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Smart phones are an integral component of the mobile edge computing (MEC) framework. Securing the data stored on mobile
devices is very crucial for ensuring the smooth operations of cloud services. A growing number of malicious Android applications
demand an in-depth investigation to dissect their malicious intent to design effective malware detection techniques. .e
contemporary state-of-the-art model suggests that hybrid features based on machine learning (ML) techniques could play a
significant role in android malware detection. .e selection of application’s features plays a very crucial role to capture the
appropriate behavioural patterns of malware instances for a useful classification of mobile applications. In this study, we propose a
novel hybrid approach to detect android malware, wherein static features in conjunction with dynamic features of smart phone
applications are employed.We collect these hybrid features using permissions, intents, and run-time features (such as information
leakage, cryptography’s exploitation, and network manipulations) to analyse the effectiveness of the employed techniques for
malware detection. We conduct experiments using over 5,000 real-world applications. .e outcomes of the study reveal that the
proposed set of features has successfully detected malware threats with 97% F-measure results.

1. Introduction

Internet of things (IoT), along with edge computing, has
revolutionized industrial processes with the help of mobile
devices such as tablets, smartphones, smartwatches, and
PDAs. Nowadays, mobile devices can adequately render
advanced functionalities for efficient, reliable, and scalable
cloud services that exploit mobile edge computing (MEC).
Extensive usage of Android mobile devices attracts the
number of malwares to do MEC services. An increasing
number of security threats have emerged recently that is
used to steal private user information, lead towards bank
frauds, and other socioeconomic crimes [1]. To evade the
damages caused by such threats, different malware detection
systems [2–4] were presented. Android security solutions for
vulnerability assessment and malware analysis can be

divided into two main categories as: (1) static and (2) dy-
namic analysis approaches. In the static technique, the
application code is analysed without executing it. .e dy-
namic technique focuses on analysing applications during
execution and monitors its interaction with the other system
modules and networks [5–7]. However, majority of the
existing malware analysis techniques do not consider both
the permissions and intents to analyse Android malware.

In contrast to static analysis, most of the dynamic
techniques [8, 9] only focus on analysing system and API
calls. Existing dynamic malware analysis techniques do not
focus on important dynamic features, such as data leakages,
network connection manipulation, and enforcing special
permissions. Using multiple dynamic features could
strengthen the run-time analysis to detect a variety of
malicious activities and application security threats. A
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comprehensive dynamic approach can detect most of the
vulnerabilities and security threats at the cost of execution
overhead. To efficiently cope with these issues, there should
be a comprehensive malware analysis approach that exploits
the lightweight static analysis for the already knownmalware
and a comprehensive dynamic approach for the analysis of
zero-day malware threats. In this work, we propose a
comprehensive framework that incorporates both the static
and dynamic analysis exploiting permissions and intents and
considers important dynamic features such as data leakages,
network connection manipulation, and enforcing special
permissions. .e major contributions of this research in-
clude the following:

(1) a novel machine learning-based framework to ana-
lyse Android applications using a hierarchical ap-
proach (applying both the static and dynamic
analysis) to detect known and zero-day malware,

(2) a machine learning-based comprehensive static
analysis model that incorporates both the applica-
tion’s permissions and intents,

(3) a dynamic analysis model that involves the inves-
tigation of system calls (such as network activity, files
access, SMS activity, and call activity), external
DexClass usage, cryptographic activity, run-time
permissions enforcement, and rehashing to detect
known and zero-day malware,

(4) hyper-tuning malware classifiers using the tree-
based pipeline optimization technique to improve
the accuracy for malware detection.

2. Literature Review

.is section encompasses the critical analysis of existing
state-of-the-art approaches related to malware analysis as
shown in Table 1.

2.1. Malware Detection Using Static Analysis. Arora et al.
[22] suggested a static approach to analyse permissions using
the manifest file. A lightweight technique for malware de-
tection was proposed, and its effectiveness was experi-
mentally demonstrated using real Android malware
samples. It extracted the permissions from the manifest file
and compared them with a predefined keyword list. .e
designed model considered only one aspect of vulnerability
but ignored other aspects, for example, intents and API calls,
among others. Another study [10] considered intents (both
the explicit and implicit) as semantically rich features to
encode the malicious intentions of malware, especially when
the intents are used in combination with permissions. .e
proposed system performed encoding and extracted explicit
and implicit intents, intent filters, and permissions. Almin
and Chatterjee [5] utilized the k-means clustering algorithm
to classify applications which exploited the permission au-
thorization to do malicious activity. .e comparison of the
research with famous antivirus solutions indicated that the
proposed technique was able to detect the malware that
remains undetected by most of the antivirus software.

MalDozer [18] is a system relying on artificial neural net-
work that took an input of the raw sequences of API method
calls with the same order as they showed up in the .dex file
for android malware detection and their family recognition.
During the training, MalDozer can automatically recognize
malicious patterns using only the sequences of raw method
calls in the assembly code. A framework [17] using several
features that reflects multidimensional characteristics of the
Android applications useful for malware detection is pro-
posed. .e authors choose a multimodal deep neural net-
work to select the features with different characteristics..ey
focused on static features such as Opcode, API, permissions,
component, and environmental and string features. Ex-
periments were conducted using the data set from Virus-
Share and Malgenome project. .e proposed system
attained a good accuracy of up to 98%. .ough they studied
many static features, the authors use dynamic features useful
to detect zero-day and obfuscated malware. Wang et al. [16]
recommended a deep learning-based hybrid model using
autoencoder (i.e., DAE) and convolutional neural network
(CNN) to improve the accuracy of malware detection. Re-
construction of the multiple features of android application
performed and multiple CNN were employed for effective
malware detection. To boost feature extraction proficiency,
several pretraining procedures were accomplished, and
customized combination of the deep autoencoder and CNN
model (i.e., DAE-CNN) was employed that various learned
ranges of patterns in a short time. .e empirical test was
performed on a data set comprises 23,000 Android appli-
cations with the attained 99.8% accuracy.

2.2.MalwareDetectionUsingDynamicAnalysis. .edynamic
analysis technique is based on observing the application
behavior during execution. In 2012, Google introduced a
dynamic analysis-based security infrastructure named
Bouncer by Wang et al. [16] for the Android platform.
According to Google officials [16], every application that is
uploaded on the Google play store is first simulated onGoogle
Cloud infrastructure (using software named Bouncer). .e
Bouncer aims at guarding the Google Play store against
malware threats.

Canfora et al. [8] introduced a detection method to
identify malware attacks by employing system calls. Authors
assumed that malicious behaviors were implemented by a
sequence of system calls. .e study employed a machine
learning classifier SVM [23] to identify the specific sequence
of system calls associated with malware. Authors used the
sequence to identify the new malware families. .ough the
results of this research work produced a promising accuracy
of up to 97%, more features like API calls and network
statistics should be explored for a comprehensive dynamic
analysis and a higher detection rate. A technique, named
IntelliDroid is introduced by Wong and Lie [4], to capture
the malicious activities during run time of an application.
.e IntelliDroid recorded instances of specific API calls. .e
inputs generated by the proposed system triggered different
events to monitor application behavior. In [11], the authors
suggested an API sequence analysis-based dynamic
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mechanism. To monitor a new program, the hooking pro-
cess (part of the implemented tool) monitors and tracks the
API call sequences of programs. After extracting the API call
sequences, the proposed system is compared with the API
call sequence reference database. If matched, an alert about
the potential malware is generated.

Alzaylaee et al. [2] proposed a system named DynaLog to
extract many features (such as logging of high-level behavior
and API calls). .e extracted features were further analysed
to detect malicious applications. .e DynaLog took ad-
vantage of existing open-source tools such as Droidbox [24]
that can detect a wide range of Android malware. .e
DynaLog is basically based on the Monkey tool [25] pro-
vided by Google for testing Android applications. .e ap-
plications which were unable to run in the emulated
environment remain unchecked by the proposed system.
Moreover, the DynaLog was incapable of recording events
from the native code within Android applications.

2.3. HybridMalware Analysis Techniques. A hybrid malware
analysis technique combines the features from both the static
and dynamic approaches to detect the wide range of Android
security threats. Zhao et al. [12] proposed a hybrid malware
analysis technique named AMDetector that employs a
modified attack tree model [26] for malware analysis. .e
static part of the proposed technique detects possible attacks
and employs this knowledge to classify applications into
benign and malware classes. .e application behavior
triggered by different code components during run time is
the part of the proposed dynamic analysis. .e organized
rules (with attack trees) rendered the good code coverage to
the prototype model. .e major drawback of the proposed
system was the manual formation of rules and time-costly
dynamic analysis.

Bläsing et al. [27] suggested the Application Sandbox
(Sandbox) system, which is capable to identify malicious
applications using the hybrid analysis. .e static part of the

Table 1: A summary of related work.

References
Methodology Used feature

Static Dynamic Hybrid ML-based Static Dynamic Data set
Feizollah et al.
[10] 7 7 7 7 Permission ✓ Custom | Drebin

Almin et al.
[5] ✓ 7 7 7 Intents ✓ Custom

Canfora et al.
[8] 7 ✓ 7 ✓ 7 System calls Custom | Drebin

Wong et al. [4] 7 ✓ 7 7 7
Malware tracking through

input Genera- Custom | Drebin

Youngjoon
et al. [11] 7 ✓ 7 7 7 API calls Custom

Alzaylaee et al.
[2] 7 ✓ 7 7 7 API calls Malgenome data set

Zhao et al. [12] 7 ✓ ✓ ✓ Permissions General dynamic activities
trigged by Custom

Dash et al. [13] ✓ ✓ 7 ✓ 7

System calls, Decoded binder
communication, abstracted

behavioural patterns
Custom

Xu et al. [14] 7 ✓ ✓ ✓ Collect attack tree path Graph kernels Custom
Yuan et al.
[15] ✓ ✓ ✓ ✓ Permissions, sensitive API DexClass, receive net service

start Custom

Wang et al.
[16] ✓ 7 7 ✓

Permissions, API calls,
hardware features, code

patterns
7 Custom

Kim et al. [17] ✓ 7 7 ✓

Opcode, API, permissions,
component, and

environmental and string
features

7
Custom |

malgenome data set

Karbab et al.
[18] ✓ ✓ 7 ✓ API method calls 7

Drebin | malgenome
| virushare |

contagio minidump

Arshad S et al.
[19] ✓ ✓ ✓ ✓

Hardware components
requested per missions,

application components, and
API calls.

System calls Drebin

Hou et al. [20] 7 ✓ 7 ✓ Linux kernel system calls 7 Custom
Pektas and
Acarman [21] ✓ ✓ 7 ✓ Permissions and hidden

payload
API calls, installed services,

network connections Virushare
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proposed analyzer extracted the classes (i.e., .dex files) and
decompiled these files into human-readable format. Fur-
thermore, the code is scanned for suspicious patterns. .e
proposed system recorded the low-level details of system
interactions during the application execution within the
sandbox environment. .e sandbox environment ensured
the security of analysing system and safety of data of the
underobservation device. .e dynamic part of the proposed
technique employs the Monkey tool [25] to observe the
behavior of an application by producing random events.
One of the limitations observed within the system was its
incapability to detect unknown or new types of malware.

SAMADroid [19] represents a hybrid malware detection
model that combined the benefits of three different levels: (1)
static and dynamic analysis; (2) host, which is local and
remote, and (3) machine learning. Static analysis was per-
formed on remote host considering the features belong to
hardware components, requested permissions, application
components, and API calls. .e dynamic analysis was
performed on local host using system calls that helped in the
detection of malware patterns. Experimental results show
that SAMADroid achieves up to 98% malware detection
accuracy. .us, the inspection of the applications is statis-
tical. However, the employed dynamic analysis is only for
the system calls related analysis. .e employed dynamic
analysis of system calls is already a well-worked area [10],
and many malwares easily bypass system calls inspections
[28] using code obfuscation techniques. .erefore, there is a
need to check the other dynamic features like network ac-
tivity, API calls, and executable codes.

A technique to discover all the flow paths of most en-
gaging APIs in a program using static analysis was proposed
[29]. .ey preferred static analysis because dynamic analysis
is sometimes unable to extract all the important APIs com-
pletely. .is technique is then named DroidDomTree. .e
strategy that they opted dependent on the study of dominant
API is called during static analysis of an application. .ese
dominant API calls are also known as (semantic signatures),
andmining the dominance tree of these semantic signatures is
used to detect malware. Furthermore, in the dominance tree,
authors assigned weights to individual nodes for effective
feature selection. .is weighting arrangement supported to
choose imperative modules that helped further in feature
selection and malware detection. .e DroidDomTree de-
tection rate ranged between 98.1% and 99.3%. .is study
proposed the DL-Droid, a dynamic analysis-based Android
malware detection scheme by using deep learning to find
malicious patterns in a specific application. Authors enhanced
their techniques through a state-based input generation
method for improved code coverage. DL-Droid examined the
accomplishment of the stateful input generation method
using random input generation as a relational baseline. .ey
obtained higher accuracies with these stateful approaches.
.is study highlighted the significance of enhanced input
generation for Android malware detection systems during
dynamic analysis. .e authors conducted experiments using
real devices and achieved a detection rate of 97.8% with
dynamic features [24].

Chaulagain et al. [30] suggested a deep learning-based
hybrid classifier for the safety screening of Android-based
applications. .e proposed approach takes advantages of
automated feature engineering and the combines benefits of
static and dynamic analysis. .is research collects different
artifacts during static and dynamic analysis and trains the
deep learner to get independent models. .ese separate
models combined to create a hybrid classifier that helped in
vetting decision. .e suggested vetting system has proved
efficient against imbalance data and has achieved 99% ac-
curacy. Pektas and Acarman [21] presented a hybrid feature-
based classification system that statically analysed the
requested permissions and the hidden payload while dy-
namic features such as API calls, installed services, and
network connections were considered for malware detec-
tion. Different well-known machine learning algorithms
were applied to evaluate the accuracy level in the classifi-
cation of different classifiers using a data set of 3,339
samples. Authors attained the testing accuracy of up to 92%
on the employed Android applications. .ough the pro-
posed static analysis technique exploits the permissions and
payload features, it ignored the close relationship of intents
with permissions. Most of the time, considering only per-
missions to identify the malware is not adequate [10].

Table 1 shows the summary of related work about
methodology and important features that most of the re-
searchers employed for static or dynamic analysis. As shown
in Table 1, most of the researchers have concatenated either
on static or dynamic analysis and ignored an important
aspect of application vulnerabilities that can be exploited in
both static and dynamic analysis. A few researchers con-
sidered hybrid analysis. However, most of them ignored the
intents and permissions relationship, which is a crucial
aspect of Android applications. Moreover, most of the re-
searchers have not exploited important system calls (such as
network activity, file access, SMS, and call activity), usage of
external DexClass, data leaks, cryptographic activity, run-
time permissions, and rehashing activity during the exe-
cution of applications. .e critical analysis of narrated state-
of-the-art approaches has led us to formulate the following
research questions

(i) Q1: which of the static features (e.g., permissions
along with certain intents patterns) play a vital role
in Android malware detection?

(ii) Q2: which combination of the dynamic features
such as system calls (i.e., network activity, file access,
SMS, and call activity), usage of external DexClass,
data leaks, cryptographic activity, run-time per-
missions, and detection of rehashing activity is
important for Android malware identification?

(iii) Q3: how canmalware detection rate be improved by
employing hybrid analysis and machine learning-
based classification?

To address these research questions, we propose a hybrid
machine learning-based malware detection framework
called HybriDroid for Android platform.
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3. Proposed Hybrid Malware Analysis

To analyse the impact of hybridization, we propose two
machine learning-based hybrid malware analyzers, respec-
tively, namedHybriDroid and cHybriDroid..eHybriDroid
framework exploits static as well as dynamic features for
malware analysis using a hierarchical mechanism. First, the
applications are analysed solely using the static features, and
then the dynamic features are employed to examine the
suspicious (the applications marked as clean by the static
analysis) applications. Moreover, to investigate the impact of
combined analysis (using both the static and dynamic
features), we propose cHybriDroid framework.

3.1. HybriDroid Architecture. .is section describes the
overall methodology of the proposed Android malware
analysis framework, that is, HybriDroid (shown in Figure 1).
.e proposed hybrid approach is comprised of a hierarchical
system based on two phases: (1) static and (2) dynamic
phases (as depicted in Figure 1). In the static analysis phase,
the APK files of applications are first dissembled into XML
and Java files. After that, the XML files are examined to
extract the application related to permissions and intents.

.ese features are then supplied to the proposed ma-
chine learning-based static analyzer. By employing the
provided static features, the machine learning-based ana-
lyzer categorizes an application like malware or suspicious.
To further examine the suspicious applications, the dynamic
analysis phase is initiated. .e applications classified as
suspicious are then provided to the dynamic analyzer for
analysing run-time behaviors.

For dynamic analysis, first of all, each application is
executed in the emulated environment (using DroidBox [24]
emulation tool) to log the observed dynamic features (such
as system calls, usage of external DexClass, data leaks,
cryptographic activity, and detection of rehashing activity).
.e dynamic features are then provided to the machine
learning-based dynamic analyzer for the classification
purpose. .e machine learning-based dynamic analyzer
classifies these suspicious applications as benign or malware.
.e applications classified as malware are added to the
malware data set while the applications declared as benign
are added to the clean applications data set.

3.2. cHybriDroid Architecture. To investigate the impact of
combined analysis (using both the static and dynamic
features), we propose a cHybriDroid framework (as shown
in Figure 2). .e cHybriDroid examines the Android ap-
plications using both the static and dynamic features si-
multaneously (see the architecture of cHybriDroid in
Figure 2). For each Android application, both the static and
dynamic features are extracted and provided to the machine
learning-based analyzer for classification (as malware or
benign). To extract the static features (i.e., intents and
permissions), the application is disassembled into APK and
manifest files. Moreover, the application is executed in the
virtual environment (interactively by tapping and using
sample inputs), and the dynamic features are logged. Af-
terwards, the static (i.e., intents and permissions) and

dynamic (such as data leakage, network usage, and use of
DexClass) features are provided for the developed cHy-
briDroid to analyse the application (as depicted in Figure 2).

3.3. Classifier Training for HybriDroid and cHybriDroid.
Figure 3(a) depicts the complete training process of the
proposed HybriDroid malware analyzer. .e training data
set comprises 50% benign (i.e., clean Android applications)
and 50% malware (as mentioned in Table 2). As the
HybriDroid mechanism is based on the hierarchical model,
therefore, both the static and dynamic machine learning
analyzers are trained separately. To train the static analyzer,
an Android application is disassembled into Java and XML
files (sample shown in Figure 4) in order to extract the
feature vectors related to permission and intents. .e dis-
assembled Java, XML, and manifest files are used to obtain
static features such as intents and permissions. .ese intents
and permissions are then compared with each application in
the data set. If the application intent or permission matches
with the extracted permissions, the value of that intent or
permission is set to 1; otherwise, it is set to 0. Similarly, a
feature vector based on 407 distinct values is formed. .ese
feature vectors along the application category or label (i.e.,
malware or benign) are provided to the static machine
learning analyzer. Similarly, for the training of the dynamic
analyzer (in the HybriDroid framework), 50% of the benign
and 50% of the malware applications-based training data set
was executed in a virtual environment (i.e., DroidBox [24]).
A total of 15 distinct dynamic features are collected and
provided along with the application category (i.e., malware
or benign) to the dynamic analyzer (HybriDroid). Addi-
tionally, K-fold cross-validation method is used along with
grid search mechanism that is employed for hyperparameter
tuning (as shown in Table 3).

Figure 3(b) shows the training of cHybriDroid that
employs single machine learning-based analyzer trained
using both the static and dynamic features simultaneously.
For each Android application, the static and the dynamic
features are extracted and supplied along with the appli-
cation category (i.e., benign or malware) to the cHybri-
Droid’s combined analyzer. .e combined analyzer is
trained using 432 distinct feature vectors based on the static
and dynamic aspects of the application.

4. Experimental Result

.e experiments are performed on a personal computer.
Detailed specifications of the machine are illustrated in
Table 4. To evaluate the proposed frameworks, HybriDroid
and cHybriDroid, we employed five machine learning
classifiers, respectively, are Random Forest (RF), K star (K∗),
Naive Bayes (NB), Support Vector Machine (SVM), and J48
decision tree [12–14, 27, 31]. Moreover, TPOT [28] tech-
nique is also used that chooses the right machine learning
model and the best hyperparameter for that model.

4.1.DataSet. .e benign or clean applications in the data set
are collected from the Google play store [16], and a third-
party app store called Apkpure [16] is shown in Table 5. For
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malware samples, we acquired benchmark Drebin [3] data
set that consists of 5,560 malwares from 179 different
families and some of them are shown in Table 6. Drebin is
extensively used throughout research works on Android
malware detection. .e Drebin data set consists of malware
applications obtained from various Android markets, dif-
ferent antivirus engines, malware forums, security blogs, and
Android malgenome project [16].

4.2. Feature Selection. .e permissions are one of the im-
portant static features which must be examined carefully to
safeguard from the potential security threats. In addition to
the permissions, intents within Android applications are
another important aspect requiring careful analysis. Intents
are part of the complex messaging model of Android system,
which facilitates execution of the different applications,
services, and operating system functions. Different activities,

Machine learning-based 
static analyzer 

Suspicious 
Applications

Benign
applications

Malware
applications

Machine learning-based
dynamic analyzer

Dynamically collected
features

Execution in virtual
environment

Dynamic phase 

Permissions Intents

Disassembling into 
xml and Java files

Android 
applications

Static phase

Figure 1: Architecture of HybriDroid.

CHybridDroid

Android 
applications

Disassembling into 
xml and java files

Execution in virtual
environment

Dynamically collected
features

Malware
applications

Benign
applications

Permissions Intents

Figure 2: Architecture of cHybriDroid.
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broadcast receivers, and some services used intents for their
activation and record their type of intent using intent filters
in the manifest file. Some of the recent studies [10, 32] have
shown that the intents and permissions are often exploited
(such as intent spoofing and permission collusion) by the
malware. .us, their critical examination is necessary to
detect malicious activities. Table 7 shows the features col-
lected (using DroidBox tool) during the dynamic analysis
step of the proposed methodology. .ese features are the
result of the execution events generated during the execution
of applications (within a virtual environment). From Table 8,
it is evident that the internet is the most employed (i.e., 20%)
permission by the applications (by both the malware and
benign). Other permissions that are the part of the most
requested permission set in malware applications belong to

sending and writing SMS, having a collective percentage of
14. Moreover, accessing approximate and exact locations
through ACCESS_FINE_LOCATION and ACCESS_COAR-
SE_LOCATION permissions is employed by the 11% mal-
ware applications.

4.3. Feature Ranking. .e motivation behind using a re-
duced feature set (for the employed predictive models) is to
eliminate redundant data, reduce overfitting issues, improve
classification accuracy, and decrease the training time of the
algorithm..e dynamic analysis results in a large number of
features; therefore, it was necessary to use only the important
features for the machine learning model. For this purpose,
we employ the information gain method [16] that finds
certain patterns of the features in the employed applications
of the data set. Each feature is assigned with a certain score
highlighting the effectiveness of the feature in classification.
.e InfoGain is a well-known feature selection algorithm
that records the changes in the entropy of the information
class before and after the observation [3]. .e formula to
measure the information gain is shown as

Application category
(malware/benign)

Application category
(malware/benign)

Disassembling
into xml and 

java files

Extracted 
permission &

intents

Execution in 
virtual 

environment

Dynamic 
features HybridDroid

(dynamic analyzer)

HybridDroid
(static analyzer)

50% normal apps
50% benign apps

(400 apps)

(a)

Disassembling
into xml and 

java files

CHybriDroid 
combined analyzer

Extracted 
permission &

intents

Application category
(malware/benign)

Execution in 
virtual 

environment

Dynamic 
features

50% normal apps
50% benign apps

(b)

Figure 3: Training methodology. (a) Training of static and dynamic machine learning analyzers for HybriDroid. (b) Training of the
combined analyzer for cHybriDroid.

Table 2: Data set details.

Application
type

Number of
applications

Applications
categories

Benign 2500 28 different categories
Malware 2500 178 different families
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infoGain(P, F) � Entropy(P) − 􏽘
v∈V(F)

Pv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|P|
· Entropy Pv( 􏼁,

(1)

where P indicates the set representing the pattern, |P| is the
number of samples in P, v is the value of the feature F, (P, v)

is the value of feature F, and Pv is the subset of P (where
feature F has value v). Before the observation of features
entropy, the class is defined and shown as

Entropy(P) � 􏽘
c∈C

Pc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|P|
· log2

Pc

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|P|
, (2)

where C indicates the class set and Pc represents the subset of
P belonging to class c. Information gain is considered as a
simple and fast ranking method that yields the most suitable
features, which are helpful in identifying application class (in
our case malware or benign). Using InfoGain, 172 important
static features (comprising permissions and intents) out of a
total of 407 features are selected. .e top 10 features are

Figure 4: Sample of the manifest .xml file.

Table 3: Grid search setting.

Classifier Candidate Parameters

Decision tree 462 {‘max_features’: [‘auto’-‘sqrt’-‘log2’]-‘min_samples_split’: [2-3-4-5-6-7-8-9-10-11-12-13-14-15]-
‘min_samples_leaf’: [1-2-3-4-5-6-7-8-9-10-11]-‘random_state’: [123]}

Random
forest 288 {‘Bootstrap’: [True]-‘max_depth’: [80-90-100-110]-‘max_features’: [2-3]-‘min_samples_leaf’: [3-4-5]-

‘min_samples_split’: [8-10-12]-‘n_estimators’:[100-200-300–1000]}
SVM 14 {‘C’: [6-7-8-9-10-11-12]- ‘kernel’: [‘linear’-‘rbf’]}

Kstar 192 {‘n_neighbors’: [5-6-7-8-9-10]-‘leaf_size’:[1-2-3-5]-‘weights’:[‘uniform’-‘distance’]-‘algorithm’:[‘auto’-
‘ball_tree’-‘kd_tree’-‘brute’]-‘n_jobs’:[−1]}

Naive Bayes — —

Tpot Generative
model —

Table 4: Experimental setup.

Processor Intel core (TM) i7-4720HQ 2.60GHz
Memory 16GB
Operating system Ubuntu 16.04LTS
Machine learning tool Weka 3.6
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ranked and shown in Table 9. .ese results show that Send_
SMS and Receive_SMS static features have attained the
highest rank value compared with the other static features.

For intents, the receiver has been ranked highest among
the intent category. .e top ranked dynamic features with
the rank score are shown in Table 10. As shown in Table 10,
sendsms is the top dynamic feature that has the highest
potential to reveal the category of an Android application
(i.e., as malware or benign). Sendsms dynamic feature
represents information leakage via network, SMS, or any
file-based activity. Cryptousage, sendsms, enfperm, and
sendnet are the other top-ranked features which retain
maximum information (i.e., attained higher rank value), and
this shows the significance of these features for malware
analysis. In this research, we use the top five (out of a total of
15) ranked dynamic features.

.e dataleaks dynamic feature retains the maximum
information when InfoGain is applied (as shown in Ta-
ble 10). .is information is necessary for accurate malware
classification. Similarly, the READ_SMS from the intent
category has the highest potential to accurately classify
malware compared with the other employed features. .e
android.provider.Telephony.SMS_RECEIVED in the per-
mission’s category is among the top 10 highest-ranked
permission (as shown in Table 11). In this research, we
selected the top 20 (422) hybrid features. .e full feature
ranking and information gain are mentioned at https://bit.
ly/2GduUEt.

4.4. Result Discussion. In Table 12, results related to cross-
validation grid search experiment are presented. When
feature selection is not performed then, TPOT produces
the highest 0.91 F-measure. However, the Naive Bayes
produces 0.98 precision, and TPOT produces 0.91 recall.
In Table 12, when feature selection is performed, the
TPOT F-measure is decreased from 0.91 to 0.87. Random
forest produced the best result of 0.88 F-measure and 0.88
precision. .e reduced result of the model indicated that
removed features have minimal impact on the perfor-
mance of the classifiers. In Table 12, the cross-validation
grid search experiment related data based on dynamic
features with and without feature selection is presented.
When feature selection is not performed then, TPOT
produces the highest 0.94 F-measure, which is 0.03%
improved compared with the static features mentioned in
Table 13. However, the Naive Bayes produces 0.99 pre-
cision and support vector machine produces 0.92 recall. In
Table 12, when feature selection is employed, the TPOT
F-measure is decreased from 0.94 to 0.91. .e TPOT
produced the best result of 0.91 F-measure and 0.88
precision while reducing the number of features from 15
to 5 (with a drop of F-measure 0.03). Table 13 shows the
best classifier for dynamic features based analysis. In
Table 12, cross-validation grid search experiment is
conducted on the hybrid features with (20 selected fea-
tures) and without (total 422 features) feature selection.
When feature selection is not performed then the Naive
Bayes produces the highest F-measure (i.e., 0.99) which is

Table 5: Nonmalware application details.

S.NO. Applications categories
1 Health & fitness
2 Art & design
3 Beauty
4 Business
5 Communication
6 Education
7 Event
8 House & home
9 Sports
10 Productivity
11 Photography
12 Camera
13 Finance
14 Auto & vehicles
15 Travel and local
16 Food & drink
17 Lifestyle
18 Video players & editors
19 Weather
20 Social
21 Shopping
22 Tools
23 Parenting
24 News & magazines
25 Music & audio
26 Medical
27 Entertainment
28 Music & audio

Table 6: Malware application details.

S.NO. Malware family
1 Plankton
2 DroidKungFu
3 GinMaster
4 FakeDoc
5 FakeInstaller
6 Opfake
7 BaseBridge
8 Nisev
9 Adrd
10 Kmin
11 Geinimi
12 DroidDream
13 FakeRun
14 Iconosys
15 SmsWatcher
16 UpdtKiller
17 Gappusin
18 Proreso
19 Mobsquz
20 Cosha
21 SpyMob
22 Coogos
23 Updtbot
24 Ackposts
25 Fatakr
26 Vidro
27 Booster
28 EWalls
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0.05% improved compared with dynamic features and
0.08% improved result compared with the static features
mentioned in Table 13, respectively. .e Naive Bayes
produces the precision of 1.00 and the recall of 0.99. In

Table 14, when feature selection is performed, the TPOT
F-measure results in 0.97 and the Naive Bayes F-measure
is decreased from 0.99 to 0.96. .e TPOT produced the
best results, that is, 0.97 F-measure, 1.00 precision, and

Table 7: Applications features for dynamic analysis.

No. Feature Description
1 DexClass Actions of loading external dex function
2 Opennet Facilitate the connection for network
3 Service start Log the services in operation
4 Close net Close network connection
5 Send net Data transmit/sent to the network
6 Recvnet Data received from the network

7 Data leaks Detect leakage of information on the phone including messages, e-mail, password, contacts, IMEI, GPS information
phone number, and so on

8 Accessed files File accesses
9 Fda ccess Read and write operations of file and directory
10 Send sms Send SMS
11 Phone call Phone calls made
12 Cryptousage Detect the cryptographic functions and what key is used when encrypting and decrypting data
13 Recvaction APKs function invoked as a receiver
14 Enfperm Enforce special permission to activity, broadcast receiver, and service
15 Hashes .e hash value of APK file

Table 8: Most used (percentage of occurrence) permissions and intents in the applications.

Frequent permissions Percentage Frequently asked intents Percentage (%)
Internet 20 Action.main 28
Read_phone_state 15 Category.launcher 24
Access_ network_state 13 Boot_completed 14
Write_external_storage 7 Category.default 8
Write_sms 5 Sms_received 8
Send_sms 9 Phone_state 5
Receive_boot_completed 11 Category_home 4
Wake_lock 9 New_outgoing_call 3
Access_fine_location 6 ACTION.VIEW 3
Access_coarse_location 5 Category.browsable 3

Table 9: Static features (ranked using info gain).

Ranked Importance Features name
1 0.18147 SEND_SMS
2 0.16383 com.Google.android.c2dm.intent.RECEIVE
3 0.16296 com.Google.android.c2dm.permission.RECEIVE
4 0.14353 com.android.vending.INSTALL_REFERRER
5 0.13254 READ_PHONE_STATE0
6 0.12882 0com.Google.firebase.INSTANCE_ID_EVENT
7 0.12363 READ_EXTERNAL_STORAGE
8 0.12227 ACCESS_NETWORK_STATE
9 0.12148 c1dm.intent.REGISTRATION
10 0.11792 C2D_MESSAGE
11 0.10674 category.BROWSABLE
12 0.10086 android.intent.action.VIEW
13 0.09721 RECEIVE_SMS
14 0.08396 READ_SMS
15 0.07374 GET_ACCOUNTS
16 0.07059 Telephony.SMS_RECEIVED
17 0.06276 GET_TASKS
18 0.06225 com.android.vending.BILLING
19 0.0551 android.intent.action.SEND
20 0.0546 READ_LOGS/writeLogs
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0.94 recall, while reducing the features from 422 to 20,
with a drop of F-measure up to 0.02.

Table 13 showed each fold result of the TPOT (without
feature selection) and random forest (with feature selection).
Since random forest is trained on different samples of the data
which reduces variance, it obtained better performance.
Moreover, random forest used a random subset of features
which also helps to reduce overfitting. .e dynamic features
based TPOT technique is shown in Table 13 depicting the most
performing classifiers (with and without employing feature
selection). .e reason that the extratree classifier obtained the
improved results compared with the other classifier is that the
random value is selected for feature consideration. .e random
split for the extra trees helps to create more diversified trees and
less splitters. Table 13 shows the best classifier using the hybrid
features. In the hybrid feature, Naive Bayes classifier resulted in
the best classifier without feature selection and the TPOT-based
technique results in best classifier with reduced features. .e
Naive Bayes is a probabilistic based classifier, so it does not
require any selection of tune parameter. However, TPOT
needed hypertuning, where we used the evolutionary algorithm
to optimize the parameter. .e tune parameters for TPOT
model are StackingEstimator (estimator� LogisticRegression
(C� 0.1, dual�True, penalty� “l2”)), GaussianNB ()). .e
reason that TPOT technique obtained the improved results
compared with the other classifiers is that it uses a stack gen-
eration technique to improve its performance. .e metalearner
that outputs Gaussian classifier makes the final prediction. .e
results presented in Table 13 show that the TPOT and Naive
Bayes outperformed the other machine learningmodels and are
more effective in malware detection. .e attained F-measure
value for the TPOTmodel indicates the notable performance of
the model. It is evident that, for the TPOT model, the true
positive rate is observed fairly high and the false positive rate is
extremely low. .erefore, we employ the TPOT classification
technique for our proposed cHybriDroid framework.

4.5. PredictionModelOverhead. .e cHybriDroid is trained
offline. .e overhead of using cHybriDroid predictor in-
cludes the selective feature extraction and making the

predictions. .e overhead of feature extraction is negligible
(approximated 1s in total) as a feature is extracted at compile
time. .e prediction model training is performed once, and
it is a one-time cost. .e training and testing time for both
models are mentioned in Table 15. In summary, the over-
head of the prediction model is negligible, that is, two
seconds for one application.

Using the hybrid analysis approach, we experimented
with real malware and benign Android applications. Our
study showed that using both the static and dynamic ap-
plication features result in a commendable malware de-
tection accuracy. With the feature ranking mechanism, we
further optimized the two proposed hybrid methodologies
in terms of performance and accuracy. .e reduced number
and employing only the important features results in good
detection performance and accuracy. For hybrid malware
analysis, we adopted two strategies: (1) HybriDroid and (2)
cHybriDroid. .e HybriDroid methodology was typically
designed to perform a hybrid malware analysis (employing
both the static and dynamic or run-time features) using a
hierarchical mechanism. At the same time, the cHybriDroid
mechanism was employed to analyse the effectiveness of
malware detection when the static and dynamic features are
analysed simultaneously. Our results exhibit a higher mal-
ware detection accuracy for the HybriDroid with a 97%
F-measure as mentioned in Table 16. We found that the
TPOT [28] was the top-performing machine learning model
(for cHybriDroid) as compared with the other employed
models. To attain a better performance insight, we noted the
False Positive Rate (FPR) and True Positive Rate (TPR) for
the cHybriDroid classifier. .e results revealed that the
TPOT [28] machine learning model attained the highest
performance up to 96% TPR. Similarly, the r2 value for the
TPOTmachine learning model also specifies the potential of
TPOT to detect malware. Overall, the malware detection
accuracy of the hierarchical hybrid approach (i.e.,

Table 11: Hybrid features (information gain).

Rank Importance Features name
1 0.364 Dataleaks
2 0.312 SEND_SMS
3 0.305 Sendsms
4 0.298 Servicestart
5 0.294 Opennet
6 0.285 READ_SMS
7 0.285 RECEIVE_SMS
8 0.272 ACCESS_COARSE_LOCATION
9 0.272 android.provider.Telephony.SMS_RECEIVED
10 0.259 Sendnet
11 0.259 Recvnet
12 0.252 ACCESS_FINE_LOCATION
13 0.249 Cryptousage
14 0.248 READ_PHONE_STATE0
15 0.23 ACCESS_NETWORK_STATE
16 0.226 WRITE_SMS
17 0.22 Enfperm
18 0.22 CAMERA
19 0.217 action.BOOT_COMPLETED
20 0.214 Internet

Table 10: Dynamic features (obtained using InfoGain).

Rank Importance Feature name
1 0.2654 Sendsms
2 0.2425 Dataleaks
3 0.1872 Cryptousage
4 0.0913 Enfperm
5 0 Accessedfiles
6 0 Servicestart
7 0 Recvnet
8 0 Sendnet
9 0 Phonecalls
10 0 Closenet
11 0 Opennet
12 0 Hashes
13 0 DexClass
14 0 Recvsaction
15 0 Fdaccess
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Table 12: .e summary of results with and without feature selection.

(a) Static features results (b) Dynamic features results (c) Hybrid feature results
F-meas. Prec. Recall F-meas. Prec. Recall F-meas. Prec. Recall

WO Feat. Sel.
SVM 0.90 0.90 0.91 0.90 0.90 0.92 0.93 1.00 0.89
Decision tree 0.83 0.84 0.84 0.84 0.85 0.84 0.88 0.96 0.83
Random forest 0.89 0.85 0.83 0.89 0.86 0.84 0.96 0.98 0.93
K-star 0.84 0.91 0.8 0.85 0.92 0.80 0.57 1.00 0.42
Naive Bayes 0.85 0.98 0.75 0.85 0.99 0.75 0.99 1.00 0.99
TPOT 0.91 0.92 0.91 0.94 0.98 0.90 0.99 1.00 0.99
With feat. sel.
SVM 0.86 0.86 0.88 0.90 0.94 0.87 0.95 1.00 0.91
Decision tree 0.87 0.86 0.89 0.91 0.95 0.87 0.91 0.97 0.87
Random forest 0.88 0.88 0.89 0.90 0.94 0.87 0.95 0.96 0.95
K-star 0.84 0.77 0.94 0.83 0.83 0.87 0.84 1.00 0.74
Naive Bayes 0.79 0.68 0.94 0.83 0.97 0.73 0.96 1.00 0.93
TPOT 0.87 0.87 0.88 0.91 0.94 0.89 0.97 1.00 0.94

Table 14: Research answers.
Q1 Selected 172 out of 407 based on InfoGain method
Q2 Selected 5 out 15 based on InfoGain method
Q3 Hybrid analysis increased the F-measure score of 5% with and without feature selection

Table 15: Training and testing time.

Model Training time (seconds) Testing time (seconds)
TPOT 0.09 0.007

Table 13: .e selected best model in terms of cross-validation score.

k� 1 k� 2 k� 3 k� 4 k� 5 k� 6 k� 7 k� 8 k� 9 k� 10 Average
(a) Static features

TPOT, without feature selection
F-measure 0.92 0.82 0.82 0.97 0.93 0.86 0.97 0.92 1.00 0.93 0.91
Precision 1.00 0.75 0.75 1.00 0.90 1.00 1.00 0.95 1.00 0.90 0.93
Recall 0.85 0.90 0.90 0.95 0.95 0.75 0.95 0.90 1.00 0.95 0.91
Random forest, with feature selection
F-measure 0.92 0.74 0.86 0.93 0.85 0.83 0.97 0.93 0.97 0.84 0.89
Precision 0.95 0.65 0.79 0.90 0.84 0.93 1.00 0.90 0.95 0.89 0.88
Recall 0.90 0.85 0.95 0.95 0.85 0.75 0.95 0.95 0.95 0.80 0.89

(b) Dynamic features
TPOT, without feature selection
F-measure 0.90 0.90 0.97 0.85 0.79 0.97 1.00 1.00 1.00 1.00 0.94
Precision 1.00 0.93 1.00 0.91 1.00 1.00 1.00 1.00 1.00 1.00 0.98
Recall 0.87 0.93 0.73 0.67 0.80 1.00 1.00 1.00 1.00 1.00 0.90
TPOT, with feature selection
F-measure 0.89 0.90 0.93 0.67 0.84 0.93 0.97 1.00 1.00 1.00 0.91
Precision 1.00 0.93 1.00 0.75 0.81 0.93 1.00 1.00 1.00 1.00 0.94
Recall 0.80 0.87 0.87 0.60 0.87 0.93 0.93 1.00 1.00 1.00 0.89

(c) Hybrid features
Native Bayes, with feature selection
F-measure 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Recall 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
TPOT, with feature selection
F-measure 0.93 1.00 1.00 0.92 0.92 0.92 1.00 1.00 1.00 1.00 0.97
Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Recall 0.88 1.00 1.00 0.86 0.86 0.86 1.00 1.00 1.00 1.00 0.94
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cHybriDroid) was marginally better than the combined
hybrid approach, that is, HybriDroid.

4.6. Analysis. As seen from Table 13, the static, hybrid, and
dynamic model achieve the high F-measure score. We train
the analysis tool on a comprehensive data set and use the
optimized parameters for machine learning. Within the
proposed security mechanism, we firstly do the static
analysis part mainly comprising the manifest file, including
permission tags and application intents. .e reason for the
static analysis is that malware can be tested on the sub-
mission of the application before the execution of the ap-
plication. If the model probability is low, the mechanism
should apply the dynamic classification model and detect it
under control environment. .e dynamic method takes
rigorous testing, so it will cost execution time. If the model is
uncertain again, then the proposed method will apply to the
hybrid model. In this way, we test the application with three
different models. Table 14 answers the research question
mentioned in Section 1. .e method can be adopted for the
ransomware and adversarial attacks. .e method can be
applied in a huge size data set. We can train such kind of
ensemble machine learning analyzer on discussed features to
detect the ransomware application and classify them into
families.

5. Conclusion and Future Work

Nowadays, Android is deemed as the renowned OS for
mobile devices. Subsequently, the Android platform attracts
several malware experts to gather huge economic and social
benefits. To mitigate malware activities, different malware
detection systems have been proposed. However, the defi-
ciencies in these systems have led us to propose a novel
machine learning-based hybrid malware detection frame-
work that employs several important static and dynamic
features. Furthermore, the study has also analysed the role of
different machine learning classifiers for malware detection.
.is study highlights that, in the development of a robust
machine learning-based malware detection system, the se-
lection of features from the data set is one of the significant
steps. Feature selection depends upon the analysis method
through which they are extracted. It is the analysis technique
that determines the compatibility of features with the
classification algorithm. In the experiments, we attain 97%
F-measure, and the trained classifier shows a tremendous
efficiency with an r2 value of 0.91. .e TPR is also high, that
is, 0.96, while the FPR is very low, that is, 0.04. For the future

work, we intend to incorporate code coverage, memory
utilization, and network statistics aspects of the executing
applications (for dynamic analysis). Moreover, the classifiers
will be trained to subclassify the malware into families.
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