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Abstract

In this paper we define a notion of partial APNness and find various
characterizations and constructions of classes of functions satisfying
this condition. We connect this notion to the known conjecture that
APN functions modified at a point cannot remain APN. In the second
part of the paper, we find conditions for some transformations not to
be partially APN, and in the process, we find classes of functions that
are never APN for infinitely many extensions of the prime field F2,
extending some earlier results of Leander and Rodier.
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1 Introduction

The objects of this study are Boolean functions and some of their differential
properties. We will introduce here only some needed notions, and the reader
can consult [2, 6, 7, 10] for more on Boolean functions.

Let n be a positive integer and F2n denote the finite field with 2n ele-
ments, and F

∗
2n = F2n\{0}. Further, let F

m
2 denote them-dimensional vector
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Partially APN Boolean functions

space over F2. We call a function from F2n to F2 a Boolean function on n
variables. For f : F2n → F2 we define the Walsh-Hadamard transform to be

the integer-valued function Wf (u) =
∑

x∈F2n

(−1)f(x)+Trn1 (ux), u ∈ F2n , where

Trn1 : F2n → F2 is the absolute trace function, given by Trn1 (x) =
∑n−1

i=0 x2
i

.

This transform satisfies Parseval’s relation
∑

a∈F2n

Wf (a)
2 = 22n.

Given a Boolean function f , the derivative of f with respect to a ∈ F2n

is the Boolean function Daf(x) = f(x+ a) + f(x), for all x ∈ F2n .
For positive integers n and m, any map F : F

n
2 → F

m
2 is called a

vectorial Boolean function, or (n,m)-function. When m = n, F can be
uniquely represented as a univariate polynomial over F2n (using the nat-
ural identification of the finite field with the vector space) of the form
F (x) =

∑2n−1
i=0 aix

i, ai ∈ F2n . The algebraic degree of F is then the largest
Hamming weight of the exponents i with ai 6= 0. For an (n,m)-function F ,
we define the Walsh transform WF (a, b) to be the Walsh-Hadamard trans-
form of its component function Trm1 (bF (x)) at a, that is,

WF (a, b) =
∑

x∈F2n

(−1)Tr
m
1 (bF (x))+Trn1 (ax), where a ∈ F2n , b ∈ F2m .

For an (n, n)-function F , and a, b ∈ F2n , we let ∆F (a, b) = #{x ∈ F2n :
F (x + a) + F (x) = b}, where #S denotes the cardinality of a set S. We
call the quantity ∆F = max{∆F (a, b) : a, b ∈ F2n , a 6= 0} the differential
uniformity of F . If ∆F ≤ δ, then we say that F is differentially δ-uniform.
If δ = 2, then F is called an almost perfect nonlinear (APN) function. There
are many useful characterizations and properties of APN functions, some of
which are stated below (see [3, 7, 8, 15]).

Lemma 1.1. Let F be an (n, n)-function. The following hold:

(i) we have
∑

a,b∈F2n

W4
F (a, b) ≥ 23n+1(3 ·2n−1−1), with equality if and only

if F is APN;

(ii) if F (0) = 0 and F is APN, then
∑

a,b∈F2n

W3
F (a, b) = 22n+1(3 · 2n−1− 1);

(iii) (Rodier Condition) F is APN if and only if all the points x, y, z sat-
isfying F (x) + F (y) + F (z) + F (x + y + z) = 0, belong to the curve
(x+ y)(x+ z)(y + z) = 0.

We next introduce the notion of a partial APN function.
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Definition 1.2. Let x0 ∈ F2n . We call an (n, n)-function F a (partial) x0-
APN function, or simply x0-APN function, if all the points u, v satisfying
F (x0)+F (u)+F (v)+F (x0 +u+ v) = 0, belong to the curve (x0 +u)(x0+
v)(u + v) = 0.

Alternatively, we can say that a function F is x0-APN if for any a 6= 0
the equation F (x+ a) + F (x) = F (x0 + a) + F (x0) has only two solutions.
Certainly, an APN function is an x0-APN for any point x0.

A function F is called weakly APN if for any a 6= 0 the function F (x+a)+
F (x) takes at least 2n−2 + 1 different values (see [5]). Note that the notion
of partial APN function differs from the notion of weakly APN function.
For example, it can be checked that F (x) = x2

n−2 over F2n with n even is
weakly APN but not x0-APN, for x0 ∈ F2n . On the other hand, F (x) = x7

over F211 is 0-APN but not weakly APN.
Our proposal for the partial APN concept comes from a study of the

conjecture in [3], which claims that for n ≥ 3 an APN function modified at
a point cannot remain APN. While the start of this work has some initial
study overlap with [3], our ultimate goal is to investigate the partial APN
concept.

Our paper is organized as follows. In Section 2 we introduce the one
point modification of an (n, n)-function and investigate its Walsh coeffi-
cients’ third and fourth moments as compared to the original function. We
further give a (local-global principle) characterization for the APNess of the
modified version of an APN function, which was the original starting point of
this investigation. A conjecture is proposed here, slightly strengthening the
original conjecture of [3]. Section 3 contains a standalone characterization of
the partial APN concept in terms of the third moments. In Section 4 we con-
tinue with some constructions and characterization of the pAPN property
for monomial functions (in particular, we show that for power functions, the
pAPN at a nonzero point will imply APNess, and, in general, the pAPNess
at a nonzero point will imply APNess for quadratic functions). In Section 5,
in the spirit of Rodier et al. we concentrate on the various linear transforma-
tions of some functions to show (non)pAPNess and in the process we show
a much stronger version of a result by Leander and Rodier [12]. Section 6
contains the conclusion and further comments.

2 Boolean functions modified at a point

Let F : F2n → F2n and consider an arbitrary point x0 ∈ F2n and some
nonzero ǫ ∈ F

∗
2n . Denote y0 = F (x0) and y1 = y0 + ǫ. Then the function F ′

3
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over F2n defined by

F ′(x) =

{

F (x) if x 6= x0

y1 if x = x0
(1)

is called a (single point) (x0, ǫ)-modification of F .
It is rather easy to show that there are single point modifications of an

APN function F that are not APN.

Proposition 2.1. If an (n, n)-function F is APN for n > 1, then for any
x0 ∈ F2n there exists ǫ ∈ F

∗
2n such that the (x0, ǫ)-modification of F is not

APN.

Proof. Suppose F is APN and x0 ∈ F2n is given. Take y, z ∈ F2n such that
x0, y and z are distinct and let F ′ be the (x0, ǫ = F (y) + F (z) + F (x0 +
y+ z)−F (x0))-modification of F . Then we have F ′(x0) 6= F (x0) since F is
APN and F ′(x0) + F ′(y) + F ′(z) + F ′(x0 + y + z) = 0 so that F ′ cannot be
APN.

Next, we find some necessary and sufficient conditions for an (x0, ǫ)-
modification of a given function to be partially APN.

2.1 Preliminary lemmas

Lemma 2.2. Let F be an (n, n)-function and F ′ be an (x0, ǫ)-modification
of F for x0, y1 = y0 + ǫ ∈ F2n and y1 6= y0 = F (x0). Then,

WF ′(a, b) = WF (a, b)− (−1)Tr
n

1 (ax0+by0)(1− (−1)Tr
n

1 (b ǫ)).

Proof. We have

WF ′(a, b) =
∑

x∈F2n

(−1)Tr
n

1 (bF
′(x)+ax) =

∑

x 6=x0

(−1)Tr
n

1 (bF (x)+ax) + (−1)Tr
n

1 (by1+ax0)

=
∑

x∈F2n

(−1)Tr
n
1 (bF (x)+ax) + (−1)Tr

n
1 (ax0+by1) − (−1)Tr

n
1 (ax0+by0),

which justifies our claim.

For any given elements a, b ∈ F2n , we let EF (a, b) = (−1)Tr
n
1 (ax0+by0)DF (b),

where DF (b) = 1 − (−1)Tr
n
1 (b ǫ). Note that EF (a, b) depends on x0, y0, y1.

The following lemma can be easily shown by induction.

4



Partially APN Boolean functions

Lemma 2.3. Let F be an (n, n)-function and let x0, y1 ∈ F2n with y1 6=
y0 = F (x0) and ǫ = y0 + y1. Then for any integer m ≥ 1 and any elements
a, b ∈ F2n, we have

(i) E2m
F (a, b) = 22m−1DF (b), and

(ii) E2m+1
F (a, b) = 22mEF (a, b).

2.2 The third and fourth moments and an APN characterization

of a one point modification of an APN function

In the following we make use of the Kronecker function δ0(z) =

{

1 if z = 0

0 if z 6= 0.

Theorem 2.4. Let F be an (n, n)-function and F ′ be its (x0, ǫ)-modification
for some x0, y1 = y0 + ǫ ∈ F2n with y1 6= y0 = F (x0). Then the following
hold:

(i)
1

4

∑

a,b∈F2n

(

W4
F (a, b) −W4

F ′(a, b)
)

=
∑

a,b∈F2n

W3
F (a, b)EF (a, b)− (3 · 23n −

22n+1);

(ii)
∑

a,b∈F2n

(

W3
F (a, b)−W3

F ′(a, b)
)

= 3
∑

a,b∈F2n

W2
F (a, b)EF (a, b)− 3 · 22n+1

· (δ0(F (0)) − δ0(y1 − y0 + F (0))) + 22n+2δ0(x0) (δ0(y0)− δ0(y1)) .

Proof. We show (i) first. Taking fourth powers in the identity WF ′(a, b) =
WF (a, b)− EF (a, b) of Lemma 2.2 and applying Lemma 2.3, we get

∑

a,b∈F2n

(

W4
F (a, b)−W4

F ′(a, b)
)

=
∑

a,b∈F2n

(

4W3
F (a, b)EF (a, b)− 6W2

F (a, b)E
2
F (a, b) + 4WF (a, b)E

3
F (a, b) − E4

F (a, b)
)

=
∑

a,b∈F2n

(

4W3
F (a, b)EF (a, b)− 12W2

F (a, b)DF (b) + 16WF (a, b)EF (a, b)− 8DF (b)
)

.

Thus,

1

4

∑

a,b∈F2n

(

W4
F (a, b)−W4

F ′(a, b)
)

=
∑

a,b∈F2n

(

W3
F (a, b)EF (a, b)− 3W2

F (a, b)DF (b) + 4WF (a, b)EF (a, b) − 2DF (b)
)

.
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We now observe that
∑

a,b∈F2n

DF (b) = 2n
∑

b∈F2n

DF (b) = 2n
∑

b∈F2n

(1−(−1)Tr
n
1 (b ǫ)) =

22n, since
∑

b∈F2n
(−1)Tr

n
1 (b ǫ) = 0 when ǫ 6= 0. Further, by Parseval’s identity

we get
∑

a,b∈F2n

W2
F (a, b)DF (b) =

∑

b∈F2n

DF (b)
∑

a∈F2n

W2
F (a, b) = 22n

∑

b∈F2n

DF (b) =

23n. Finally, we use the inverse Walsh-Hadamard transform to obtain
∑

a,b∈F2n

WF (a, b)EF (a, b) =
∑

a,b,u∈F2n

(−1)Tr
n
1 (b(F (u)+y0)+a(u+x0))DF (b)

=
∑

b,u∈F2n



DF (b)(−1)Tr
n
1 (b(F (u)+y0))

∑

a∈F2n

(−1)Tr
n
1 (a(u+x0))





= 2n
∑

b∈F2n

(

DF (b)(−1)Tr
n
1 (b(F (x0)+y0))

)

= 2n
∑

b∈F2n

DF (b) = 22n.

Combining the above results, we obtain

1

4

∑

a,b∈F2n

(

W4
F (a, b)−W4

F ′(a, b)
)

=
∑

a,b∈F2n

W3
F (a, b)EF (a, b)− (3 · 23n − 22n+1),

and our first claim is shown.
By a similar argument as in part (i), we obtain
∑

a,b∈F2n

(

W3
F (a, b)−W3

F ′(a, b)
)

=
∑

a,b∈F2n

(

3W2
F (a, b)EF (a, b) − 3WF (a, b)E

2
F (a, b) + E3

F (a, b)
)

(2)

= 3
∑

a,b∈F2n

W2
F (a, b)EF (a, b)− 6

∑

a,b∈F2n

WF (a, b)DF (b) + 4
∑

a,b∈F2n

EF (a, b).

Furthermore, with ǫ = y1 − y0, we compute
∑

a,b∈F2n

WF (a, b)DF (b)

=
∑

b∈F2n

(

1− (−1)Tr
n
1 (bǫ)

)

∑

u∈F2n

(−1)Tr
n
1 (bF (u))

∑

a∈F2n

(−1)Tr
n
1 (au)

= 2n
∑

b∈F2n

(

1− (−1)Tr
n
1 (bǫ)

)

(−1)Tr
n
1 (bF (0))

= 2n





∑

b∈F2n

(−1)Tr
n
1 (bF (0)) −

∑

b∈F2n

(−1)Tr
n
1 (b(y1−y0+F (0))
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= 22n (δ0(F (0)) − δ0(y1 − y0 + F (0))) ,

and

∑

a,b∈F2n

EF (a, b) =
∑

a,b∈F2n

(−1)Tr
n
1 (ax0+by0)

(

1− (−1)Tr
n
1 (b(y1−y0))

)

= 22nδ0(x0) (δ0(y0)− δ0(y1)) .

Using these identities in (2), we obtain

∑

a,b∈F2n

(

W3
F (a, b)−W3

F ′(a, b)
)

= 3
∑

a,b∈F2n

W2
F (a, b)EF (a, b)− 3 · 22n+1 (δ0(F (0)) − δ0(y1 − y0 + F (0)))

+ 22n+2δ0(x0) (δ0(y0)− δ0(y1)) ,

and the theorem is shown.

Corollary 2.5. Let F be an (n, n)-function satisfying F (0) = 0, and x0 ∈
F2n , ǫ ∈ F

∗
2n . Let further F ′ be its (x0, ǫ)-modification. Then we have, with

y1 = F (x0) + ǫ :

(a) if x0 = y0 = 0 then y1 6= 0 and

∑

a,b∈F2n

(

W3
F (a, b)−W3

F ′(a, b)
)

= 3
∑

a,b∈F2n

W2
F (a, b)EF (a, b)− 22n+1;

(b) if x0 6= 0 then

∑

a,b∈F2n

(

W3
F (a, b) −W3

F ′(a, b)
)

= 3
∑

a,b∈F2n

W2
F (a, b)EF (a, b)− 3 · 22n+1.

Proof. Follows easily from Theorem 2.4 (ii).

Corollary 2.6. Let F be an APN (n, n)-function satisfying F (0) = 0. Let
x0 = 0 = y0, and let F ′ be the (0, ǫ)-modification of F . Then, F ′ is APN if
and only if

∑

a,b∈F2n

W3
F (a, b)(−1)Tr

n
1 (bǫ) = 0.

7
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Proof. By Lemma 1.1,
∑

a,b∈F2n

W4
F (a, b) = 23n+1(3·2n−1−1), and

∑

a,b∈F2n

W3
F (a, b) =

22n+1(3 · 2n−1 − 1). Also, by the same lemma, F ′ is APN if and only if
∑

a,b∈F2n

W4
F ′(a, b) = 23n+1(3 · 2n−1 − 1). This, together with Theorem 2.4 (i),

implies that F ′ is APN if and only if

∑

a,b∈F2n

W3
F (a, b)EF (a, b) = 3 · 23n − 22n+1.

On the other hand, since x0 = 0 = y0, EF (a, b) = DF (a, b) = 1−(−1)Tr
n

1 (bǫ),
and

∑

a,b∈F2n

W3
F (a, b)EF (a, b) =

∑

a,b∈F2n

W3
F (a, b) −

∑

a,b∈F2n

W3
F (a, b)(−1)Tr

n
1 (bǫ)

= 22n+1(3 · 2n−1 − 1)−
∑

a,b∈F2n

W3
F (a, b)(−1)Tr

n
1 (bǫ).

This, together with the previous corollary, gives the sufficient and necessary
condition

∑

a,b∈F2n
W3

F (a, b)(−1)Tr
n
1 (bǫ) = 0.

2.3 A local-global principle of APNess

In this subsection we will show that a single point modification of an APN
function is APN if and only if is partially APN.

Theorem 2.7. Let F be an (n, n)-function and F ′ be its (x0, ǫ)-modification,
y1 = y0 + ǫ. For any x, y ∈ F2n , let

Tx,y = {(u, v) ∈ F
2
2n : (u+ x)(v + x)(u+ v) 6= 0,

F (u) + F (v) + F (u+ v + x) + y = 0},

Sx,y = {u ∈ F2n : F (u) + F (u+ x) + y = 0}.

Then:

(i)
∑

a,b∈F2n

W3
F (a, b)EF (a, b) = 22n (3 · 2n − 2 + #Tx0,y0 −#Tx0,y1) ;

(ii)
∑

a,b∈F2n

W2
F (a, b)EF (a, b) = 22n (#Sx0,y0 −#Sx0,y1) .

8
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Proof. To show (i), we write

∑

a,b∈F2n

W3
F (a, b)EF (a, b) =

∑

a,b∈F2n

(

1− (−1)Tr
n
1 (b ǫ)

)

·
∑

u,v,w∈F2n

(−1)Tr
n
1 (b(F (u)+F (v)+F (w)+y0))(−1)Tr

n
1 (a(u+v+w+x0))

=
∑

b,u,v,w∈F2n

(

1− (−1)Tr
n
1 (b ǫ)

)

(−1)Tr
n
1 (b(F (u)+F (v)+F (w)+y0))

·
∑

a∈F2n

(−1)Tr
n
1 (a(u+v+w+x0))

= 2n
∑

b,u,v∈F2n

(

1− (−1)Tr
n
1 (b ǫ)

)

(−1)Tr
n
1 (b(F (u)+F (v)+F (u+v+x0)+y0))

= 2n
∑

u,v∈F2n





∑

b∈F2n

(−1)Tr
n
1 (b(F (u)+F (v)+F (u+v+x0)+y0)) (3)

−
∑

b∈F2n

(−1)Tr
n
1 (b(F (u)+F (v)+F (u+v+x0)+y1))



 . (4)

Now, the inner sums in (3) and (4) will be zero unless one of the expo-
nents is zero, that is, unless F (u) + F (v) + F (u + v + x0) + F (x0) = 0 or
F (u) + F (v) + F (u+ v + x0) + y1 = 0.

Since there are 3 ·2n−2 pairs (u, v) satisfying (u+x0)(v+x0)(u+v) = 0,
the above equation becomes

∑

a,b∈F2n

W3
F (a, b)EF (a, b) = 22n (3 · 2n − 2 + #Tx0,y0 −#Tx0,y1) ,

and the first claim is proven. To show (ii) we write

∑

a,b∈F2n

W2
F (a, b)EF (a, b) =

∑

a,b∈F2n





∑

u,v∈F2n

(−1)Tr
n
1 (a(u+v+x0)+b(F (u)+F (v)+y0))

−
∑

u,v∈F2n

(−1)Tr
n
1 (a(u+v+x0)+b(F (u)+F (v)+y1))





=
∑

b∈F2n

∑

u,v∈F2n

(

(−1)Tr
n
1 (b(F (u)+F (v)+y0)) − (−1)Tr

n
1 (b(F (u)+F (v)+y1))

)

9
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·
∑

a∈F2n

(−1)Tr
n
1 (a(u+v+x0))

= 2n
∑

u∈F2n

∑

b∈F2n

(

(−1)Tr
n
1 (b(F (u)+F (u+x0)+y0)) − (−1)Tr

n
1 (b(F (u)+F (u+x0)+y1))

)

= 22n (|Sx0,y0 | − |Sx0,y1 |) ,

and the theorem is proven.

Note that in the above theorem we in fact showed that

∑

a,b∈F2n

W3
F (a, b)(−1)Tr

n
1 (ax0+by0) = 22n (3 · 2n − 2 + #Tx0,y0) ,

∑

a,b∈F2n

W3
F (a, b)(−1)Tr

n
1 (ax0+by1) = 22n (#Tx0,y1) .

That is, for an (n, n)-function F and its one point modification F ′ at x0,
Theorem 2.7 gives

∑

a,b∈F2n

W3
F (a, b)EF (a, b)

=
∑

a,b∈F2n

W3
F (a, b)(−1)Tr

n
1 (ax0+by0) −

∑

a,b∈F2n

W3
F (a, b)(−1)Tr

n
1 (ax0+by1)

= 22n (3 · 2n − 2 + #Tx0,y0)− 22n (#Tx0,y1) . (5)

By Theorem 2.4, we get

1

4

∑

a,b∈F2n

(

W4
F (a, b) −W4

F ′(a, b)
)

=
∑

a,b∈F2n

W3
F (a, b)EF (a, b)− 22n(3 · 2n − 2)

= 22n(#Tx0,y0 −#Tx0,y1),

where the last equality comes from the equation (5).
Therefore, we obtain the following equivalence:

∑

a,b∈F2n

(

W4
F (a, b)−W4

F ′(a, b)
)

= 0 ⇐⇒ #Tx0,y0 = #Tx0,y1 . (6)

The definition of x0-APN implies that F ′ is x0-APN if and only if (u+
x0)(v+x0)(u+v) 6= 0 =⇒ F ′(u)+F ′(v)+y1+F ′(u+v+x0) 6= 0. However,
when (u+x0)(v+x0)(u+v) 6= 0, one has F ′(u)+F ′(v)+y1+F ′(u+v+x0) =
F (u) + F (v) + y1 + F (u + v + x0). Therefore, F

′ is x0-APN if and only if

10



Partially APN Boolean functions

(u + x0)(v + x0)(u + v) 6= 0 =⇒ F (u) + F (v) + y1 + F (u+ v + x0) 6= 0. In
other words, F ′ is x0-APN if and only if Tx0,y1 is the empty set.

Now, the set Tx0,y0 with y0 = F (x0) is empty if and only if F is x0-APN.
By (6) and Lemma 1.1 we have:

Theorem 2.8. If F is APN and its (x0, ǫ)-modification F ′ with ǫ 6= 0 is
x0-APN, then F ′ is APN.

Note that this can also be directly derived from the definition of one point
modification. Indeed, suppose to the contrary, that F ′ is x0-APN but it is
not APN. Then for some a 6= 0 and some b the equation F ′(x+a)+F ′(x) = b
has more than 2 solutions. Let x1, x2, x3 be three distinct solutions to this
equation. We consider two cases. If {x1, x2, x3} ∩ {x0, x0 + a} = ∅ then
F ′(xi + a)+F ′(xi) = F (xi + a)+F (xi) for i ∈ {1, 2, 3} and this contradicts
F being APN. If {x1, x2, x3} ∩ {x0, x0 + a} 6= ∅, then it contradicts the fact
that F ′ is x0-APN.

In light of Theorem 2.8, it follows that the conjecture from [3] can be
strengthened as follows:

Conjecture 2.9. An (x0, ǫ)-modification of an APN function with ǫ 6= 0 is
not x0-APN.

One way of showing that this is true would be to show {F (x0)+F (u) +
F (v)+F (x0+u+v) : u, v ∈ F2n} = F2n . Indeed, suppose that F

′ is an (x0, ǫ)-
modification of F with y1 = y0 + ǫ 6= y0 = F (x0) and that F ′ is not APN.
This is true if and only if the equation F ′(x0)+F ′(u)+F ′(v)+F ′(x0+u+v) =
0 is satisfied by a pair of elements u, v ∈ F2n with (u+x0)(v+x0)(u+v) 6= 0.
Writing ǫ = y0+y1, this is equivalent to F (x0)+F (u)+F (v)+F (x0+u+v) =
ǫ or, in other words, ǫ ∈ {F (x0)+F (u)+F (v)+F (x0+u+ v) : u, v ∈ F2n}.
Thus, the difference ǫ between F (x0) and F ′(x0) must not be expressible as
DaF (x0) +DaF (y) in order for F ′ to be x0-APN.

Corollary 2.10. Let F be an (n, n)-function and let F ′ be its (x0, ǫ)-modification
for x0, y0 ∈ F2n with ǫ 6= 0. Then,
∑

a,b∈F2n

(

W3
F (a, b)−W3

F ′(a, b)
)

= 3 · 22n (#Sx0,y0 −#Sx0,y1)

− 3 · 22n+1 (δ0(F (0)) − δ0(y1 − y0 + F (0))) + 22n+2δ0(x0) (δ0(y0)− δ0(y1)) .

Furthermore,

(a) If F (0) = 0 6= x0, then,
∑

a,b∈F2n

(

W3
F (a, b)−W3

F ′(a, b)
)

= 3 · 22n (#Sx0,y0 −#Sx0,y1)− 3 · 22n+1;

11
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(b) If F (0) = 0 = x0, then
∑

a,b∈F2n

(

W3
F (a, b) −W3

F ′(a, b)
)

= 3 · 22n (#Sx0,y0 −#Sx0,y1)− 22n+1

= 22n+1(3 · 2n−1 − 1);

(c) If F is APN and F (0) = 0 6= x0, then
∑

a,b∈F2n
W3

F ′(a, b) = 22n+1(3 · 2n−1 − 1) + 3 · 22n#Sx0,y1 ;

(d) If F is APN and F (0) = 0 = x0, then
∑

a,b∈F2n

W3
F ′(a, b) = 0.

Proof. The main claim, item (a) and the first equation in (b) follow easily
from Theorem 2.4 (ii) and Theorem 2.7 (ii). For the second equation of (b),
we suppose F (0) = 0 = x0. Then, Sx0,y0 = {u ∈ F2n |F (u) + F (u) + F (0) =
0} = F2n , so #Sx0,y0 = 2n. Also, Sx0,y1 = {u ∈ F2n |F (u) + F (u) + F ′(0) =
0} = ∅, so #Sx0,y1 = 0.

To show (c), we assume that F is APN with F (0) = 0 6= x0. Then,
Sx0,y0 = {u ∈ F2n |F (u)+F (u+x0)+F (x0) = 0} = {0, x0}. By Lemma 1.1,
we get

∑

a,b∈F2n
W3

F (a, b) = 22n+1(3 · 2n−1 − 1). From this and the main
claim of this corollary, we have

22n+1(3 · 2n−1 − 1)−
∑

a,b∈F2n

W3
F ′(a, b) = 3 · 22n (2−#Sx0,y1)− 3 · 22n+1,

and so,

∑

a,b∈F2n

W3
F ′(a, b) = 22n+1(3 · 2n−1 − 1) + 3 · 22n#Sx0,y1 .

To show (d), we now suppose that F is APN and F (0) = 0 = x0. Then,
by Lemma 1.1 and point (b) of this corollary,

∑

a,b∈F2n

(

W3
F (a, b)−W3

F ′(a, b)
)

= 22n+1(3 · 2n−1 − 1)−
∑

a,b∈F2n

W3
F ′(a, b)

= 22n+1(3 · 2n−1 − 1),

which implies that
∑

a,b∈F2n

W3
F ′(a, b) = 0, and the claim is shown.

Note that Corollary 2.6 can also be deduced from Theorem 2.7. Further-
more, we can deduce the following corollary:

12
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Corollary 2.11. Let F be an (n, n)-function. Let x0 = 0 = y0, and F ′ be the
(0, ǫ)-modification of F for some ǫ ∈ F

∗
2n . Then,

∑

a,b∈F2n
W2

F (a, b)(−1)Tr
n
1 (bǫ) =

0.

Proof. Using the notation of Theorem 2.7, S0,0 = F
n
2 , while S0,ǫ = ∅. Then,

by Theorem 2.7,
∑

a,b∈F2n
W2

F (a, b)EF (a, b) = 23n. On the other hand,

∑

a,b∈F2n

W2
F (a, b)EF (b) =

∑

a,b∈F2n

W2
F (a, b) −

∑

a,b∈F2n

W2
F (a, b)(−1)Tr

n
1 (bǫ)

= 23n −
∑

a,b∈F2n

W2
F (a, b)(−1)Tr

n
1 (bǫ),

which shows the corollary.

3 A characterization of partial APN functions

We now provide a necessary and sufficient condition for a function to be x0-
APN. As a consequence of our theorem we can obtain the APN conditions
of Lemma 1.1.

Theorem 3.1. Let F be an (n, n)-function and x0 ∈ F2n . Then F is x0-
APN if and only if

∑

a,b∈F2n

W3
F (a, b)(−1)Tr

n
1 (ax0+bF (x0)) = 22n+1(3 · 2n−1 − 1).

Proof. We have
∑

a,b∈F2n

W3
F (a, b)(−1)Tr

n
1 (ax0+bF (x0))

=
∑

a,b∈F2n

(−1)Tr
n
1 (ax0+bF (x0))

∑

u,v,w∈F2n

(−1)Tr
n
1 (b(F (u)+F (v)+F (w))+a(u+v+w))

=
∑

b,u,v,w∈F2n

(−1)Tr
n
1 (b(F (u)+F (v)+F (w)+F (x0)))

∑

a∈F2n

(−1)Tr
n
1 (a(u+v+w+x0))

= 2n
∑

b,u,v∈F2n

(−1)Tr
n
1 (b(F (u)+F (v)+F (x0)+F (u+v+x0)))

= 2n
∑

u,v∈F2n

∑

b∈F2n

(−1)Tr
n
1 (b(F (u)+F (v)+F (x0)+F (u+v+x0)))

= 22n#{(u, v) ∈ F
2
2n : F (u) + F (v) + F (x0) + F (u+ v + x0) = 0}

= 22n (3 · 2n − 2 + #Tx0,y0) .

Since Tx0,y0 is empty if and only if F is x0-APN, the claim follows.

13
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4 Monomial partial APN functions

For a monomial F (x) = xm, the polynomial G(x, y, z) = F (x) + F (y) +
F (z) + F (x + y + z) is a symmetric homogeneous polynomial of degree m,
and so, G(kx, ky, kz) = kmG(x, y, z) for all k ∈ F2n . Using this property,
we show that a monomial F is APN if and only if F is partial APN on a
subspace of dimension 1 (that is, it is partial APN at 0 and some x0 6= 0).

Proposition 4.1. Let F (x) = xm over F2n. Then:

(i) If x0 6= 0, then F is x0-APN if and only if F is x1-APN for all
x1 ∈ F

∗
2n;

(ii) F is APN if and only if F is 0-APN and x1-APN for some x1 ∈ F
∗
2n.

Proof. Certainly, (ii) is a consequence of (i). To show the first claim, it will
be enough to show the necessity part only. Now, we assume that F is x0-
APN, that is G(x0, y, z) 6= 0 for all y, z with (y+x0)(z+x0)(y+z) 6= 0, and
we want to show that F is x1-APN for any other x1 ∈ F

∗
2n . By absurd, we

assume that there is some x1 6= 0, for which F is not x1-APN. Then, there
exist x1 6= y1 6= z1 6= x1 such that G(x1, y1, z1) = 0. Using the homogeneous
property of G, namely 0 = kmG(x1, y1, z1) = G(kx1, ky1, kz1) for any k 6= 0,
and taking k = x0/x1 6= 0, then the condition can be written as G(x0, y, z) =
0 for y = ky1, z = kz1 and y, z with (y + x0)(z + x0)(y + z) 6= 0, and that is
a contradiction.

A partial APN concept on (n, n)-functions is also considered in [9]: F is
said to satisfy the property (pa), a ∈ F

∗
2n , if the equation F (x)+F (x+a) = b

has either 0 or 2 solutions for every b ∈ F2n . They showed that a mapping
F is APN if and only if F satisfies (pa) for all nonzero a belonging to a
hyperplane. It is not clear if such a result is true in general for our notion of
partial APNness. From the result above, we see that a similar result is true
for monomials, i.e. F is APN if and only if it is partial APN for a subspace
of dimension 1. Moreover, when F is a monomial, the property (p1) implies
the property (pa) for any a 6= 0. Therefore our result on 0-APN has some
analogy with the property (p1), but 0-APN is a more general condition than
the property (p1), as the following examples will show.

We let
(

a
b

)

2
denote the residue modulo 2 of the binomial coefficient

(

a
b

)

.
We next investigate and explicitly construct many classes of Boolean func-
tions that are 0-APN (but not necessarily APN).

14
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Theorem 4.2. Let F2n be the extension field of F2 corresponding to the
primitive polynomial f of degree n and let g be one of the (primitive) roots
of f . Then:

(i) if F (x) = xm over F2n , then F is 0-APN if and only if for 1 ≤ i ≤
2n − 1, the minimal polynomial Pgi(x) =

∏

j∈Ci
(x − gj) of gi, where

Ci = {(i · 2j) (mod 2n − 1) : j = 0, 1, . . .} is the unique cyclotomic
coset of i modulo 2n − 1, does not divide

∑mi−1
k=1

(

mi
k

)

2
xmi−k−1;

(ii) if F (x) = x2
d−1 over F2n , then F is 0-APN if and only if gcd(d −

1, n) = 1;

(iii) if F (x) = x2
d+1 (Gold exponent) over F2n , then F is 0-APN if and

only if gcd(d, n) = 1.

Proof. If F (x) = xm, then F is 0-APN if and only if the Rodier equation

F (y) + F (z) + F (y + z) = ym + zm + (y + z)m = 0,

has no solution y, z ∈ F
∗
2n with y 6= z. Given two distinct elements y, z ∈ F

∗
2n ,

let z = yα, where α 6= 0, 1. Then, the equation above becomes

ym (1 + αm + (1 + α)m) = 0,

implying 1+αm+(1+α)m = 0. Then, if there exists α 6= 0, 1 satisfying the
previous equation, then there exists 1 ≤ i ≤ 2n − 1 such that

1 + xim + (1 + xi)m

x
=

m−1
∑

k=1

(

m

k

)

2

xi(m−k)−1

vanishes at g, that is, 1 + gim +
(

1 + gi
)m

= 0. Then it will vanish at

g2
ℓ

, for all ℓ, since 1 + gim 2ℓ +
(

1 + gi 2
ℓ

)m

=
(

1 + gi m +
(

1 + gi
))2ℓ

=

0. Thus, the minimal polynomial Pgi(x) =
∏

j∈Ci
(x − gj) of gi divides

mi−1
∑

k=1

(

mi

k

)

2

xmi−k−1. The converse is certainly true, and the first claim is

shown.
To test whether F = x2

d−1 is 0-APN, one needs to check the (in)solvability
of the Rodier equation

0 = F (y) + F (z) + F (y + z)

= y2
d−1 + z2

d−1 + (y + z)2
d−1

=
zy2

d−1 + yz2
d−1

y + z
=

(α2d−1 + α)z2
d

z(α + 1)
,

15
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where y = zα, α 6= 0, 1. Therefore, when (and only when) gcd(2d − 2, 2n −

1) = 1, there is no α 6= 0, 1 satisfying the above equation, that is, x2
d−1

is 0-APN. The condition gcd(d − 1, n) = 1 follows form the known identity
gcd(2a− 1, 2b − 1) = 2gcd(a,b) − 1, since 1 = gcd(2d − 2, 2n − 1) = gcd(2d−1 −
1, 2n − 1) = 2gcd(d−1,n) − 1.

In the same way, we consider F (x) = x2
d+1 over F2n . To test whether F

is 0-APN, one needs to check the solvability of the Rodier equation

0 = F (y) + F (z) + F (y + z)

= y2
d+1 + z2

d+1 + (y + z)2
d+1

= zy2
d

+ yz2
d

= (α2d + α)z2
d+1,

where y = zα, α 6= 0, 1. Therefore, when (and only when) 1 = gcd(2d −
1, 2n − 1) = 2gcd(d,n) − 1, that is, for gcd(d, n) = 1, there is no α 6= 0, 1

satisfying the above equation, so x2
d+1 is 0-APN.

n Exponents i ∆F

1-5 - -

6 27 12

7
7,21,31,55 6
19,47 4

8

15,45 14
21,111 4
51 50
63 6

9
7,21,35,61,63,83,91,111,117,119,175 6
41,187 8
45,125 4

10

15,27,45,75,111,117,147,189,207,255 6
21,69,87,237,375 4
51 8
93 92
105,351 10
231,363,495 42
447 12

Table 1: Power functions F (x) = xi over F2n for 1 ≤ n ≤ 10 that are 0-APN
but not APN
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Example 4.3. Table 1 lists the exponents i for which xi is 0-APN but
not APN over F2n for 1 ≤ n ≤ 10. Only one representative from every
cyclotomic coset is given. There are no functions of this type for n ≤ 5.

While there are power functions that are partial 0-APN but not APN,
this is not true for partial 1-APN power functions. The proof is, in fact,
rather immediate (we thank Dr. Namhun Koo for providing the included
short proof here).

Theorem 4.4. Any partial 1-APN power function F (z) = zk is APN.

Proof. By proposition 4.1, it will be sufficient to show that f is 0-APN.
Suppose, on the contrary, that F (z) = zk is not 0-APN. Then there exist
x, y ∈ F2n with xy(x+ y) 6= 0 satisfying F (0)+F (x)+F (y)+F (x+ y) = 0.
Since x 6= 0,

0 = F (x) + F (y) + F (x+ y) = xk + yk + (x+ y)k

= 1 + (y/x)k + (1 + y/x)k = F (1) + F (y/x) + F (1 + y/x)

= F (1) + F (a) + F (b) + F (1 + a+ b),

where a = y
x
, b = 1 + y

x
, 1 + a + b = 0. Since F is 1-APN, one must have

(a+ 1)(b+ 1)(a + b) = 0. However,

0 = (a+ 1)(b + 1)(a+ b) =
(y

x
+ 1

)

·
y

x
· 1.

Thus we get x = y or y = 0, contradicting the fact xy(x+ y) 6= 0.

This is not true in general, for non-monomials: we found over six million
polynomials over F23 that are 1-APN but not APN, for example, x7+x6. Out
of these, 64 have coefficients in F2: 48 of them have the differential spectrum
{031, 222, 43}, while the remaining 16 have the spectrum {042, 27, 67}. We
also found 6944 polynomials of this type over F24 with coefficients in F2, for
example, x12 + x7.

Nonetheless, it seems likely that if some (n, n)-function F is x-APN for
all x ∈ F2n \ {x0}, then it is x0-APN (and hence APN) as well. This can be
easily observed to be true for quadratic functions. Recall that F is x0-APN
if for any a 6= 0 the equation F (x0)+F (x)+F (x+a)+F (x0+a) = DaF (x)+
DaF (x0) = 0 has precisely two solutions, namely, x = x0 and x = x0 + a.
Since DaF is an affine function, this is equivalent to DaF (x+x0) = DaF (0)
having only x = x0 and x = a+ x0 as solutions.

Proposition 4.5. Let F be a quadratic (n, n)-function and x0 ∈ F2n. Then
F is x0-APN if and only if F is APN.
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5 Classes of never 0-APN (hence never APN) for infinitely
many extensions of F2

Building up on some of their earlier work on the function x3+Trn1 (x
9), which

is APN on F2n , for all dimensions n, Budaghyan et al. [4] generalized this
class to L1(x

3)+L2(x
9), where L1, L2 are linear functions on F2n , and found

conditions under which this function is APN.
In a series of papers, Rodier and his collaborators [1, 11, 12, 14, 15]

concentrated on finding classes of functions that are never APN for infinitely
many extensions of the prime field F2. Here we present classes of functions
that are never 0-APN (and hence never APN) for infinitely many extensions
of F2, and in the process even extend some of the existing results.

Theorem 5.1. Let L be a linear polynomial on F2n, g be a primitive element
of F2n and d ≥ 1 be a positive integer. Furthermore, let F and G be defined

over F2n by F (x) = L
(

x2
d+1

)

+ Trn1 (x
3) and G(x) = L

(

x2
d+1+2d+1

)

+

Trn1 (x
3). If gcd(d, n) > 1, then neither F nor G is 0-APN.

In general, L (xm) + Trn1 (x
3) is not 0-APN if there exists some 1 ≤ i ≤

2n−1, such that Pgi(x) =
∏

j∈Ci
(x−gj) divides

m−1
∑

k=1

(

m

k

)

2

xi(m−k)−1, where

Ci = {(i · 2j) (mod 2n − 1) | j = 0, 1, . . .} is the unique cyclotomic coset of i
modulo 2n − 1.

Proof. The function F is 0-APN if and only if there are no solutions x, y ∈
F
∗
2n , x 6= y of the equation

0 = F (x) + F (y) + F (x+ y)

= L
(

x2
d+1 + y2

d+1 + (x+ y)2
d+1

)

+Trn1
(

x3 + y3 + (x+ y)3
)

= L
(

x2
d

y + x y2
d
)

+Trn1 (x
2y + xy2).

Writing y = αx, this is equivalent to the equation

L
(

x2
d+1(α+ α2d)

)

= Trn1
(

x3(α+ α2)
)

having no solution for α 6= 0, 1. Now, if m = gcd(d, n) > 1, we take

α ∈ F2m \ F2 ⊆ F2d ∩ F2n . Then α2d + α = 0, and for x = 1 we have
Trn1 (x

3(α + α2)) = 0, since it is known that Trn1 (u) = 0 if and only if
u = b2 + b (in characteristic 2), which renders nontrivial solutions to the
above equation. The first claim is shown.
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We now concentrate on G(x). Once again we want to show that the
Rodier equation

G(x) +G(y) +G(x+ y) = 0

has no solutions x, y ∈ F
∗
2n with x 6= y. Similarly to the case for F above

and writing y = αx, we can easily see that this is equivalent to the equation

L
(

x2
d+1+2d+1(α+ α2d)(1 + α2d + α2d+1

)
)

= Trn1
(

x3(α+ α2)
)

(7)

having no solutions with α 6= 0, 1. So, denoting m = gcd(d, n) > 1, we can

take α ∈ F2m \ F2 ⊆ F2d ∩ F2n . Then we have α + α2d = 0 so that this α
along with x = 1 constitute a solution to (7) implying that G is not 0-APN.

The last claim can be argued as in the proof of Theorem 4.2(i).

Remark 5.2. The condition on d in the above theorem is important. Indeed,
we have computationally checked that if n = 5, then x9+Trn1 (x

3) is 0-APN,
and potentially there may be some other cases.

These classes of functions can be further generalized so as to encompass
even more functions that are not 0-APN.

Theorem 5.3. Let L1 and L2 be linear functions over F2n . If gcd(d, r, n) >

1, then L1(x
2d+1) + L2(x

2r+1) is not 0-APN.
Furthermore, if L1 is the identity and L2 is the absolute trace, then

x2
d+1+Trn1 (x

2r+1) is not 0-APN if gcd(d, n) > 1 and gcd(2r+1, 2n−1) = 1,
or gcd(d, r, n) > 1.

Finally, if gcd(d, s, n) > 1, then L1

(

x2
d+1+2d+1

)

+ L2

(

x2
s+1+2s+1

)

is

not 0-APN.

Proof. We consider first the function L1(x
2d+1) + L2(x

2r+1). As before, we
investigate the solvability of the equation

L1

(

x2
d+1(α+ α2d)

)

= L2

(

x2
r+1(α+ α2r)

)

, (8)

where y = αx for x 6= 0 and α 6= 0, 1. Denoting m = gcd(d, r, n) > 1, we

can take α ∈ F2m \F2 ⊆ F2d ∩ F2r . Then α2d +α = α2r +α = 0, so that (8)
has nontrivial solutions and thus the considered function is not 0-APN.

In the particular case when L1 is the identity and L2 is the trace function,
it is sufficient to show that the function x2

d+1 +Trn1 (x
2r+1) is not 0-APN if

gcd(d, n) > 1 and gcd(2r + 1, 2n − 1) = 1 since the other case follows from
the previously proven statement. The relevant Rodier equation is

x2
d+1(α+ α2d) = Trn1

(

x2
r+1(α+ α2r)

)

.
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Denoting m = gcd(d, n) > 1, we can find α ∈ F2m\F2 for which the left hand
side vanishes. Now we argue that regardless of the value of α, there exists
an element x such that x2

r+1(α+α2r ) = β2 + β for some β. If α+α2r = 0,
we are done since x can take any value. If α+ α2r 6= 0, taking β = α+α2r ,
if β + 1 6= 0, or any other nonzero element β of the finite field such that
β+1 6= 0, the above claim is implied by the existence of solutions x such that

x2
r+1 = β2+β

α+α2r . This in turn follows from the fact that gcd(2r+1, 2n−1) = 1
and thus every element of F2n has a 2r + 1-st root (see e.g. [13]).
To show the last claim, we again examine the relevant Rodier equation which
in this case (by applying the same approach as above) takes the form

L1

((

α+ α2d
)(

1 + α2d + α2d+1
))

= L2

(

(

α+ α2s
)

(

1 + α2s + α2s+1
))

.

Denoting m = gcd(d, s, n) > 1, we can find α ∈ F2m \F2, so that , α+α2d =
α + α2s = 0. The Rodier equation thus has nontrivial solutions and the
function in question is not 0-APN.

Recall the following result (obtained using a combination of theoretical
and computational arguments) of Leander and Rodier [12].

Theorem 5.4 (Leander-Rodier, 2011). If n ≥ 2 and d is a nonzero integer
which is not a power of 2, then the function

F (x) = x2
n−2 + β xd

over F2n is not APN for d ≤ 29 and any β ∈ F
∗
2n.

Below we find more classes of functions that are not 0-APN for infinitely
many extensions F2n . In the process, we extend the previous result of Le-
ander and Rodier.

Theorem 5.5. Let a > b be positive integers. Assuming that one of xa and
xb are 0-APN on F2n and gcd(a − b, 2n − 1) = 1, the polynomial xa + β xb

is not 0-APN for any β ∈ F
∗
2n. Let c > d be positive integers. In particular,

(i) if gcd(c−1, n) = gcd(c−d, n) = 1, or gcd(d−1, n) = gcd(c−d, n) = 1,

then the polynomial x2
c−1 + β x2

d−1 is not 0-APN;

(ii) if gcd(c, n) = gcd(c− d, n) = 1, or gcd(d, n) = gcd(c − d, n) = 1, then

the polynomial x2
c+1 + β x2

d+1 is not 0-APN;

(iii) if gcd(c, n) = gcd(2c−1 − 2d−1 + 1, 2n − 1) = 1, or gcd(d − 1, n) =

gcd(2c−1 − 2d−1 + 1, 2n − 1) = 1, then the polynomial x2
c+1 + β x2

d−1

is not 0-APN;
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(iv) if gcd(c − 1, n) = gcd(2c−1 − 2d−1 − 1, 2n − 1) = 1, or gcd(d, n) =

gcd(2c−1 − 2d−1 − 1, 2n − 1) = 1, then the polynomial x2
c−1 + β x2

d+1

is not 0-APN.

Proof. Let F (x) = xa + β xb (a > b). Then F is 0-APN if and only if
0 = F (y) + F (z) + F (y + z) has no solutions y, z with yz(y + z) 6= 0. The
relevant Rodier equation takes the form

0 = F (y) + F (z) + F (y + z) = ya + β yb + za + βzb + (y + z)a + β(y + z)b,

which, with y = zα with α 6= 0, 1, becomes

0 = za (αa + 1 + (α+ 1)a) + βzb
(

αb + 1 + (α+ 1)b
)

.

Note that the polynomial xm is 0-APN if and only xm + 1 + (x + 1)m has
no root x 6= 0, 1, and such m can be classified by Theorem 4.2 (i). Assume
that at least one of xa and xb are 0-APN. Then one can always find α ∈ F2n

such that
αa + 1 + (α+ 1)a 6= 0 6= αb + 1 + (α+ 1)b.

For example, when xa is 0-APN, one can choose any α 6= 0, 1 outside the
roots of xb + 1 + (x+ 1)b = 0. Therefore one has

za−b = β
αb + 1 + (α + 1)b

αa + 1 + (α + 1)a
.

When gcd(a−b, 2n−1) = 1, the above equation always has a unique solution
z for any α 6= 0, 1, and one has y = zα 6= z, since α 6= 1.

We now show the other claims. When a = 2c − 1 and b = 2d − 1, with
gcd(c − 1, n) = 1 or gcd(d − 1, n), then by Theorem 4.2, one of xa or xb is
0-APN. One has a − b = 2d(2c−d − 1) and gcd(a − b, 2n − 1) = gcd(2c−d −
1, 2n−1) = 2gcd(c−d,n)−1, which becomes one if and only if gcd(c−d, n) = 1.

Therefore, when gcd(c − d, n) = 1 the polynomial x2
c−1 + β x2

d−1 is not 0-
APN by the first part of the proof.

When a = 2c+1 and b = 2d+1 with gcd(c, n) = 1 or gcd(d, n) = 1, then
by Theorem 4.2, one of xa or xb is 0-APN. One has a− b = 2d(2c−d−1) and
gcd(a − b, 2n − 1) = gcd(2c−d − 1, 2n − 1) = 2gcd(c−d,n) − 1 which becomes
one if and only if gcd(c − d, n) = 1. Therefore, when gcd(c − d, n) = 1, the

polynomial x2
c+1 + β x2

d+1 is not 0-APN.
When a = 2c + 1 and b = 2d − 1 with gcd(c, n) = 1 or gcd(d− 1, n) = 1,

then by Theorem 4.2, one of xa or xb is 0-APN. One has a− b = 2c − 2d +2
and gcd(a − b, 2n − 1) = gcd(2c−1 − 2d−1 + 1, 2n − 1). Therefore, when
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gcd(2c−1 − 2d−1 + 1, 2n − 1) = 1, the polynomial x2
c+1 + β x2

d−1 is not
0-APN.

Lastly, when a = 2c − 1 and b = 2d + 1 with gcd(c − 1, n) = 1 or
gcd(d, n) = 1, then by Theorem 4.2, one of xa or xb is 0-APN. One has a−b =
2c − 2d − 2 and gcd(a− b, 2n − 1) = gcd(2c−1 − 2d−1 − 1, 2n − 1). Therefore,

when gcd(2c−1 − 2d−1 − 1, 2n − 1) = 1 the polynomial x2
c−1 +β x2

d+1 is not
0-APN.

From the above examples, one can find many binomials which are not
0-APN for infinitely many extensions of the prime field F2. For example,
both x7+x3 and x5 +x3 are not 0-APN for all finite fields F2n when n > 2.
We can easily generalize (for any odd n) Leander and Rodier’s result of
Theorem 5.4 [12] in our next corollary.

Corollary 5.6. Assume that n is odd and d is a positive integer with gcd(d+
1, 2n − 1) = 1. Then x2

n−2 + β xd is not 0-APN for any β ∈ F
∗
2n .

Proof. Observe that x2
n−2 is APN for n odd. By the previous theorem

x2
n−2 + β xd is not APN if 1 = gcd(2n − 2− d, 2n − 1) = gcd(2n − 1, d+ 1)

and the proof is done.

6 Conclusion and further comments

In this paper we introduce a partial APN (pAPN) concept, which may help
in understanding the APN property and its properties. We certainly just
scratched the surface in the investigation of the pAPN notion and there
are certainly many more questions one could ask. For example, we propose
further constructions of large classes of such pAPN functions, as well as
perhaps look into the construction of permutation pAPN, which may shed
light into the well known and quite difficult problem of the permutation
APN problem.
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