
Multilevel Typed Graph Transformations

Uwe Wolter1[0000−0002−7553−9858] Q, Fernando Maćıas2[0000−0002−6442−6997], and
Adrian Rutle3[0000−0002−4158−1644]

1 University of Bergen, Bergen, Norway Uwe.Wolter@uib.no
2 IMDEA Software Institute, Madrid, Spain fernando.macias@imdea.org

3 Western Norway University of Applied Sciences, Bergen, Norway aru@hvl.no

Abstract. Multilevel modeling extends traditional modeling techniques
with a potentially unlimited number of abstraction levels. Multilevel
models can be formally represented by multilevel typed graphs whose
manipulation and transformation are carried out by multilevel typed
graph transformation rules. These rules are cospans of three graphs and
two inclusion graph homomorphisms where the three graphs are multi-
level typed over a common typing chain. In this paper, we show that
typed graph transformations can be appropriately generalized to multi-
level typed graph transformations improving preciseness, flexibility and
reusability of transformation rules. We identify type compatibility con-
ditions, for rules and their matches, formulated as equations and inequa-
tions, respectively, between composed partial typing morphisms. These
conditions are crucial presuppositions for the application of a rule for a
match—based on a pushout and a final pullback complement construc-
tion for the underlying graphs in the category Graph—to always provide
a well-defined canonical result in the multilevel typed setting. Moreover,
to formalize and analyze multilevel typing as well as to prove the nec-
essary results, in a systematic way, we introduce the category Chain of
typing chains and typing chain morphisms.

Keywords: Typing chain · Multilevel typed graph transformation ·
Pushout · Pullback complement

1 Introduction

Multilevel modeling (MLM) extends conventional techniques from the area of
Model-Driven Engineering by providing model hierarchies with multiple levels of
abstraction. The advantages of allowing multiple abstraction levels (e.g. reducing
accidental complexity in software models and avoiding synthetic type-instance
anti-patterns) and flexible typing (e.g. multiple typing, linguistic extension and
deep instantiation), as well as the exact nature of the techniques used for MLM
are well studied in the literature [4,6,5,8,10,1,17]. Our particular approach [19,20]
to MLM facilitates the separation of concerns by allowing integration of different
multilevel modeling hierarchies as separate aspects of the system to be modelled.
In addition, we enhance reusability of concepts and their behaviour by allowing
the definition of flexible transformation rules which are applicable to different

ar
X

iv
:2

00
6.

14
61

2v
1

 [
cs

.S
E

]
 2

5
Ju

n
20

20

2 U. Wolter, F. Maćıas, A. Rutle

hierarchies with a variable number of levels. In this paper, we present a revised
and extended formalisation of these rules using graph theory and category theory.

G

Gn

. . .

G1

G0

Partial graph
homomorphism

Multilevel
typing

Multilevel
typed
graph

Typing
chain

Path in
multilevel
modelling
hierarchy

Fig. 1: MLM terminology

As models are usually represented ab-
stractly as graphs, we outline in this paper
the graph theoretic foundations of our ap-
proach to MLM using multilevel typed graphs,
prior to introducing our formalisation of mul-
tilevel typed rule definition and application.
Multilevel models are organized in hierarchies,
where any graph G is multilevel typed over a
typing chain of graphs (see Fig. 1). The typ-
ing relations of elements within each graph
are represented via graph morphisms. Since
we allow for deep instantiation [4,6,5,8], which
refers to the ability to instantiate an element
at any level below the level in which it is
defined, these morphisms need to be partial

graph homomorphisms. Moreover, more than one model can be typed by the
same typing chain (or, conversely, models can be instantiated more than once),
hence, all the paths that contain such typing relations constitute a full, tree-
shaped multilevel modelling hierarchy (see Example 1). Finally, the topmost
model G0 in any hierarchy is fixed, and the typing relations of all models (and
the elements inside them) must converge, directly or via a sequence of typing
morphisms, into G0. Therefore, the graph morphisms into G0 are always total.

Multilevel typed graph transformation rules are cospans L I Rλ ρ

of inclusion graph homomorphisms, with I = L∪R, where the three graphs are
multilevel typed over a common typing chain MM. A match of the left-hand
side L of the rule in a graph S , at the bottom of a certain hierarchy, multilevel
typed over a typing chain T G , is given by a graph homomorphism µ : L → S
and a flexible typing chain morphism from MM into T G . The typing chain
MM is local for the rules and is usually different from T G which is determined
by the path from S to the top of the hierarchy (see Fig. 1).

L I R

S D T

λ ρ

ς θ

µ δ νPO FPBC

Fig. 2: Rule structure and basic
constructions for rule application

To apply these rules we rely on an adap-
tation of the Sesqui pushout (Sq-PO) ap-
proach [7] to cospans. We construct first the
pushout and then the final pullback com-
plement (FPBC) of the underlying graph
homomorphisms in the category Graph as
shown in Fig. 2. Based on these traditional
constructions we want to build, in a canoni-

cal way, type compatible multilevel typings of the result graphs D and T over the
typing chain T G . For this to work, we need quite reasonable type compatibility
conditions for rules and relatively flexible conditions for matches, formulated as
equations and inequations, resp., between composed partial typing morphisms.

Multilevel Typed Graph Transformations 3

We introduce typing chain morphisms, and the corresponding category Chain
of typing chains and typing chain morphisms, to formalize flexible matching and
application of multilevel typed rules. The composition of partial graph homo-
morphisms is based on pullbacks in the category Graph, thus type compatibility
conditions can be equivalently expressed by commutativity and pullback con-
ditions in Graph. Therefore, we formalize and analyze multilevel typing as well
as describe constructions and prove the intended results, in a systematic way,
within the category Chain. Especially, we show that the first step in a rule ap-
plication can be described by a pushout in Chain. Moreover, the second step is
described as a canonical construction in Chain, however, it is an open question
whether this is a final pullback construction in Chain or not.

A preliminary version of typing chains are an implicit constituent of the con-
cept “deep metamodeling stack” introduced in [22] to formalize concepts like
parallel linguistic and ontological typing, linguistic extensions, deep instantia-
tion and potencies in deep metamodeling. We revised this earlier version and
further developed it to a concept of its own which serves as a foundation of
our approach to multilevel typed model transformations in [20,26]. Compared
to [20], we present in this paper a radically revised and extended theory of
multilevel typed graph transformations. In particular, the theory is now more
powerful, since we drop the condition that typing chain morphisms have to be
closed (see Def. 5). Moreover, we detail the FPBC step which is missing in [20].
Due to space limitations, we will not present the background results concerning
the equivalence between the practice of individual direct typing – which are used
in applications and implementations – and our categorical reformulation of this
practice by means of typing chains. These equivalence results as well as examples
and proofs can be found in [26].

2 Typing Chains and Multilevel Typing of Graphs

Graph denotes the category of (directed multi-) graphs G = (GN , GA, scG, tgG)
and graph homomorphisms φ = (φN , φA) : G → H [12]. We will use the term
element to refer to both nodes and arrows.

Multilevel typed graphs are graphs typed over a typing chain, i.e., a se-
quence [Gn, Gn−1, . . . , G1, G0] of graphs where the elements in any of the graphs
Gi, with n ≥ i ≥ 1, are, on their part, multilevel typed over the sequence
[Gi−1, . . . , G1, G0]. Paths in our MLM hierarchies give rise to typing chains. The
indexes i refer to the abstraction levels in a modeling hierarchy where 0 denotes
the most abstract top level.

Following well-established approaches in the Graph Transformations field
[12], we define typing by means of graph homomorphisms. This enables us to
establish and develop our approach by reusing, variating, and extending the wide
range of constructions and results achieved in that field. Moreover, this paves the
way to generalize the present “paradigmatic” approach, where models are just
graphs, to more sophisticated kinds of diagrammatic models, especially those
that take advantage of diagrammatic constraints [22,23].

4 U. Wolter, F. Maćıas, A. Rutle

We allow typing to jump over abstraction levels, i.e., an element in graph Gi
may have no type inGi−1 but only in one (or more) of the graphsGi−2, . . . , G1, G0.
Two different elements in the same graph may have their types located in dif-
ferent graphs along the typing chain. To formalize this kind of flexible typing,
we use partial graph homomorphisms that we introduced already in [22].

Definition 1. A partial graph homomorphism ϕ : G ◦−→H is given by a
subgraph D(ϕ) v G, called the domain of definition of ϕ, and a graph homo-
morphism ϕ : D(ϕ) −→ H .

Note that we use, in abuse of notation, the same name for both the partial and
the corresponding total graph homomorphisms. To express transitivity of typing
and later also compatibility of typing, we need as well the composition of partial
graph homomorphisms as a partial order between partial graph homomorphisms.

Definition 2. The composition ϕ;ψ : G ◦−→K of two partial graph homomor-
phisms ϕ : G ◦−→H and ψ : H ◦−→K is defined as follows:

– D(ϕ;ψ) := ϕ−1(D(ψ)),
– (ϕ;ψ)N (e) := ψN (ϕN (e)) for all e ∈ D(ϕ;ψ)N and (ϕ;ψ)A(f) := ψA(ϕA(f))

for all f ∈ D(ϕ;ψ)A.

More abstractly, the composition of two partial graph homomorphisms is defined
by the following commutative diagram of total graph homomorphisms.

D(ϕ;ψ)

D(ϕ) D(ψ)

G H K

v ϕ|ψ

v ϕ v ψ

ϕ;ψ

PB

Note that D(ϕ;ψ) = D(ϕ) if ψ is total, i.e., H = D(ψ).

Definition 3. For any two partial graph homomorphisms ϕ, φ : G ◦−→H we
have ϕ � φ iff D(ϕ) v D(φ) and ϕ, φ coincide on D(ϕ).

Now, we can define typing chains as a foundation for our investigation of
multilevel typed graph transformations in the rest of the paper.

Definition 4. A typing chain G = (G,n, τG) is given by a natural number n,
a sequence G = [Gn, Gn−1, . . . , G1, G0] of graphs of length n + 1 and a family

τG = (τGj,i : Gj ◦−→Gi | n ≥ j > i ≥ 0) of partial graph homomorphisms, called
typing morphisms, satisfying the following properties:

– Total: All the morphisms τGj,0 : Gj → G0 with n ≥ j ≥ 1 are total.

– Transitive: For all n ≥ k > j > i ≥ 0 we have τGk,j ; τ
G
j,i � τGk,i.

– Connex: For all n ≥ k > j > i ≥ 0 we have D(τGk,j)∩D(τGk,i) v D(τGk,j ; τ
G
j,i) =

(τGk,j)
−1(D(τGj,i)), moreover, τGk,j ; τ

G
j,i and τGk,i coincide on D(τGk,j) ∩D(τGk,i).

Multilevel Typed Graph Transformations 5

Due to Definitions 2 and 3, transitivity and connexity together mean that D(τGk,j)∩
D(τGk,i) = D(τGk,j ; τ

G
j,i), i.e., we do have a (unique) total graph homomorphism

τGk,j|i : D(τGk,j) ∩ D(τGk,i) → D(τGj,i) and the following commutative diagram of

total graph homomorphisms

D(τGk,i) Gi

D(τGk,j) ∩D(τGk,i) D(τGj,i)

D(τGk,j) Gj

Gk

τGk,i

τGk,j|i

τGk,j

v

v

τGj,i

v

v

v

=

PB

PB

Remark 1. For any element e in any graph Gi in a typing chain, with i > 0,
there exists a unique index me, with i > me ≥ 0, such that e is in the domain of
the typing morphism τGi,me

but not in the domain of any typing morphism τGi,j
with i > j > me. We call τGi,me

(e) the direct type of e. For any other index k,

with me > k ≥ 0, we call τGi,k(e), if it is defined, a transitive type of e.

Example 1. Fig. 3 depicts the typing morphisms between the graphs in a simpli-
fied sample hierarchy. The direct types for nodes and arrows are indicated with
blue and cursive labels, respectively. All typing morphisms in the simple typing
chain T G , determined by the sequence [hammer plant, generic plant, Ecore]
of graphs, are total except the one from hammer plant to generic plant, since
the direct type of has is located in Ecore. We have chosen Ecore as the top-most
graph since it provides implementation support through the Eclipse Modeling
Framework [24]. This enables our approach to MLM to exploit the best from
fixed-level and multi-level concepts [18]. ut

To describe later the flexible matching of multilevel typed rules and the
result of rule applications, we need a corresponding flexible notion of morphisms
between typing chains.

Definition 5. A typing chain morphism (φ, f) : G → H between two typing
chains G = (G,n, τG) and H = (H,m, τH) with n ≤ m is given by

– a function f : [n]→ [m], where [n] = {0, 1, 2, . . . , n}, such that (1) f(0) = 0
and (2) j > i implies f(j)− f(i) ≥ j − i for all i, j ∈ [n], and

– a family of total graph homomorphisms φ = (φi : Gi → Hf(i) | i ∈ [n]) such
that

τGj,i;φi � φj ; τHf(j),f(i) for all n ≥ j > i ≥ 0, (1)

i.e., due to Definitions 2 and 3, we assume for any n ≥ j > i ≥ 0 the
existence of a total graph homomorphism φj|i that makes the diagram of
total graph homomorphisms displayed in Fig. 4 commutative.

A typing chain morphism (φ, f) : G → H is closed iff τGj,i;φi = φj ; τ
H
f(j),f(i) for

all n ≥ j > i ≥ 0, i.e., the right lower square in Fig. 4 is a pullback.

6 U. Wolter, F. Maćıas, A. Rutle

ghead
GenHead

h1
Headc1

crt

hammer config stool config

GenHead
Machine

Head
Part

Hammer
Part

crt

creates

hasEReference

hammer plant stool plant

Machine
EClass

Part
EClasscreates

EReference

generic plant

EClass
EReference

Ecore
Level
0

Level
1

Level
2

Level
3

Fig. 3: Multilevel modeling hierarchy with typing morphisms

Gi Hf(i) Gi Hf(i)

D(τGj,i) D(τHf(j),f(i))

Gj Hf(j) Gj Hf(j)

φi φi

φj|i

φj φj
v v

τGj,i

τGj,i

τHf(j),f(i)

τHf(j),f(i)�
=

= (PB)

Fig. 4: Establishing a morphism between two typing chains, level-wise

Typing morphisms are composed by the composition of commutative squares.

Definition 6. The composition (φ, f); (ψ, g) : G → K of two typing chain
morphisms (φ, f) : G → H, (ψ, g) : H → K between typing chains G = (G,n, τG),
H = (H,m, τH), K = (K, l, τK) with n ≤ m ≤ l is defined by (φ, f); (ψ, g) :=
(φ;ψ↓f , f ; g), where ψ↓f := (ψf(i) : Hf(i) → Kg(f(i)) | i ∈ [n]), and thus φ;ψ↓f :=

(φi;ψf(i) : Gi → Kg(f(i)) | i ∈ [n]).

Chain denotes the category of typing chains and typing chain morphisms.
A natural way to define multilevel typing of a graph H over a typing chain

G would be a family σ = (σi : H ◦−→Gi | n ≥ i ≥ 0) of partial graph homomor-
phisms satisfying certain properties. However, as shown in [26], those families
are not appropriate to state adequate type compatibility requirements for rules
and matches and to construct the results of rule applications. Therefore, we em-
ploy the sequence of the domains of definition of the σi’s as a typing chain and
describe multilevel typing by means of typing chain morphisms. The following
lemma describes how any sequence of subgraphs gives rise to a typing chain.

Multilevel Typed Graph Transformations 7

Lemma 1. Any sequence H = [Hn, Hn−1, . . . ,H1, H0] of subgraphs of a graph

H , with H0 = H, can be extended to a typing chain H = (H,n, τH) where for
all n ≥ j > i ≥ 0 the corresponding typing morphism τHj,i : Hj ◦−→Hi is given

by D(τHj,i) := Hj ∩Hi and the span of total inclusion graph homomorphisms

Hj D(τHj,i) = Hj ∩Hi Hi
v τHj,i

.

We call the typing chain H = (H,n, τH) an inclusion chain on H .

A multilevel typing of a graph H over a typing chain G = (G,n, τG) is given
by an inclusion chain H = (H,n, τH) on H (of the same length as G) and a
typing chain morphism (σH, id[n]) : H → G.

3 Multilevel Typed Graph Transformations

Underlying Graph Transformation. To meet the characteristics of our ap-

plication areas [19,20,21] we work with cospans L I Rλ ρ
of inclusion

graph homomorphisms, where I = L ∪R, as the underlying graph transfor-
mation rule of a multilevel typed rule. To apply such a rule [7,12,13], we have
to find a match µ : L → S of L in a graph S at the bottom-most level of an
MLM hierarchy. To describe the effect of a rule application, we adapt the Sq-
PO approach [7] to our cospan-rules: First, we construct a pushout and, second,
a final pullback complement (FPBC) to create the graphs D and T , resp. (see
Fig. 2). The details behind choosing cospan rules and Sq-PO, as opposed to span
rules and double-pushout (DPO), are out of the scope of this paper. In short,
however: (i) cospan rules are more suitable from an implementation point-of-
view since they allow for first adding new elements then deleting (some of the)
old elements [13], and (ii) having both old and new elements in I allows us to
introduce constraints on new elements depending on old constraints involving
elements to be deleted [23]. Moreover, we apply the rules using our variant of
Sq-PO [7,13] since (i) the pushout complement in DPO, even if it exists, may
not be unique, in contrast the FPBC, if it exists, is always unique (up to iso-
morphism), (ii) FPBC allows faithful deletion in unknown context, i.e., dangling
edges may be deleted by applying the rules, however, the co-match ν is always
total, i.e., if the match µ identifies elements to be removed with elements to be
preserved, the FPBC will not exist and the application will not be allowed.

Multilevel Typed Rule. We augment the cospan rule to a multilevel typed
rule by chosing a typing chain MM = (MM,n, τMM), the typing chain of
the rule, together with coherent multilevel typing’s over MM of L and R,
respectively. That is, we choose an inclusion chain L = (L, n, τL) on L, an
inclusion chain R = (R,n, τR) on R and typing chain morphisms (σL, id[n]) :
L →MM with σL = (σLi : Li → MMi | i ∈ [n]), (σR, id[n]) : R →MM with
σR = (σRi : Ri →MMi | i ∈ [n]) (see Fig. 5), such that Li∩R = L∩Ri = Li∩Ri
and, moreover, σLi and σRi coincide on the intersection Li ∩Ri for all i ∈ [n].

8 U. Wolter, F. Maćıas, A. Rutle

MM

L I R

= =
(σL, id[n]) (σR, id[n])(σI , id[n])

(λ, id[n]) (ρ, id[n])

Fig. 5: Rule morphisms and their type compatibility

The inclusion chain I = (I , n, τI) on the union (pushout) I = L∪R is simply
constructed by level-wise unions (pushouts): Ii := Li ∪ Ri for all i ∈ [n]; thus,
we have I0 = I . Since Graph is an adhesive category [12], the construction of I
by pushouts and the coherence condition ensure that we get for any i ∈ [n] two
pullbacks as shown in Fig. 6. The existence of these pullbacks implies, according
to the following Lemma, that we can reconstruct the inclusion chains L and R,
respectively, as reducts of the inclusion chain I.

Lemma 2. Let be given two inclusion chains G = (G,n, τG) and H = (H,m, τH)
with n ≤ m and a function f : [n] → [m] such that f(0) = 0 and j > i implies
f(j)−f(i) ≥ j−i for all i, j ∈ [n]. For any family φ = (φi : Gi → Hf(i) | i ∈ [n])
of graph homomorphisms the following two requirements are equivalent:

1. For all n ≥ j > 0 the left-hand square in Fig. 7 is a pullback.

2. The pair (φ, f) constitutes a closed typing chain morphism (φ, f) : G → H
where for all n ≥ j > i ≥ 0 the right-hand diagram in Fig. 7 consists of two
pullbacks.

Given a closed typing chain morphism (φ, f) : G → H between inclusion
chains, as described in Lemma 2, we call G the reduct of H along φ0 : G0 → H0

and f : [n] → [m] while (φ, f) : G → H is called a reduct morphism. Note
that the composition of two reduct morphisms is a reduct morphism as well.

L0 = L I0 = L0 ∪R0 R0 = R

Li Ii = Li ∪Ri Ri

MMi

PB PB

= =

λi

τLi,0

ρi

τRi,0τIi,0

λ0 := λ ρ0 := ρ

σL
i σR

i

σI
i

Fig. 6: Type compatibility of rule morphisms level-wise

Multilevel Typed Graph Transformations 9

G0 H0

Gj Hf(j)

φj

φ0

τGj,0 τHf(j),0
PB

Gi Hf(i]

Gj ∩Gi Hf(j) ∩Hf(i)

Gj Hf(j)

φi

φj

φj|i

τGj,i τHf(j),f(i)

v v

PB

PB

Fig. 7: Reduct of inclusion chains

Lemma 2 ensures that the families (λi : Li → Ii | i ∈ [n]) and (ρi : Ri →
Ii | i ∈ [n]) of inclusion graph homomorphisms establish reduct morphisms
(λ, id[n]) : L → I and (ρ, id[n]) : R → I, resp., as shown in Fig. 5.

Finally, we have to construct a typing chain morphism (σI , id[n]) : I →MM
making the diagram in Fig. 5 commute: For all i ∈ [n], we constructed the union
(pushout) Ii := Li ∪Ri. Moreover, σLi and σRi coincide on Li ∩Ri, by coherence
assumption, thus we get a unique σIi : Ii →MMi such that (see Fig. 6)

σLi = λi;σ
I
i and σRi = ρi;σ

I
i (2)

Since Graph is adhesive, Lemma 2 ensures that the family σI = (σIi : Ii →
MMi | i ∈ [n]) of graph homomorphisms establishes indeed a typing chain
morphism (σI , id[n]) : I →MM while the equations (2) ensure that the diagram
in Fig. 5 commutes indeed.

Example 2. Fig. 8 shows a multilevel typed rule CreatePart from a case study
[20]. This rule can be used to specify the behaviour of machines that create parts,
by matching an existing type of machine that generates a certain type of parts,
and in the instance at the bottom, generating such a part. META defines a typing

chain MM of depth 3. It declares the graph (M1 P1
cr

) that becomes MM2.
The declaration of the direct types Machine, creates, Part for the elements in

MM2 declares, implicitly, a graph MM1 := (Machine Part
creates

) that is

in turn, implicitly, typed over MM0 := ECore. All the morphisms in τMM are
total and uniquely determined thus we have, especially, τMM2,0 = τMM2,1 ; τMM1,0 .

FROM and TO declare as well the left-hand side L := (m1) and the right-

hand-side R := (m1 p1c
), resp., of the rule and the direct types of the elements

in L and R. These direct types are all located in MM2 thus L2 = L and R2 = R
where the direct types define nothing but the typing morphisms σL2 : L2 →
MM2 and σR2 : R2 →MM2, resp. The other typing morphisms are obtained by
“transitive closure”, i.e., σL1 := σL2 ; τMM2,1 , σL0 := σL2 ; τMM2,0 and σR1 := σR2 ; τMM2,1 ,

σR0 := σR2 ; τMM2,0 , thus we have L = L0 = L1 = L2 and R = R0 = R1 = R2.

For the “plain variant” of the rule CreatePart (in Fig. 15), MM consists

only of the graphs MM1 = (M1 P1
cr

), MM0 = ECore and the trivial τMM1,0 .

10 U. Wolter, F. Maćıas, A. Rutle

Multilevel Typed Match. In the multilevel typed setting all the graphs S ,
D, T are multilevel typed over a common typing chain T G = (TG,m, τT G),
with n ≤ m, that is determined by the path from S to the top of the current
MLM hierarchy (see Fig. 1).

M1
Machine

P1
Partcr

creates

m1
M1

m1
M1

p1
P1c

cr

META

FROM TO

Fig. 8: CreatePart : a sample rule

A match of the multilevel typed
rule into a graph S with a given multi-
level typing over T G , i.e., an inclusion
chain S = (S,m, τS) with S0 = S and
a typing chain morphism (σS , id[m]) :
S → T G , is given by a graph homo-
morphism µ : L → S and a typing
chain morphism (β, f) : MM → T G
such that the following two conditions
are satisfied:

– Reduct: L is the reduct of S along µ : L → S and f : [n] → [m], i.e.,
µ0 := µ : L0 = L −→ S0 = S extends uniquely (by pullbacks) to a reduction
morphism (µ, f) : L → S with µ = (µi : Li → Sf(i) | i ∈ [n]) (see Fig. 9).

– Type compatibility: (σL, id[n]); (β, f) = (µ, f); (σS , id[m]), i.e., we require

σLi ;βi = µi;σ
S
f(i) for all n ≥ i > 0. (3)

L0 = L S0 = S

Li Sf(i)

MMi TGf(i)
βi

µ0 := µ

µi

τLi,0 τSf(i),f(0)

σL
i σS

f(i)=

PB MM T G

L S

(σL, id[n])

(β, f)

(σS , id[m])

(µ, f)

=

Fig. 9: Conditions for Multilevel Typed Match

Application of a Multilevel Typed Rule – Objectives. The basic idea is
to construct for a given application of a graph transformation rule, as shown in
Fig. 2, a unique type compatible multilevel typing of the result graphs D and
T . The parameters of this construction are typing chainsMM, T G ; a coherent
multilevel typing of the graph transformation rule overMM; a multilevel typing
of the graph S over T G and a typing chain morphism (β, f) : MM → T G
extending the given match µ : L → S of graphs to a multilevel typed match
satisfying the two respective conditions for multilevel typed matches.

Example 3 (Multilevel Typed Match). To achieve precision in rule application the
elements Machine, creates, Part in the original rule CreatePart are constants
required to match syntactically with elements in the hierarchy. In such a way,

Multilevel Typed Graph Transformations 11

MM1 = (Machine Part
creates

) has to match with generic plant while

MM2 = (M1 P1
cr

) could match with hammer plant or stool plant. We will
observe later that for the plain version of the rule CreatePart in Fig. 15 we

could match MM1 = (M1 P1
cr

) either with TG2 = hammer plant or TG1 =
generic plant in the hierarchy in Fig. 3, where the second match would lead
to undesired results (see Example 4).

Pushout step. As shown later, the pushout of the span S L Iλµ

in Graph extends, in a canonical way, to a pushout of the span

S L I(µ, f) (λ, id[n])

of reduct morphisms in Chain such that the result typing chain D = (D,m, τD)
is an inclusion chain and the typing chain morphisms (ς, id[m]) : S ↪→ D and
(δ, f) : I → D become reduct morphisms (see the bottom in Fig. 10).

L I

MM

S D

T G

(µ, f)

(λ, id[n])

(ς, id[m])

(σD, id[m])

(σI , id[n])

(σS , id[m])
(σL, id[n])

(δ, f)

(β, f)

Fig. 10: Pushout step

We get also a type com-
patible typing chain morphism
from D into T G : The back
triangle in Fig. 10 commutes
due to the type compatibil-
ity of the rule (see Fig. 5).
The roof square commutes
since the match is type com-
patible (see Fig. 9). This
gives us (µ, f); (σS , id[m]) =
(λ, id[n]); (σI , id[n]); (β, f), thus
the universal property of the
pushout bottom square pro-

vides a unique chain morphism (σD, id[m]) : D → T G such that both type com-
patibility conditions (ς, id[m]); (σD, id[m]) = (σS , id[m]) and (δ, f); (σD, id[m]) =
(σI , id[n]); (β, f) are satisfied.

Pullback complement step. As shown later, the final pullback complement

D T Rνθ
in Graph extends, in a canonical way, to a sequence of

reduct morphisms D T R(ν, f)(θ, id[n])
in Chain such that the

bottom square in Fig. 11 commutes.

Pushout of reduct morphisms – Two steps. We discuss the intended
pushout of the span

S L I(µ, f) (λ, id[n])

of reduct morphisms in Chain. The reduct morphism (λ, id[n]) is surjective w.r.t.
levels, thus the pushout inclusion chain D should have the same length as S.
The rule provides, however, only information how to extend the subgraphs of

12 U. Wolter, F. Maćıas, A. Rutle

I R

MM

D T

T G

(ν, f)
(ρ, id[n])

(θ, id[m])

(σD, id[m])

(σI , id[n])
(σT , id[m])

(σR, id[n])

(δ, f)

(β, f)

Fig. 11: Pullback complement step

S0 = S at the levels f([n]) ⊆ [m]. For the subgraphs in S at levels in [m]\f([n])
the rule does not impose anything thus we let the subgraphs at those levels
untouched. In terms of typing chain morphisms, this means that we factorize
the reduct morphism (µ, f) into two reduct morphisms and that we will con-
struct the resulting inclusion chain D in two pushout steps (see Fig. 12) where
S↓f := (S↓f , n, τS↓f) with S↓f := [Sf(n), Sf(n−1), . . . , Sf(1), Sf(0)=0] and τS↓f :=

(τSf(j),f(i) : Sf(j) ◦−→Sf(i) | n ≥ j > i ≥ 0) Note, that S↓f := [Sf(n), . . . , Sf(0)] is

just a shorthand for the defining statement: (S↓f)i := Sf(i) for all n ≥ i ≥ 0.

The reduct morphism (id
S
↓f , f) : S↓f → S is a level-wise identity and just

embeds an inclusion chain of length n + 1 into an inclusion chain of length

m + 1, i.e., id
S
↓f = (idf(i) : Sf(i) → Sf(i) | i ∈ [n]). In the pushout step (1)

we will construct a pushout of inclusion chains of equal length and obtain a
chain D↓f := (D↓f , n, τD↓f) with D↓f = [Df(n), Df(n−1), . . . , Df(1), Df(0)=0] and

τD↓f = (τDf(j),f(i) : Df(j) ◦−→Df(i) | n ≥ j > i ≥ 0).

In the pushout step (2) we will fill the gaps in D↓f with the corresponding
untouched graphs from the original inclusion chain S.

L S↓f S

I D↓f D

(1) (2)

(µ, id[n])

(µ, f)

(id
S
↓f , f)

(λ, id[n]) (ς↓f , id[n]) (ς, id[m])

(δ, id[n])

(δ, f)

(id
D
↓f , f)

Fig. 12: Two pushout steps to construct the inclusion chain D

Multilevel Typed Graph Transformations 13

Pushouts of graphs for inclusion graph homomorphisms. Our construc-
tions and proofs rely on the standard construction of pushouts in Graph for a
span of an inclusion graph homomorphism φ : G ↪→ H and an arbitrary graph
homomorphism ψ : G → K where we assume that H and K are disjoint. The
pushout P is given by PN := KN ∪ HN \ GN , PA := KA ∪ HA \ GA and
scP (e) := scK(e), if e ∈ KA, and scP (e) := ψA(scH(e)), if e ∈ HA \ GA. tgP

is defined analogously. φ∗ : K ↪→ P is an inclusion graph homomorphism by
construction and ψ∗ : H → P is defined for X ∈ {A,N} by ψ∗X(v) := ψX(v),
if v ∈ GX and ψ∗X(v) := v , if v ∈ HX \GX .

The pair G \H := (HN \ GN , HA \ GA) of subsets of nodes and arrows of
H is, in general, not establishing a subgraph of H . We will nevertheless use the
notation P = K +H \G to indicate that P is constructed as described above.
ψ∗ can be described then as a sum of two parallel pairs of mappings

ψ∗ = ψ + idH\G := (ψN + idHN\GN , ψA + idHA\GA) (4)

Pushout for inclusion chains with equal depth. We consider now the span

S↓f L I
(µ, id[n]) (λ, id[n])

of reduct morphisms in Chain (see Fig. 12). For each level i ∈ [n] we construct
the corresponding pushout of graph homomorphisms. This ensures, especially,

λi; δi = µi; ςf(i) for all i ∈ [n]. (5)

L0 = L I0 = I

Li Ii

S0 = S D0 = D = S + I \ L

Sf(i) Df(i) = Sf(i) + Ii \ Li

PO

PO

λ0 = λ

λi

τLi,0

τIi,0

ς0 = ς

ςf(i)

τSf(i),0

τDf(i),0(= τSf(i),0 + τIi,0↓Ii\Li
)

µ0 δ0

µi δi

Fig. 13: Level-wise pushout construction

We look at an arbitrary level n ≥ i ≥ 1 together with the base level 0 (see
Fig. 13). We get a cube where the top and bottom square are pushouts by con-
struction. In addition, the left and back square are pullbacks since (µ, id[n]) and
(λ, id[n]), respectively, are reduct morphisms. We get a unique graph homomor-
phism τDf(i),0 : Df(i) → D that makes the cube commute. By the uniqueness

14 U. Wolter, F. Maćıas, A. Rutle

of mediating morphisms and the fact that the top pushout square has the Van
Kampen property (see [12,25]), we can conclude that the front and the the right
square are pullbacks as well. That the back square is a pullback means nothing
but Li = L ∩ Ii. This entails Ii \Li ⊆ I \L thus τDf(i),0 turns out to be the sum

of the two inclusions τSf(i),0 : Sf(i) ↪→ S and τIi,0↓Ii\Li
: Ii \ Li ↪→ I \ L and is

therefore an inclusion itself.
The sequence [Df(n), Df(n−1), . . . , Df(1), D0] of subgraphs of D = D0 defines

the intended inclusion chain D↓f . Since the front and right squares in Fig. 13 are
pullbacks, Lemma 2 ensures that the family ς↓f = (ςf(i) : Sf(i) ↪→ Df(i) | i ∈ [n])

of inclusion graph homomorphisms constitutes a reduct morphism (ς↓f , id[n]) :
S↓f → D↓f while the family δ = (δi : Ii → Df(i) | i ∈ [n]) of graph homomor-

phisms constitutes a reduct morphism (δ, id[n]) : I → D↓f . Finally, equation (5)
ensures that the resulting square (1) of reduct morphisms in Fig. 12 commutes.
The proof that we have constructed a pushout in Chain is given in [26].

Remark 2 (Only one pushout). ςf(i) and δi are jointly surjective for all n ≥ i ≥ 1
thus we can describe Df(i) as the union Df(i) = ς(Sf(i))∪δ(Ii). Hence in practice,
there is no need for an explicit construction of pushouts at all the levels n ≥ i ≥ 1;
these are all constructed implicitly by the pushout construction at level 0.

Pushout by chain extension. To obtain an inclusion chain D of length m+1,
we fill the gaps in D↓f by corresponding subgraphs of S: Da := Da if a ∈ f([n])
and Da := Sa if a ∈ [m] \ f([n]) and obtain the intended inclusion chain D =

(D,m, τD). The family id
D
↓f = (idD

f(i)
: Df(i) → Df(i) | i ∈ [n]) of identities

defines trivially a reduct morphism (id
D
↓f , f) : D↓f → D. One can show that the

family ς = (ςa : Sa → Da | a ∈ [m]) of graph homomorphisms defined by

ςa :=

{
ςa : Sa ↪→ Da if a ∈ f([n])

idSa
: Sa → Da = Sa if a ∈ [m] \ f([n])

establishes a reduct morphism (ς, id[m]) : S → D. The two reduct morphisms

(id
D
↓f , f) : D↓f → D and (ς, id[m]) : S → D establish square (2) in Fig. 12 that

commutes trivially. In[26] it is shown that square (2) is also a pushout in Chain.

Pullback complement. We construct the reduct of D = (D,m, τD) along θ :
T ↪→ D and id[m] by level-wise intersection (pullback) for all n ≥ i ≥ 1 (see the
pullback square below). Due to Lemma 2, we obtain, in such a way, an inclusion
chain T = (T ,m, τT) together with a reduct morphism (θ, id[m]) : T → D. The
multilevel typing of T is simply borrowed from D, that is, we define (see Fig. 11)

(σT , id[m]) := (θ, id[m]); (σD, id[m]) (6)

and this gives us trivially the intended type compatibility of (θ, id[m]). The typing
chain morphism (ν, f) : R → T with ν = (νi : Ri → Tf(i) | i ∈ [n]) such that

Multilevel Typed Graph Transformations 15

(ρ, id[n]); (δ, f) = (ν, f); (θ, id[m]) (7)

is simply given by pullback composition and decomposition in Graph: For each
n ≥ i ≥ 1 we consider the following incomplete cube on the right-hand side:

D0 = D T0 = T

Di Ti

θ0 = θ

θi

τDi,0 τTi,0PB

I0 = I R0 = R

Ii Ri

D0 = D T0 = T

Df(i) Tf(i)

ρ0 = ρ

ρi

τIi,0 τRi,0

θ0 = θ

θf(i)

τDf(i),0

τTf(i),0

δ0 = δ ν0 = ν

δi
νi

The back square, the left square as well as the front square are pullbacks since
(ρ, id[n]), (δ, f) and (θ, id[m]), respectively, are reduct morphisms. The top square
is constructed as a pullback complement. The diagonal square from τRi,0 to τDf(i),0
is a pullback due to the composition of the back pullback and the left pullback.
The decomposition of this diagonal pullback w.r.t. the front pullback gives us
νi : Ri → Ti making the cube, and especially the bottom square, commute and
making the right square to a pullback as well.

According to Lemma 2 the family ν = (νi : Ri → Tf(i) | i ∈ [n]) of graph

homomorphisms defines a reduct morphism (ν, f) : R → T where condition (7)
is simply satisfied by construction. Finally, (ν, f) is also type compatible since
conditions (6) and (7) ensure that the roof square in Fig. 11 commutes.

Example 4. To present a non-trivial rule application for our example, we discuss
the undesired application of the plain version of rule CreatePart (see Fig. 14),
mentioned in Example 3, for a state of the hammer configuration with only one
node ghead, as shown in hammer config 0 in Fig. 15. So, we have f : [1]→ [2],

with f(0) = 0, f(1) = 1, and the “undesired match” of MM1 = (M1 P1
cr

)

with TG1 = generic plant = (Machine Part
creates

) together with the triv-
ial match of the left-hand side L = (m1) of the rule with hammer config 0 =
(ghead). The resulting inclusion chains S, L, R and two reduct morphisms
between them are depicted in Fig. 14. Note, that the ellipse and cursive labels
indicate here the corresponding typing chain morphisms (σS , id[2]), (σL, id[1])
and (σR, id[1]), respectively.

For the two levels in f([1]) = {0, 1} ⊂ [2] we construct the pushouts D0 and
D1 while D2 is just taken as S2. The lowest level in D, where the new elements
p1 and c appear, is level 1 thus the constructed direct types of p1 and c are
Part and creates, resp., as shown in hammer config 1 in Fig. 15.

16 U. Wolter, F. Maćıas, A. Rutle

D = T

ghead
EClass

p1
EClassc

EReference

D0

ghead
Machine

p1
Partc

creates

D1

ghead
GenHead

D2

S

ghead
EClass

S0

ghead
Machine

S1

ghead
GenHead

S2

L

m1
EClass

L0

m1
M1

L1

R = I

m1
EClass

p1
EClassc

EReference

R0

m1
M1

p1
P1c

crt

R1

(ς, id[2]) (µ, f) (λ, id[1])

Fig. 14: Inclusion chains for the plain version of CreatePart
M1

EClass

P1
EClasscr

EReference

m1
M1

m1
M1

p1
P1c

cr

META

FROM TO

ghead
GenHead

hammer config 0

ghead
GenHead

p1
Partc

creates

hammer config 1

Fig. 15: Plain version of CreatePart and its application

4 Conclusions, related and future work

Conclusion. Multilevel modeling offers more flexibility on top of traditional
modeling techniques by supporting an unlimited number of abstraction levels.
Our approach to multilevel modeling enhances reusability of concepts and their
behaviour by allowing the definition of flexible transformation rules which are
applicable to different hierarchies with a variable number of levels. In this paper,
we have presented a formalization of these flexible and reusable transformation
rules based on graph transformations. We represent multilevel models by mul-
tilevel typed graphs whose manipulation and transformation are carried out by
multilevel typed graph transformation rules. These rules are cospans of three
graphs and two inclusion graph homomorphisms where the three graphs are
multilevel typed over a common typing chain. As these rules are represented
as cospans, their application is carried out by a pushout and a final pullback
complement construction for the underlying graphs in the category Graph. We
have identified type compatibility conditions, for rules and their matches, which
are crucial for rule applications. Moreover, we have shown that typed graph
transformations can be generalized to multilevel typed graph transformations
improving preciseness, flexibility and reusability of transformation rules.
Related work. The theory and practise of graph transformations are well-
studied, and the concept of model transformations applied to MLM is not novel.
Earlier works in the area have worked in the extension of pre-existing model
transformation languages to be able to manipulate multilevel models and model
hierarchies. In [3], the authors adapt ATL [15] to manipulate multilevel models
built with the Melanee tool [2]. In a similar manner, [11] proposes the adapta-
tion of ETL [16] and other languages from the Epsilon family [14] for the ap-

Multilevel Typed Graph Transformations 17

plication of model transformation rules into multilevel hierarchies created with
MetaDepth [8]. These works, however, tackle the problem from the practical
point of view. That is, how to reuse mature off-the-shelf tools for model trans-
formation in the context of MLM, via the manipulation of a “flattened” repre-
sentation of the hierarchy to emulate multilevel transformations. Our approach,
on the contrary, has been developed from scratch with a multilevel setting in
mind, and we believe it can be further extended to tackle all scenarios consid-
ered by other approaches. Therefore, to the best of our knowledge, there are
no formal treatments of multilevel typed graph transformations in the literature
except for our previous works [26,20,19] (see Sect. 4 in [26]). Hence, we consider
our approach the first approximation to formally address the challenges which
come with multilevel modeling and multilevel model transformations.

Common for our work and [9] is that the concepts of typing chains, multilevel
typed graphs and multilevel models originate in [22]. However, [9] presents partial
morphisms as spans of total morphisms and does not use the composition of those
spans explicitly. Wrt. typing chains, a multilevel model in [9] is a sequence of
graphs [Gn, Gn−1, . . . , G1, G0] together with the subfamily (τGi+1,i : Gi+1 ◦−→Gi |
n ≥ i ≥ 0) of typing morphisms.
Future work. Although it is trivial to see that the bottom square in the cube for
the pullback complement step becomes a pullback for all n ≥ i ≥ 1, we leave it
for future work to prove that we indeed have constructed a final pullback comple-
ment in Chain. A utilization of our theory to deal with coupled transformations
[21] in the setting of multilevel typed modelling is also desirable. Furthermore,
it would be interesting to investigate the category Chain for its own; e.g., study
its monomorphisms and epimorphisms, possible factorization systems, and the
conditions for existence of general pushouts and pullbacks.

References

1. João Paulo A. Almeida, Ulrich Frank, and Thomas Kühne. Multi-Level Modelling
(Dagstuhl Seminar 17492). Dagstuhl Reports, 7(12):18–49, 2018.

2. Colin Atkinson and Ralph Gerbig. Flexible deep modeling with melanee. In Ste-
fanie Betz and Ulrich Reimer, editors, Modellierung 2016, 2.-4. März 2016, Karl-
sruhe - Workshopband, volume 255 of Modellierung 2016, pages 117–122, Bonn,
2016. Gesellschaft für Informatik.

3. Colin Atkinson, Ralph Gerbig, and Christian Vjekoslav Tunjic. Enhancing classic
transformation languages to support multi-level modeling. Software & Systems
Modeling, 14(2):645–666, 2015.

4. Colin Atkinson and Thomas Kühne. The essence of multilevel metamodeling. In
M. Gogolla and C. Kobryn, editors, UML 2001, 4th Intl. Conference, Proc., volume
2185 of LNCS, pages 19–33. Springer, 2001.

5. Colin Atkinson and Thomas Kühne. Rearchitecting the UML infrastructure. ACM
Trans. Model. Comput. Simul., 12(4):290–321, 2002.

6. Colin Atkinson and Thomas Kühne. Reducing accidental complexity in domain
models. Software & Systems Modeling, 7(3):345–359, 2008.

7. Andrea Corradini, Tobias Heindel, Frank Hermann, and Barbara König. Sesqui-
pushout rewriting. In Andrea Corradini, Hartmut Ehrig, Ugo Montanari, Leila

18 U. Wolter, F. Maćıas, A. Rutle

Ribeiro, and Grzegorz Rozenberg, editors, Third International Conference on
Graph Transformations (ICGT), volume 4178 of LNCS, pages 30–45, 2006.

8. Juan. de Lara and Esther Guerra. Deep meta-modelling with Metadepth. In Ob-
jects, Models, Components, Patterns, volume 6141 of LNCS, pages 1–20. Springer,
2010.

9. Juan de Lara and Esther Guerra. Multi-level Model Product Lines. In Heike
Wehrheim and Jordi Cabot, editors, Fundamental Approaches to Software Engi-
neering, pages 161–181, Cham, 2020. Springer International Publishing.

10. Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. When and how to use
multilevel modelling. ACM Trans. Softw. Eng. Methodol., 24(2):12:1–12:46, 2014.

11. Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. Model-driven engineer-
ing with domain-specific meta-modelling languages. Software & Systems Modeling,
14(1):429–459, 2015.

12. Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamen-
tals of Algebraic Graph Transformation. Springer, 2006.

13. Hartmut Ehrig, Frank Hermann, and Ulrike Prange. Cospan DPO approach: An
alternative for DPO graph transformations. Bulletin EATCS, 98:139–149, 2009.

14. The Eclipse Foundation. Epsilon. 2012. http://www.eclipse.org/epsilon/.
15. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A model

transformation tool. Sci. Comput. Program., 72(1-2):31–39, 2008.
16. Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. The epsilon transforma-

tion language. In Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio, editors,
Theory and Practice of Model Transformations, First International Conference,
ICMT 2008, Proceedings, volume 5063 of LNCS, pages 46–60. Springer, 2008.

17. Fernando Maćıas. Multilevel modelling and domain-specific languages. PhD thesis,
Western Norway University of Applied Sciences and University of Oslo, 2019.

18. Fernando Maćıas, Adrian Rutle, and Volker Stolz. MultEcore: Combining the best
of fixed-level and multilevel metamodelling. In MULTI, volume 1722 of CEUR
Workshop Proceedings. CEUR-WS.org, 2016.

19. Fernando Maćıas, Adrian Rutle, Volker Stolz, Roberto Rodriguez-Echeverria, and
Uwe Wolter. An approach to flexible multilevel modelling. Enterprise Modelling
and Information Systems Architectures, 13:10:1–10:35, 2018.

20. Fernando Maćıas, Uwe Wolter, Adrian Rutle, Francisco Durán, and Roberto
Rodriguez-Echeverria. Multilevel coupled model transformations for precise and
reusable definition of model behaviour. Journal of Logical and Algebraic Methods
in Programming, 106:167 – 195, 2019.

21. Florian Mantz, Gabriele Taentzer, Yngve Lamo, and Uwe Wolter. Co-evolving
meta-models and their instance models: A formal approach based on graph trans-
formation. Sci. Comput. Program., 104:2–43, 2015.

22. A. Rossini, J. de Lara, E. Guerra, A. Rutle, and U. Wolter. A formalisation of
deep metamodelling. Formal Aspects of Computing, 26(6):1115–1152, 2014.

23. Adrian Rutle, Alessandro Rossini, Yngve Lamo, and Uwe Wolter. A formal ap-
proach to the specification and transformation of constraints in MDE. J. Log.
Algebr. Program., 81(4):422–457, 2012.

24. David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework (2nd Edition). Addison-Wesley Professional, 2008.

25. Uwe Wolter and Harald König. Fibred Amalgamation, Descent Data, and Van
Kampen Squares in Topoi. Applied Categorical Structures, 23(3):447–486, 2015.

26. Uwe Wolter, Fernando Maćıas, and Adrian Rutle. The Category of Typing Chains
as a Foundation of Multilevel Typed Model Transformations. Technical Report
2019-417, University of Bergen, Department of Informatics, November 2019.

http://www.eclipse.org/epsilon/

	Multilevel Typed Graph Transformations

