
From SOS to Asynchronously
Communicating Actors ‹

Frank de Boer1, Einar Broch Johnsen2 ,
Ka I Pun2,3, and S. Lizeth Tapia Tarifa2

1 CWI, Amsterdam, the Netherlands
{f.s.de.boer}@cwi.nl

2 Department of Informatics, University of Oslo, Oslo, Norway
{einarj,violet,sltarifa}@ifi.uio.no

3 Western Norway University of Applied Sciences, Bergen, Norway

Abstract. Structural Operational Semantics (SOS) provides a general
format to describe a model as a transition system with very powerful syn-
chronization mechanisms. Actor systems are distributed, asynchronously
communicating units of computation with encapsulated state, with much
weaker means of synchronizing between actors. In this paper, we discuss
an implementation of a SOS model using actors in the object-oriented
actor language ABS and how to argue that global properties about the
model are inherited from the SOS level to the actor implementation.
The work stems from a case study modelling the memory system of a
cache-coherent multicore architecture.

1 Introduction

Structural operational semantics (SOS) [1], introduced by Plotkin in 1981, de-
scribes system behavior as transition relations in a syntax-oriented, composi-
tional way, using inference rules to capture local transitions and how these com-
pose into transitions at the global level. Process synchronization in SOS rules is
expressed abstractly using, e.g., assertions over system states and reachability
conditions over transition relations as premises, and label synchronization for
parallel transitions. This high level abstraction greatly simplifies the verification
of system properties. In particular, reasoning about SOS semantics has been used
to prove meta-properties for all instances of a model such as type preservation
properties for the execution of programs in a programming language (e.g., [2]). In
contrast, a direct implementation of an SOS model for the simulation of system
behavior is less common, as execution quickly becomes a reachability problem
with a lot of backtracking. Often, the implementation of an SOS model can be
quite far from the transition rules of the model itself, and, as a result, we do not
always know if the properties laboriously proven for the SOS model indeed also
hold of its implementation.

‹ Supported by SIRIUS: Centre for Scalable Data Access (www.sirius-labs.no) and
ADAPt: Exploiting Abstract Data-Access Patterns for Better Data Locality in Par-
allel Processing (www.mn.uio.no/ifi/english/research/projects/adapt/).

http://orcid.org/0000-0001-5382-3949
http://orcid.org/0000-0001-9948-2748
http://www.sirius-labs.no
https://www.mn.uio.no/ifi/english/research/projects/adapt/

2 F. S. de Boer, E. B. Johnsen, K. I Pun and S. L. Tapia Tarifa

We are interested in decentralized implementations of SOS models, to obtain
efficient yet faithful realizations of these models, without unnecessary global
synchronization and backtracking yet preserving the safety properties of the SOS
model. For our implementations, we work with active object languages [3], which
combine the scalable, asynchronous nature of actor languages with the code
structuring mechanisms of object orientation. In particular, we target ABS [4]
because it supports cooperative scheduling, which allows a simple yet expressive
form of synchronization, and because it has a formally defined semantics, which
allows us to study the preservation of safety properties in a formal setting.

This paper is an extended abstract of an invited talk given at FOCLASA
2019. Further details of the ideas discussed in this paper may be found in [5, 6]
and the source of the original SOS model which triggered our interest in this
line of investigation may be found in [7].

2 Background

2.1 SOS

Structural operational semantics (SOS) [1] define the meaning of programs by
(labelled) transition systems and simple operations on data. Programs are de-
fined syntactically by a grammar and execute in a (local) context. Let us assume
that these contexts resemble objects, such that programs (or sequences of ac-
tions) execute on a local state and exchange messages or synchronize with each
other in the transition rules. If P and Q are such programs in local contexts, let
P ||Q denote the configuration which consists of P and Q executing in parallel.
The transition rules then have formats such as

(Local)

condition on P

P Ñ P 1

(AsyncSend)

condition on P

P Ñ P 1||Q

(AsyncReceive)

condition on P and Q

P ||QÑ P 1

(Handshake)

condition on P and Q

P ||QÑ P 1||Q1

(Context)

P Ñ P 1

P ||QÑ P 1||Q

(labelsync)

P
l
ÝÑ P 1 Q

l̄
ÝÑ Q1

P ||QÑ P 1||Q1

Compared to decentralized systems such as actors, the premises of the rules
AsyncReceive and Handshake contain applicability conditions on both P and
Q and LabelSync introduces synchronization over events l (where l̄ denotes the
dual of l). These forms of synchronization are difficult to express in the asyn-
chronous setting. Conditions further include reachability expressions, captured
here by transitions in the premises of the rules Context and LabelSync.

2.2 ABS

ABS is a modelling language for designing, verifying, and executing concurrent
software [4]. The language combines the syntax and object-oriented style of Java

From SOS to Asynchronously Communicating Actors 3

with the Actor model of concurrency [8] into active objects which decouple
communication and synchronization using asynchronous method calls, futures
and cooperative scheduling [3]. Although only one thread of control can execute
in an active object at any time, cooperative scheduling allows different threads
to interleave at explicitly declared points in the code. Access to an object’s
fields is encapsulated, thus, any non-local (outside of the object) read or write
to fields must happen explicitly via asynchronous method calls so as to mitigate
race-conditions or the need for mutual exclusion (locks).

class Lock {
Bool unlocked = True;
Unit take lock{await unlocked; unlocked = False;}
Unit release lock{unlocked = True;} }

Fig. 1: Lock implementation in ABS using
await on Booleans.

We explain the basic mech-
anism of asynchronous method
calls and cooperative schedul-
ing in ABS by the simple code
example of a class Lock. First,
the execution of a statement
res = await o!m(args) consists
of storing a message m(args) corresponding to the asynchronous call to the
message pool of the callee object o. This await statement releases the control
of the caller until the return value of that method has been received. Releas-
ing the control means that the caller can execute other messages from its own
message pool in the meantime. ABS supports the shorthand o.m(args) to make
an asynchronous call f=o!m(args) followed by the operation f.get which blocks
the caller object (does not release control) until the future f has received the
return value from the call. As a special case the statement this.m(args) mod-
els a self-call, which corresponds to a standard subroutine call and avoids this
blocking mechanism. The code in Fig. 1 illustrates the use of the await statement
on a Boolean condition to model a binary semaphore, which can be used to en-
force exclusive access to a communication medium such as a channel. Thus, the
statement await channel!take_lock() will suspend the calling method invocation
(and release control in the caller object) and can first resume when the generated
invocation of the method take_lock returns, which can only happen when the
local condition unlocked (of the channel) has become true.

3 Example of a SOS Synchronization Pattern

(LocalSend)

conditions on P

P
l
ÝÑ P 1

(LocalReceive)

conditions on Q

Q
l̄
ÝÑ Q1

(GlobalSync)

P
l
ÝÑ P 1 Qi

l̄
ÝÑ Q1

i for 0 ă i ď n

P ||Q1|| . . . ||Qn Ñ P 1||Q1
1|| . . . ||Q

1
n

Fig. 2: Multiparty synchronization in
SOS.

We illustrate the problem of implement-
ing SOS rules by considering multi-
party label synchronization, inspired by
the multicore memory model of Bijo et
al. [7], where bus synchronization is a
label matching problem such that an in-
validation request for a cache line suc-
ceeds when the cache line has been in-
validated in all other caches. Somewhat
simplified, this problem corresponds to
the SOS rules in Fig. 2, in which n ob-

4 F. S. de Boer, E. B. Johnsen, K. I Pun and S. L. Tapia Tarifa

Qn

Q1

l
P implicit

channel

l
-

.

.

.l
-

(a) State machine of the global syn-
chronization using labels in the SOS
model.

Qn

Q1take_lock()

start
barrier

end
barrier

channelcallerP
l .

.

.

l
-

l
-

release_lock()

(b) State machine of the global synchro-
nization using a bus and barriers in the ABS
model.

Fig. 3: Label synchronization in SOS vs barrier synchronization in ABS. In the
SOS model (Fig. a), circles represent synchronized entities and shaded arrows
labelled transitions. Note that the synchronization channel is implicit in the
SOS model, as synchronization is captured by label matching. In the ABS model
(Fig. b), circles represent the same nodes as in the SOS model, shaded arrows
method invocations, solid arrows mutual access to the synchronization channel
and dotted arrows barrier synchronizations.

jects synchronize on a broadcast from P to Qi (where 0 ă i ď n) and both
sender and receivers have local synchronization conditions denoted conditions1
and conditions2, respectively.

The synchronization problem corresponding to these SOS rules can be il-
lustrated by the state machine in Fig. 3a. However, in the input-enabled ABS
system, we need to ensure that only one object can send on the synchronization
channel at any time, using a lock such as the one in Fig. 1. Then, a physical syn-
chronization channel forwards the synchronization event to all receiving objects.
To receive the synchronization event, all readers need to make a transition si-
multaneously, Hence, the implementation needs to introduce a start barrier. The
bus can only return the success to the sender of the communication event once
all receivers have completed their transition. This corresponds to an end barrier
synchronizing on the success of the transitions of all receivers, after which the
send-method can return and the synchronization channel can be unlocked. The
corresponding synchronization code in ABS is illustrated in Fig. 3b.

The correctness of the decentralized active object implementation of the SOS
model can then be addressed by a simulation relation between the ABS code and
the transitions of the SOS model. This approach is based on the notion of stable
points in the execution of ABS programs [5], at which an object requires external
input to make progress (either an event or a scheduling decision). The semantics
of ABS then allows us to prove that executions are globally confluent at the
granularity of stable points [5, 6]. Consequently, it is sufficient to reason about
one object at a time between stable points in the program execution. These stable

From SOS to Asynchronously Communicating Actors 5

points are syntactically defined on the ABS code, and the abstraction relation
between the ABS code and the SOS model need only to hold at the stable points.
Thus, we can reason about the transitions between stable points in the ABS
code and the corresponding transitions in the SOS model. Furthermore, if the
scheduling at stable points is deterministic in the ABS model, two transitions can
be merged, further reducing the number of cases that need to be considered [5].

4 Related Work

There is in general a significant gap between a formal model and its implemen-
tation [9]. SOS [1] succinctly formalizes operational models and are well-suited
for proofs, but direct implementations of SOS quickly lead to very inefficient
implementations. Executable semantic frameworks such as Redex [10], rewrit-
ing logic [11], and K [12] reduce this gap, and offer executable formal models of
complex languages like C and Java. The relationship between SOS and rewriting
logic semantics has been studied [13] without proposing a general solution for
label matching. Bijo et al. implemented their SOS multicore memory model [14]
in Maude [15] using an orchestrator for label matching, but do not provide a
correctness proof wrt. the SOS model. Different semantic styles can be modelled
and related inside one framework; for example, the correctness of distributed
implementations of KLAIM systems in terms of simulation relations have been
studied in rewriting logic [16]. Compared to these works on semantics, our focus
here is on implementing an SOS model in a distributed active object setting in
a way which allows formal proofs of correctness for this implementation.

Correctness-preserving compilation is related to correctness proofs for imple-
mentations, and ensures that low-level representations of a program preserve the
properties of the high-level model. Examples here include type-preserving trans-
lations into typed assembly languages [17] and formally verified compilers [18];
the latter proves the semantic preservation of a compiler from C to assembler
code, but leaves shared-variable concurrency for future work. In contrast to work
which studies compilation from one language to another, our work focuses on a
specific model and its implementation and specifically targets parallel systems.

5 Conclusion

We have outlined a methodology for the decentralized implementation of SOS
models, targeting the active object language ABS. A challenge for this method-
ology is to correctly implement the synchronization patterns of the SOS rules,
which may cross encapsulation borders in the active objects, and in particular
label synchronization on parallel transitions steps. To address this problem, we
exploit that ABS allows for a globally confluent coarse-grained semantics.

References

1. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61 (2004) 17–139

6 F. S. de Boer, E. B. Johnsen, K. I Pun and S. L. Tapia Tarifa

2. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Prog. Lang. and Sys. 23(3) (2001) 396–450

3. Boer, F.D., Serbanescu, V., Hähnle, R., Henrio, L., Rochas, J., Din, C.C., Johnsen,
E.B., Sirjani, M., Khamespanah, E., Fernandez-Reyes, K., Yang, A.M.: A survey
of active object languages. ACM Comput. Surv. 50(5) (October 2017) 76:1–76:39

4. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core lan-
guage for abstract behavioral specification. In: Proc. 9th International Symposium
on Formal Methods for Components and Objects (FMCO 2010). Volume 6957 of
Lecture Notes in Computer Science., Springer (2011) 142–164

5. Bezirgiannis, N., de Boer, F.S., Johnsen, E.B., Pun, K.I, Tapia Tarifa, S.L.: Im-
plementing SOS with active objects: A case study of a multicore memory system.
In: Proc. 22nd International Conference on Fundamental Approaches to Software
Engineering (FASE 2019). Volume 11424 of Lecture Notes in Computer Science.,
Springer (2019) 332–350

6. Tveito, L., Johnsen, E.B., Schlatte, R.: Global reproducibility through local con-
trol for distributed active objects. In: Proc. 23rd International Conference on
Fundamental Approaches to Software Engineering (FASE 2019). Lecture Notes in
Computer Science, Springer (2020) To appear.

7. Bijo, S., Johnsen, E.B., Pun, K.I, Tapia Tarifa, S.L.: A formal model of data
access for multicore architectures with multilevel caches. Sci. Comput. Program.
179 (2019) 24–53

8. Hewitt, C., Bishop, P., Steiger, R.: A Universal Modular ACTOR Formalism for
Artificial Intelligence. In: Proc. 3rd International Joint Conference on Artificial
Intelligence. IJCAI’73, Morgan Kaufmann Publishers Inc. (1973) 235–245

9. Schlatte, R., Johnsen, E.B., Mauro, J., Tapia Tarifa, S.L., Yu, I.C.: Release the
beasts: When formal methods meet real world data. In: It’s All About Coor-
dination. Volume 10865 of Lecture Notes in Computer Science., Springer (2018)
107–121

10. Felleisen, M., Findler, R.B., Flatt, M.: Semantics Engineering with PLT Redex.
The MIT Press (2009)

11. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theor. Comput.
Sci. 373(3) (2007) 213–237

12. Rosu, G.: K: A semantic framework for programming languages and formal analysis
tools. In: Dependable Software Systems Engineering. IOS Press (2017) 186–206

13. Serbanuta, T., Rosu, G., Meseguer, J.: A rewriting logic approach to operational
semantics. Inf. Comput. 207(2) (2009) 305–340

14. Bijo, S., Johnsen, E.B., Pun, K.I, Tapia Tarifa, S.L.: A Maude framework for
cache coherent multicore architectures. In: Proc. 11th International Workshop on
Rewriting Logic and Its Applications (WRLA). Volume 9942 of Lecture Notes in
Computer Science., Springer (2016) 47–63

15. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L., eds.: All About Maude - A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic. Volume 4350 of Lecture
Notes in Computer Science. Springer (2007)

16. Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Semantics, distributed
implementation, and formal analysis of KLAIM models in Maude. Sci. Comput.
Program. 99 (2015) 24–74

17. Morrisett, J.G., Walker, D., Crary, K., Glew, N.: From system F to typed assembly
language. ACM Trans. Prog. Lang. and Sys. 21(3) (1999) 527–568

18. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7) (2009)
107–115

	From SOS to Asynchronously Communicating Actors

