol. 11, no. 3, pp. 287–311, Apr. 2007.

[24] F. Llinares-López, M. Sugiyama, L. Papaxanthos, and K. Borgwardt, ‘‘Fast
and memory-efficient significant pattern mining via permutation testing,’’
in Proc. 21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
(KDD), 2015, pp. 725–734.

[25] J. H.McDonald,Handbook of Biological Statistics, 3rd ed. Baltimore,MD,
USA: Sparky House, 2014.

[26] B. Nath, D. K. Bhattacharyya, and A. Ghosh, ‘‘Incremental association
rule mining: A survey,’’ Wiley Interdiscipl. Rev., Data Mining Knowl.
Discovery, vol. 3, no. 3, pp. 157–169, May 2013.

[27] V.M. Nofong, ‘‘Discovering productive periodic frequent patterns in trans-
actional databases,’’ Ann. Data Sci., vol. 3, no. 3, pp. 235–249, Sep. 2016.

[28] W. Ismail, M. M. Hassan, and G. Fortino, ‘‘Productive-associated periodic
high-utility itemsets mining,’’ in Proc. IEEE 14th Int. Conf. Netw., Sens.
Control (ICNSC), May 2017, pp. 637–642.

[29] E. R. Omiecinski, ‘‘Alternative interest measures for mining associations
in databases,’’ IEEE Trans. Knowl. Data Eng., vol. 15, no. 1, pp. 57–69,
Jan. 2003.

[30] F. Petitjean, T. Li, N. Tatti, and G. I. Webb, ‘‘Skopus: Mining top-k sequen-
tial patterns under leverage,’’DataMiningKnowl. Discovery, vol. 30, no. 5,
pp. 1086–1111, Sep. 2016.

[31] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, ‘‘H-mine: Hyper-
structure mining of frequent patterns in large databases,’’ in Proc. IEEE
Int. Conf. Data Mining, 2001, pp. 441–448.

[32] S. J. Shin, D. S. Lee, and W. S. Lee, ‘‘CP-tree: An adaptive synopsis
structure for compressing frequent itemsets over online data streams,’’ Inf.
Sci., vol. 278, pp. 559–576, Sep. 2014.

[33] A. Soulet, C. Raïssi, M. Plantevit, and B. Cremilleux, ‘‘Mining dominant
patterns in the sky,’’ in Proc. IEEE 11th Int. Conf. Data Mining, Dec. 2011,
pp. 655–664.

[34] J. Sun, Y. Xun, J. Zhang, and J. Li, ‘‘Incremental frequent itemsets mining
with FCFP tree,’’ IEEE Access, vol. 7, pp. 136511–136524, 2019.

[35] L. Tang, L. Zhang, P. Luo, and M. Wang, ‘‘Incorporating occupancy into
frequent pattern mining for high quality pattern recommendation,’’ inProc.
21st ACM Int. Conf. Inf. Knowl. Manage. (CIKM), 2012, pp. 75–84.

[36] T. Uno, M. Kiyomi, H. Arimura, ‘‘LCMver.2: Effcient mining algorithms
for frequent/closed/maximal itemsets,’’ in Proc. Workshop Frequent Item-
set Mining Implement. (ICDM), 2004, pp. 1–11.

[37] G. I. Webb and J. Vreeken, ‘‘Efficient discovery of the most interesting
associations,’’ ACM Trans. Knowl. Discovery from Data, vol. 8, no. 3,
pp. 15:1–15:31, Jun. 2014.

[38] H. Xiong, P.-N. Tan, and V. Kumar, ‘‘Mining strong affinity association
patterns in data sets with skewed support distribution,’’ in Proc. 3rd IEEE
Int. Conf. Data Mining, Nov. 2003, pp. 387–394.

[39] M. J. Zaki, ‘‘Scalable algorithms for association mining,’’ IEEE Trans.
Knowl. Data Eng., vol. 12, no. 3, pp. 372–390, May 2000.

XIANG LI received the M.Sc. degree from the
Harbin Institute of Technology, Shenzhen, in 2019.
His research interests include data mining, pattern
mining, and machine learning.

JIAXUAN LI received the M.Sc. degree from the
Harbin Institute of Technology, Shenzhen, in 2019.
Her research interests include data mining, pattern
mining, and machine learning.

VOLUME 8, 2020 140143

X. Li et al.: Mining Productive Itemsets in Dynamic Databases

PHILIPPE FOURNIER-VIGER received the
Ph.D. degree. He is currently a Full Professor
with the Harbin Institute of Technology, Shenzhen,
China. He is also the Founder with the Popular
SPMF Open-Source Data Mining Library, which
provides more than 170 algorithms for identify-
ing various types of patterns in data. His SPMF
software has been used in more than 800 articles
for many applications from chemistry, smartphone
usage analysis restaurant recommendation to mal-

ware detection, since 2010. He has published more than 280 research papers
in refereed international conferences and journals, which received more
than 6000 citations. He was a Co-Organizer with the Utility Driven Mining
and Learning Workshop, KDD in 2018, and ICDM in 2019 and 2020. His
research interests include data mining, frequent pattern mining, sequence
analysis and prediction, and big data and applications. He received the Title
of National Talent from the National Science Foundation of China. He is
the Editor of the Book High Utility Pattern Mining: Theory, Algorithms and
Applications (Springer), in 2019.

Dr. Fournier-Viger is an Associate Editor-in-Chief of the Applied Intelli-
gence journal.

M. SAQIB NAWAZ received the B.S. degree in
computer systems engineering from the Univer-
sity of Engineering and Technology, Peshawar,
Pakistan, in 2011, the M.S. degree in computer
science from the University of Sargodha, Pakistan,
in 2014, and the Ph.D. degree from Peking Uni-
versity, Beijing, China, in 2019. He is currently
a Postdoctoral Fellow with the Harbin Institute of
Technology, Shenzhen, China. His research inter-
ests include formal methods (theorem proving and

model checkers), evolutionary computation, use of machine learning, and
data in software engineering.

JIE YAO received the Ph.D. degree in educational
psychology from The Ohio State University. She is
currently an Associate Professor with the Harbin
Institute of Technology, Shenzhen. Her research
interests include design psychology and quanti-
tative research methods, digital media and user
experience assessment, data science, and statistical
models.

JERRY CHUN-WEI LIN (Senior Member, IEEE)
received the Ph.D. degree from the Department of
Computer Science and Information Engineering,
National Cheng Kung University, Tainan, Taiwan.
He is currently a Full Professor with the Depart-
ment of Computer Science, Electrical Engineering
andMathematical Sciences, Western Norway Uni-
versity of Applied Sciences, Bergen, Norway. He
is also a Project Co-Leader of wellknown SPMF:
An Open-Source Data Mining Library, which is a

toolkit offering multiple types of data mining algorithms. He has published
more than 300 research articles in refereed journals, such as the IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, the IEEE TRANSACTIONS

ONCYBERNETICS,ACMTKDD, ACMTDS, and international conferences, such
as the IEEE ICDE, the IEEE ICDM, PKDD, and PAKDD. His research
interests include data mining, soft computing, artificial intelligence, machine
learning, and privacy-preserving and security technologies. He is a Fellow of
IET and ACM. He serves as the Editor-in-Chief for the International Journal
of Data Science and Pattern Recognition.

140144 VOLUME 8, 2020

