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Abstract
Generative adversarial networks (GANs) have seen some success as a way
to synthesize training data for supervised machine learning models. In
this work, we design two novel approaches for synthetic image generation
based on CycleGANs, aimed at generating realistic-looking, class-specific
dermoscopic skin lesion images. We evaluate the images’ usefulness as
additional training data for a convolutional neural network trained to perform
a difficult lesion classification task. We are able to generate visually striking
images, but their value for augmenting the classifier’s training data set is
low. This is in-line with other researcher’s investigations into similar GAN
models, indicating the need for further research into forcing GAN models
to produce samples further from the training data distribution, and to find
ways of guiding the image generation using feedback from the ultimate
classification objective.

1 Introduction

Figure 1: Examples of synthetic images of skin lesions generated by our models. From left to
right: Nevus, Melanoma, Nevus, Melanoma, Nevus. A color version of the image can be found
here: https://tinyurl.com/GAN-NIK2020-Fig1

Deep learning has shown great potential across a variety of medical domains,
especially within medical imaging, where convolutional neural networks (CNNs) now
form the state-of-the-art approach to many core problems in the field [1, 2]. However,
there are many difficult challenges that must be overcome to unlock the full value of these
methods [1]. One of which is the models insatiable appetite for training data.
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In practice it is often expensive and difficult to produce large amounts of high-quality
labelled data, which is exactly what’s needed to construct deep neural network models
of practical utility. The problem is particularly severe in medical settings because of
strict privacy regulations and the relative rarity of pathological findings. Furthermore, it
is not just about quantity: it is crucial that the training data is representative of what the
machine learning models will be faced with after deployment. If the training samples are
taken from a distribution that differ significantly from the one met in the real world, the
models will fail to generalize. Considering the large difference between the high-quality
medical images one typically work with when doing research and the messiness of the
real, clinical world, this can be a major obstacle to putting deep learning systems into
production. See Zech et al. [3] for a recent exploration of this issue. Here, models trained
on data pooled from a fixed set of sites were shown to perform significantly worse on new,
unseen sites, illustrating the need for domain adaption of machine learning models. Note
that this differs from the later results of [4], showing good generalizability for similar, but
higher-performing, multi-task models used for analogous tasks.

Recently, generative adversarial networks (GAN) [5] have been proposed as a way
to adapt models for medical imaging tasks to new domains (domain adaptation) and to
generate synthetic training data (data augmentation). This is motivated by the rapid and
impressive progress for GAN-based natural image synthesis. See e.g. BigGAN [6] for
natural looking synthetic images, and e.g. [7, 8] for GANs as a data augmentation tool.

There’s a growing interest and literature on the subject [9], with multiple success
stories across medical imaging domains, e.g. [10, 11, 12, 13, 14, 15]. How well
GANs will perform as a general data augmentation tool in their present forms is still
far from clear [16], but research progress is rapid. Most attempts at using GANs for data
augmentation assume that aiming for visual realism results in synthetic images that are
valuable as additional training data for the task at hand, e.g. for disease classification.

In this paper, we demonstrate that modern, state-of-the-art generative models can be
used to create realistic-looking synthetic medical images, and investigate their value for
data augmentation.

Our target application is skin lesion analysis using dermoscopic images, focusing
on skin cancer. As cancer is the second leading cause of death globally [17] and skin
cancer is the most common form [18], this is an important area that has seen a lot of
attention from the computer vision community lately [19, 20, 21]. We show that using
a combination of ACGANs [22] and CycleGANs [23] it is possible to generate images
that are close to indistinguishable from real images to an untrained eye. We perform two
experiments aimed at generating synthetic class-specific skin lesion images: (i) generating
images from random noise using a novel combination of ACGAN and CycleGAN, and (ii)
generating images of a specific, rare and important class (melanoma) from another more
common class (nevus) using an image transfer approach based on CycleGAN and the
so-called Path-Rank-Filter of [12]. As melanoma often develops from nevi [24, 25], our
hypothesis is that the nevus class provides useful inputs to a pipeline generating melanoma
images. We then assess the usefulness of adding the synthetic data to the training data set
in a difficult classification task.

Related work
Generative adversarial networks have many potential practical uses in medical imaging.
The paper [9] provides a review of results and an overview of the main current
applications, i.e. reconstruction, segmentation, classification and abnormality detection.



For the purposes of our work, the most relevant applications are those dealing with image
synthesis in the context of data augmentation. Data augmentation is typically based on
simple transformations of the images, e.g. scaling, rotations, etc [26], but approaches
based on GAN models have recently been proposed.

The work reported in [12] used image-to-image GANs for data augmentation. Using
cycle-consistent generative adversarial networks (CycleGANs) in an unpaired image-to-
image translation setting, they transformed normal colonic mucosa images (the innermost
layer of the colon) to synthetic colonic mucosa images containing an uncommon class of
colorectal polyp (an abnormal tissue growth that can lead to colon cancer). The images
that where generated was of such a good quality that two out of four gastrointestinal
pathologists could not tell the synthesized images apart from the real ones. Additionally,
they found that the generated images were useful for data augmentation, as they led to an
improved classification model. When the generated images where used in combination
with real images the classifier’s ROC-AUC score improved from 0.78 on only real images
to 0.89 when combined with the augmented images. When only synthetic images where
used the AUC dropped down to 0.68, leading to some interesting ideas regarding the
usefulness of using a few generated images as opposed to using a fully generated data set.

GANs can also be used to mitigate data imbalances by generating additional images
for the classes with low representation. In [27] different GAN models where used to
generate realistic high quality images of melanoma lesions. The models where used
in a skin lesion classification experiment. They trained a classifier on three different
classes, showing that generated images helped by improving accuracy for cases with high
class imbalance. To test the utility of the generated images they constructed two baseline
models, BFull using the entire training data set and BImb where they reduced the number
of melanoma images to artificially create class imbalance. BFull had a accuracy of 0.9809
on the training set and 0.7160 on validation, while BImb got 0.8503 and 0.6394. When
the generated melanoma images where used alongside the images used for BImb, they got
an accuracy of 0.9929 on the training set and 0.7400 on validation set. Meaning that not
only did it improve BImb, it even surpassed the results obtained in BFull .

Main contributions
1. Our novel combinations of ACGAN, CycleGAN and the Path-Rank-Filter results

in realistic-looking synthetic images of skin lesions. In particular, we are able to
generate class-specific images of a rare class from images of a more common class,
providing a possible way to tackle imbalanced data sets.

2. We investigate to what extent the visually appealing generated images are useful
for data augmentation by expanding the training data set of a CNN-based classifier
with synthetic images, measuring the effect on the classification performance. We
find that the synthetic images have a minor impact, indicating the need for other
objectives rather than visual realism when using GANs for data augmentation.

2 Methods and materials
Data and data preparation
We used the training data set from the International Skin Imaging Collaboration (ISIC)
Challenge 2019 [28, 29, 30], consisting of 25.331 images, each classified as either
Melanoma (MEL), Melanocytic nevus (NV), Basal cell carcinoma (BCC), Actinic



keratosis (AK), Benign keratosis (solar lentigo / seborrheic keratosis / lichen planus-
like keratosis) (BKL), Dermatofibroma (DF), Vascular lesion (VASC) or Squamous cell
carcinoma (SCC). See Fig. 7 a) for some example images.

For preprocessing the data we used the transforms module in the PyTorch library [31].
First the images were resized to 128x128 for ACGAN training and 256x256 for the
CycleGAN model, using bicubic interpolation for image resampling. This was chosen
to replicate the setup of the model papers. The images where then converted to tensors
before being normalized. Because of the tanh activation in the models, the normalization
was done by subtracting 0.5 from the mean and standard deviation for all three color
channels, resulting in (close to) zero mean and pixel values in the range of [−1,1].

A ResNet-based skin lesion classifier
To both test the effect of GAN-based data augmentation and to provide a necessary
component in the Path-Rank-Filter discussed below, a lesion-type image classification
model was needed. The fastai library [32] built on top of PyTorch provides an efficient
way to create state-of-the-art image classifiers, as the library incorporates a number of
modern tricks and techniques for effective model construction and training. In this
project we trained a 50 layer ResNet model. Residual networks were introduced in
2015 by Kaiming He et. al. [33], and are based on adding so-called skip connections
to CNNs. Their model achieved an easy win in the 2016 ImageNet Large Scale Visual
Recognition Challenge, and to this day, models based on their ideas form the state-of-
the-art architectures for image classification. The ResNet model we used in our work
was already pretrained on the ImageNet data set and made available in fastai. We used
the Adam optimizer [34] during training, and the learning rate finder of fastai to find a
good base learning rate. The training also employed the 1cycle policy of [35], which first
progressively increase the learning rate while at the same time progressively decreasing
the momentum, and then does the exact opposite.

Generative adversarial networks
Generative models aim to model data distributions and provide a way to sample from
them. The generative adversarial networks (GAN) introduced in [5] is a particularly
powerful class of such models that has received a lot of attention in recent years. In the
original GAN model of [5] there are two deep neural networks, the generator G and the
discriminator D. The generator is fed a vector z, often a random noise vector, producing
“fake" data G(z) by sampling from the distribution pdata of the training data, attempting
to fool the discriminator D, tasked with distinguishing real samples y from those produced
by G. During training, the discriminator provides guidance to the generator, each making
the other better. See Fig. 2 a) for an illustration. If the training process is successful, the
generator can produce synthetic samples with similar properties as the training data.

More precisely, the objective of basic GAN models can be expressed as follows, using
the notation in [23]:

LGAN(G,D) = Ey∼pdata(y)
[

log(D(y))
]

+Ez∼pdata(z)
[

log(1−D(G(z))
]
)),

where D(·) denotes the probability that the discriminator assigns to its input. The first
term on the right represents the real images, while the second accounts for the generated



distribution. G and D together tries to solve the minimax problem

min
G

max
D

LGAN(G,D),

aiming for a Nash equilibrium for this two-player non-cooperative game. In other words,
the minimax solution is reached when the discriminator cannot differentiate between the
generated images and the real images, i.e. D̄ = 1/2.

Multiple modifications and extensions to this basic setup have been proposed, aimed
at providing more stable training and making the generators produce higher quality and
more diverse samples [36].

Conditional GANs and the auxiliary classifier GAN
The basic GAN setup can be adapted to the generation of images from specific image
classes by providing both the generator and discriminator class labels. I.e. conditioning
on class information c when providing random noise inputs:

LcGAN(G,D) = Ey∼pdata(y|c)
[

log(D(y))
]

+Ez∼pdata(z)
[

log(1−D(G(z|c))
]
)),

This leads to what is called conditional GANs [37] (CGAN), of which there are many
variants. In our experiments we used the so-called auxiliary classifier GAN (ACGAN) of
[22].

ACGANs [22] modifies the CGAN approach by not providing the class information
to the discriminator, leaving it to reconstruct that information by itself. This is done using
an “auxiliary classifier network" as part of the discriminator, trained on the real images
in the training set. This auxiliary network is tasked with reconstructing the class labels in
the images it is presented. The generator in ACGANs is as for conditional GANs, aiming
to synthesize images of a specific class given a class label and a noise vector.

See Fig. 2 for an illustration of the relation between GANs, CGANs and ACGANs.

Figure 2: An illustration of the architectural differences between a) the original GAN, (b) the
CGAN, and c) the ACGAN.



Figure 3: Fig. (a) illustrates the basic adversarial setup, while (b) illustrates Cycle-Consistency
Loss. This figure is inspired by Fig. 3 in [23]. Color version available here: https://tinyurl.
com/GAN-NIK2020-Fig3

Image-to-image translation with Cycle-Consistent GANs
CycleGAN [23] is an image-to-image GAN model that generates images not from random
noise but from a given image. There are two pairs of generators and discriminators,
(G,DX) and (F,DY ), enabling image translation back and forth between two image
domains X and Y . The generators G : X → Y and F : Y → X are trained simultaneously
using two paired discriminators and an adversarial loss functions LGAN, with the goal of
having them produce images from the distributions of Y and X , respectively. To preserve
information from the source images in the generated images, the transformations are
trained to become approximate inverses, F(G(x))≈ x, G(F(y))≈ y, for all x ∈ X , y ∈ Y ,
i.e. x 7→G(x) 7→ F(G(x))≈ x. This property is called cycle consistency, illustrated in Fig.
3. To obtain approximate cycle consistency the so-called cyclic consistency loss Lcyc is
used during training. A CycleGAN has the combined objective function

L(G,F,DX ,DY ) = LGAN(G,DY ,X ,Y )
+LGAN(F,DX ,X ,Y )
+λLcyc(G,F),

where λ controls the importance given to each type of objective [23].

Experiment 1: Generating images from random noise
From random noise X we use ACGAN to construct a generator GACGAN that can sample
from the class-specific image distribution Yc, resulting in synthetic images for each class.

To further improve image quality, we use CycleGANs trained on each class. This
gives us a generator G : Yc→ Z which we compose with GACGAN to generate class-specific
images (Fig. 4).

Figure 4: We train an ACGAN model to produce class-specific images from random noise.
To further enhance image quality we train CycleGAN models on each class separately and
use the ACGAN images of each class as inputs. Color version: https://tinyurl.com/
GAN-NIK2020-Fig4
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For this experiment we used data from the ISIC 2019 Classification Task. We
separated the data randomly into a training, validation and a test set (Table 1), and the
training and validation sets were used during the construction of the GANs. The test set
was used to evaluate the performance of the classifier after it had been trained on the
generated images.

Label Train Validation Test
NV 10300 1287 1288
MEL 3618 452 452
BCC 2658 332 333
BKL 2099 262 263
AK 694 87 86
SCC 502 63 63
VASC 202 26 25
DF 191 24 24
Sum 20264 2533 2534

Table 1: Table showing the number of images per class for each data set in Experiment 1.

To evaluate this approach as a data augmentation technique, we trained a baseline
model on the real images, then ACGAN and CycleGAN models on five sets of synthetic
image-enhanced training sets, with 2000, 4000, 8000, 16000 and 24000 added images,
respectively. Each of these 11 models were evaluated on the same test set, consisting of
real images not used during construction of the model.

Experiment 2: Generating melanoma from melanocytic nevus
Correctly identifying images corresponding to melanoma is particularly important, as
melanoma is behind the vast majority of deaths from skin cancer [38]. As melanoma
is relatively rare compared to other kinds of lesions, it is challenging to create classifiers
of high recall for this specific class. The sparsity of such samples are also reflected in the
ISIC data set, as seen in Fig. 5.

MEL NV BCC AK BKL DF VASC SCC
0

5,000

10,000

15,000

Figure 5: The class distribution in the ISIC
2019 training data set. Note the high number of
images from the Melanocytic nevus class (NV)
compared to Melanoma (MEL).

As melanoma images share many char-
acteristics with the much more preva-
lent melanocytic nevus, the present ex-
periment aims to synthesize samples from
the Melanoma class using CycleGAN with
Melanocytic nevus as inputs.

To increase the chances that the gen-
erator is trained on melanoma images
that clearly show melanomas, we use
the idea of a Path-Rank-Filter from [12].
The confidence for the predictions of the
Melanoma class as assigned by the lesion
classifier are used to select the training set
for a CycleGAN model. The fraction of
confident images to include is controlled
by a parameter α ∈ (0,1]. I.e. α = 0.5
means that 50% of the Melanoma images
are used while the 50% having lower softmax outputs are discarded. See Fig. 6 and [12]
for further details. For this experiment, we only use the melanoma and nevus images for



training the CycleGAN (Table 1), while all classes are used to train the lesion classifier
used to evaluate the synthetic images data augmentation applicability.

Figure 6: We train a ResNet classifier to construct the set Y of melanoma images predicted with
high confidence (Path-Rank-Filter). A CycleGAN model is then trained to obtain a generator
G : X → Y , where X is a set of Melanocytic nevus images. A color version available here:
https://tinyurl.com/GAN-NIK2020-Fig6

We train four CycleGAN models with four different parameters α = 1/8,1/4,1/2,1.
To evaluate the effect of including synthetic data when training the lesion classifier, we
generated eight different sets of synthetic data from the four different α, resulting in 32
lesion classifiers.

Performance evaluation
Our first objective is to create visually realistic dermoscopic images from each class in
the data set. The second objective is to evaluate the synthetic images’ usefulness for data
augmentation for the lesion classification model. We assess this using confusion matrices,
accuracy, sensitivity and specificity, putting particular emphasis on the model’s ability to
distinguish the Melanocytic nevus and Melanoma classes.

3 Results
Experiment 1 generating images from random noise produced the results in Fig. 7. A
selection of synthetic melanoma images generated in Experiment 2 is shown in Fig. 8.

Adding synthetic images to the training set for the lesion classifier produced the results
shown in Table 2 and Table 3.

4 Discussion
In this work we aimed to (i) use GANs to generate synthetic, class-specific realistic-
looking dermoscopic skin lesion images, and (ii) investigate their value for data
augmentation in a classification setting. Our experiments showed that it is possible to
generate images of quite high quality, that for the untrained eye could be taken to be
real, directly from random noise and using an image translation approach from one image
class to another. In our experiments we were however not able to measure any significant
benefit in using these images to increase classifier performance. This differs from some
of the findings of other researchers pursuing related approaches, but is in-line with what
a number of researchers have discovered during their investigations of GANs for data
augmentation, e.g. [39, 40].

https://tinyurl.com/GAN-NIK2020-Fig6


Figure 7: A set of original images from the ISIC 2019 data set are shown in a). Figure b) and c)
shows images generated by the ACGAN model and after improvement by the CycleGAN model,
respectively. The image classes, from left to right, are NV, MEL, BCC, BKL, AK, SCC, VASC, DF.
A color version is available here: https://tinyurl.com/GAN-NIK2020-Fig7.

Figure 8: The first column shows three nevus images from the original data set. The four columns
to its right shows generated melanoma images with α = 1/8,1/4,1/2,1, respectively. Higher α

value tend to increase the resemblance with the original image. A color version is available here:
https://tinyurl.com/GAN-NIK2020-Fig8.

https://tinyurl.com/GAN-NIK2020-Fig7
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Model MEL NV BCC AK BKL DF VASC SCC Accuracy
ISIC-0 0.823/0.721 0.894/0.939 0.854/0.877 0.761/0.628 0.786/0.783 0.708/0.708 0.913/0.84 0.683/0.683 0.856

acgan-0.09 0.763/0.757 0.909/0.911 0.824/0.925 0.736/0.616 0.752/0.692 0.727/0.667 0.957/0.88 0.738/0.714 0.845
cyclegan-0.09 0.782/0.739 0.903/0.925 0.853/0.889 0.679/0.64 0.78/0.753 0.692/0.75 1.0/0.8 0.712/0.667 0.85

cyclegan-0.165 0.803/0.748 0.894/0.932 0.864/0.898 0.651/0.651 0.826/0.741 0.857/0.75 0.846/0.88 0.714/0.635 0.856
acgan-0.165 0.811/0.701 0.883/0.94 0.845/0.883 0.675/0.605 0.795/0.738 0.783/0.75 0.95/0.76 0.695/0.651 0.847

cyclegan-0.283 0.797/0.748 0.892/0.93 0.861/0.895 0.671/0.64 0.785/0.722 0.762/0.667 0.84/0.84 0.804/0.651 0.851
acgan-0.283 0.812/0.743 0.9/0.938 0.846/0.889 0.671/0.616 0.802/0.753 0.842/0.667 0.88/0.88 0.707/0.651 0.856
acgan-0.441 0.839/0.701 0.885/0.946 0.839/0.889 0.685/0.709 0.793/0.73 0.783/0.75 0.95/0.76 0.698/0.587 0.852

cyclegan-0.441 0.813/0.759 0.907/0.942 0.842/0.913 0.738/0.686 0.807/0.73 0.857/0.75 0.952/0.8 0.741/0.635 0.864
acgan-0.542 0.806/0.706 0.896/0.932 0.844/0.91 0.638/0.698 0.785/0.734 0.8/0.667 1.0/0.8 0.644/0.603 0.848

cyclegan-0.542 0.785/0.752 0.895/0.936 0.845/0.886 0.641/0.581 0.824/0.711 0.762/0.667 0.958/0.92 0.696/0.619 0.85

Table 2: Precision/recall for the classifiers. The accuracy is the F1 score across all classes. The
number of generated images added to the training set is indicated under Model. ISIC-0 was built
from the original training data.

α = 1
8 α = 1

4 α = 1
2 α = 1

1
MEL MEL MEL MEL

Num. gen. acc. prec recall acc. prec recall acc. prec recall acc. prec recall
500 (0.035) 0.852 0.797 0.712 0.853 0.807 0.712 0.857 0.820 0.724 0.856 0.819 0.710
1000 (0.067) 0.851 0.824 0.717 0.848 0.797 0.719 0.861 0.843 0.701 0.851 0.825 0.708
2000 (0.1256) 0.857 0.815 0.730 0.847 0.817 0.719 0.856 0.836 0.732 0.856 0.828 0.712
3000 (0.177) 0.858 0.837 0.715 0.857 0.837 0.728 0.857 0.833 0.726 0.859 0.825 0.746
4000 (0.223) 0.854 0.801 0.746 0.856 0.802 0.728 0.864 0.855 0.715 0.854 0.807 0.730
5000 (0.264) 0.858 0.848 0.717 0.856 0.804 0.754 0.855 0.818 0.737 0.858 0.811 0.741
6000 (0.301) 0.865 0.851 0.759 0.852 0.816 0.724 0.856 0.825 0.730 0.858 0.819 0.741
7000 (0.335) 0.854 0.781 0.748 0.864 0.810 0.763 0.849 0.783 0.743 0.856 0.819 0.752
ISIC-0 (0.0) 0.856 0.823 0.721 0.856 0.823 0.721 0.856 0.823 0.721 0.856 0.823 0.721

Table 3: Classification results from experiment 2 across the various number of generated images
added to the training set.

In future work it would be natural to investigate whether the visual assessment of
image quality is a good metric to use in a data augmentation setting, or whether a direct
optimization of classification performance when guiding the image generation would be
more advantageous, as in the approach taken by [41].

In general, more research into GANs is needed, both to create models able to produce
diverse samples by moving further from the training data distribution, and to make the
objective of fooling the discriminator in-line with the ultimate objective of the task the
GAN is brought to bear upon.
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