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ABSTRACT 
 

This research puts forth a framework with which others can 

deliver future collision models.  While this delivers the 

framework through the coefficient of restitution, others may use 

different constitutive approaches.  The coefficient of restitution 

is a phenomenological constant that enables engineers to model 

and classify collisions.  This work retains the simplicity of that 

phenomenological constant, to create a spatial collision 

framework for rapid deployment, while delivering a 

methodology that has the potential for more advanced modeling 

by others.  In this research, we use the Moving Frame Method 

(MFM) in dynamics, to calculate the contact forces, impact, 

trajectory/translation and rotation after impact of free bodies in 

3D space.  The MFM exploits Cartan’s notion of moving frames 

to place frames of reference on all moving bodies. In this way, 

we formulate the dynamics in each body’s own moving frame.  

Next, the MFM exploits Lie group theory SO(3) and its 

associated algebra, so(3), to relate such frames to each other.  

Finally, it exploits a new notation to simplify the mathematics.  

All of this expedites the extraction of the post-collision 

dynamics.  We also conduct a numerical validation of the results, 

as follows.  We simulate a collision using MSC Adams and 

compare the rotation and translation values of the bodies with 

what we found using MFM.  After presenting the simpler aspects 

of the theory for edification’s sake, we pinpoint the aspects that 

can encompass alternative models.  Finally, we display results on 

a 3D web page using WebGL 

 
NOMENCLATURE 
 

α    : General body number 
( )α

e    : Moving Frame 
I

e     : Inertial Frame 

r     : Absolute Position Vector 

s     : Relative Position Vector 

e     : Coefficient of Restitution (COR) 

R     : Rotation Matrix 

ω     : Angular Velocity Vector 

ω    : Components of angular velocity  

ω     : Skew Symmetric Angular Velocity Matrix 

CH     : Angular Momentum Vector 

L     : Linear Momentum Vector 
( )

CJ α     : 3x3 Mass Moment of Inertia Matrix 

3 3xI     : 3x3 Identity matrix 

F     : Force vector 

C CM H  : Moment vector 

 

INTRODUCTION 
 

Engineers define impact as the collision between two bodies 

during a finitely small increment of time. 

 

The laws of linear and angular momentum are accurate, true and 

fundamental for the analysis of classical engineering collision 

problems.  If one studies the collision of rigid bodies, one may 

conduct the analysis under the mathematical framework of rigid 

body dynamics.  However, if one allows for the deformation of 

object, the analysis opens up too many approaches.  We will 

touch on just a few, as we do not intend this as a definitive survey. 

 

Some approaches to collision analysis, such as Wu [1], take 

recourse to finite element methods to assess material 

deformation during the collision.   

 

Gildardi and Sharf [2] suggest that the goal of collision studies 

is to obtain a simple model based on known parameters prior to 

the impact; e.g., the coefficient of restitution.   

 

mailto:terjesvaeren@hotmail.com
mailto:bin.1994@hotmail.com
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Collision analyses are difficult because of their complexity.  One 

must account for the geometry and material properties of both 

bodies.  One also must account for the smoothness of the 

colliding surfaces or friction Wang [3].  In many cases, the speed 

of the collision also plays a role, as per Minamoto [4], or Gharib 

[5]. 

 

In general, the result of a collision could be determined if all 

mechanical interactions (including, say, nonlinear constitutive 

laws for each body) could be captured and inserted into the 

mathematical model.   

 

Other studies model additional relationships between collision 

forces and local deformation under various loading conditions, 

such as that done by Hunt [6].  All of these models attempt to 

infuse the fundamental assumptions regarding contact forces.   

Ahmad [7] has conducted a comprehensive survey of existing 

collision models.  We hope to add to this discussion with a 

framework for future models. 

 

Once one obtains a coefficient of restitution, engineers proceed 

with a wide array of analyses in diverse disciplines.  Cross [8] 

conducted work in sports dynamics, Batista [9] in Automotive 

Dynamics and Vasilopoulos [10] in robotics. 

 

In this effort, we endeavor to develop, less a model, but more so, 

a framework for future models.  To deliver this framework, we 

leverage the simplicity of the coefficient of restitution. We aspire 

to deliver a framework that one can rapidly deploy for an array 

of constitutive models, for many applications. 

 

A current application of collision studies is by ABB, Inc.  ABB 

has been developing subsea electrical equipment that can 

reliably provide power to depths down to 3,000 meters. The 

equipment must operate at immense pressures in a highly 

corrosive environment with little or no maintenance.  More 

important, the engineers must find safe ways to deposit the 

equipment on the seabed.  Thus, ABB must consider, in their 

design analyses of the lowered structure, the interaction/collision 

of the object with the mounting structure. Depending on 

parameters such as speed, material, damping, stiffness, contact 

area, etc., ABB is interested in understanding the magnitude of 

the collision forces on the outer enclosures of the subsea 

equipment and the effect of these forces on the integrity of the 

enclosed electrical/electronic equipment.  

 

It is both the theoretical advance of the MFM and the needs of 

ABB that motivate the project introduced in this paper—to 

improve collision models.   

 

The coefficient of restitution is at the core of our current 

framework (others can be used), and warrants brief mention.  A 

kinematic analysis presumes the coefficient depends on 

velocities. A kinetic analysis presumes the coefficient depends 

on contact forces.  An energy analysis presumes the coefficient 

depends on the work done during the impact. All of these can 

enable the analysis, by setting up a phenomenological constant: 

the coefficient of restitution.  Many studies restrict themselves to 

obtaining the coefficient of restitution through experimental 

analyses.   

 

This research hopes to add to achievements in collision 

modeling, with a modernized mathematical framework for 

spatial body motion after collision.  For this, we turn to the 

Moving Frame Method and develop the necessary equations so 

that others will have access to a new framework based on modern 

mathematics. 

 

MOVING FRAME METHOD  
 

Background 

Galileo Galilei (1564-1642) imagined, through thought 

experiments, that people inside a closed, covered, ship are unable 

to determine by measurements made inside the ship, whether 

they were moving.  We cannot sense velocity but we can sense 

acceleration.   

 

Isaac Newton (1643-1727) based his laws of motion on 

acceleration.  He equipped the discipline with vector calculus: 

the mathematics of change (of magnitude and direction). He 

embraced the primacy of inertial frames from which one could 

study a particle’s motion.  He focused attention on particles, not 

bodies. 

 

Leonard Euler (1707-1783) extended Newton’s laws for 

particles to model the rotations of bodies. However, he, too, 

relied on vector algebra.   

 

By this time, the Industrial Revolution dawned (1800-1950). The 

steam engine, locomotives, lathes, sewing machines, and other 

mechanical mechanisms were simple one- or two-dimensional 

devices, rotating in a plane and viewed from the perspective of 

an inertial user standing beside them. 

 

These engineering achievements, mathematical principles and 

observations “informed” the dynamics curriculum. The current 

undergraduate curriculum, for example, in dynamics privileges 

the inertial frame, focuses on planar rotations, and limits itself 

with vector algebra. These restrictions are fraught with 

obfuscations that confound those students who do not possess 

the internal visualization skills needed to overcome the limits of 

an outmoded mathematics.   

 

As the undergraduate dynamics curriculum focused on two-

dimensional (2D) problems, mathematicians were progressing in 

more exciting directions.  

 

Élie Cartan (1869-1951) [12] assigned a reference frame to each 

point of an object under study (a curve, a surface, Euclidean 

space itself).  Then, using an orthonormal expansion, he 

expressed the rate of change of the frame in terms of the frame.  

The MFM leverages this by placing a reference frame on every 
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moving link.  However, then we need to connect moving frames.  

For this, we turn to Sophus Lie. 

 

Marius Sophus Lie (1842-1899) developed the theory of 

continuous groups and their associated algebras.  The MFM 

adopts the mathematics of rotation groups and their algebras yet 

distils them to simple matrix multiplications that avoids the non-

associative properties of vectors.  However, then we need a 

simplifying notation.  For this, we turn to Frankel. 

 

Ted Frankel [12] developed a compact notation in his work on 

geometrical physics.  The MFM adopts this notation to enable a 

methodology that is identical for both 2D and 3D analyses. The 

notation is also identical for single bodies and multi-body linked 

systems.   

 

Before we present the theory of 3D collisions, we first 

summarize the most basic foundation of the MFM. 

 

The MFM: Kinematics 
The middle image in Figure 1 presents, in light grey, an inertial 

orthogonal Cartesian coordinate system, designated by 

1 2 3{ , , }x x x , where the subscripts designated one of three 

directions. 

 

FIGURE 1. FRAME RELATIONS 

 

Frame basis vectors derive from directional derivatives of 

coordinate functions: /I

i ix  e .  

 

Thus, the middle image of Figure 1 also presents the associated 

inertial frame basis vectors designated by ( )IIII
321 eeee =  

in bold black, with superscript “I”.   

 

The left image of Fig. 1 presents a blue moving body.  A moving 

coordinate system designated by },,{ )1(
3

)1(
2

)1(
1 sss is embedded on 

the moving body—superscript (1).  The same left side also 

presents the associated time dependent moving frame: 

( ))()()()(
)1(

3
)1(

2
)1(

1
)1( tttt eeee = . 

 

The right side of Fig. 1 presents similar information for a second 

moving body. Let us now focus on the orientation of the frames. 

 

We designate 
(1)( )R t  as a 33  orthogonal rotation matrix.  This 

rotation matrix describes the orientation of the moving body 

frame )()1( te  (a row vector) from the inertial frame 
Ie  (also a 

row vector) through post-multiplication (where dimensions are 

presented below each term): 

 

( ) ( )(1) (1) (1)

1 2 3 1 2 3
3 31 3 1 3

( ) ( ) ( ) ( )I I It t t R t
 

=e e e e e e         (1) 

 

Orthogonality of rotation matrices, as members of the SO(3) 

group, allows an analytical inverse as the transpose: 

 
(1) ( ) ( )T It R t =e e                                   (2) 

 

The rate of change of the frame, supplemented with the 

orthogonality, allows the following progression, reading left to 

right, with the following definition (1) ( ) ( ) ( )Tt R t R t  : 

 
(1) (1) (1) (1)

(1) (1)

3 2

(1) (1) (1)

3 1

(1) (1)

2 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 ( ) ( )

( ) ( ) 0 ( )

( ) ( ) 0

I Tt R t t R t R t t t

t t

t t t

t t



 

 

 

= = 

 −
 

= − 
 − 

e e e e

e

       (3a) 

 

Here we defined (1) ( ) ( ) ( )Tt R t R t   as angular velocity 

matrix (as distinct from the angular velocity vector). Its 

properties, such as skew symmetry, derive from the group’s 

associated algebra so(3).   One can isomorphically reconstruct 

the angular velocity vector, in which the coordinates and the 

frame basis are functions of time. 

 
(1)

1

(1) (1) (1)

2

(1)

3

( )

( ) ( ) ( )

( )

t

t t t

t







 
 

=  
 
 

ω e                        (3b) 

 

In Equation (3a) we find a statement of the angular velocity, in 

which even the frame may change direction, with time. 

 

For completeness, we assert that ( ) ( )P Pt s t=s e locates points, 

(which may in turn, be moving) in a moving body frame.  We 

then take time derivatives as follows. 

 
( ) ( ) ( ) ( ) ( ) ( )P P P Pt t t s t t s t= = +v s e e  

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P P P P Pt t t s t t s t t t s t s t = + = +v e e e  

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )P P P P P Pt t t t s t s t t t s t s t = = + + +a s e e  

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )P P P P P Pt t t s t t t s t t s t t s t   = = + + +a s e  

 

This last equation identifies, left to right, the linear, centripetal, 

Coriolis and angular accelerations in one equation, 2D and 3D, 

using matrix notation, and no cross products, with the one frame 

clearly stated. 
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The MFM: Kinetics 

We continue our summary, turning now to kinetics.  The reader 

may find a pedagogical based description in Impelluso [13].  The 

MFM formulates Newton’s and Euler’s Equations for frames at 

the center of mass of a body (free bodies) and for frames at joints 

(robotics).  This section will only summarize the formulation of 

these kinetic laws of motion, but only for frames at the center of 

mass and only for non-jointed bodies.   

 

We begin by integrating over all the mass elements to structure 

the form of the linear and angular momentum.  This represents 

the first two lines in Table 1.   

 

TABLE 1 

Summary of Newton and Euler Equations in moving body 

frame 

 LINEAR ANGULAR 
Definition of 

momentum: 
Integral form 

( ) P P

B

t d m= L v  
( )

( )C P P P

B t

t dm H s s  

Derived 

Coordinate 
definition 

( ) ( ) ( )Ct t mv t=L e  ( ) ( ) ( )C Ct t J t=H e  

Derivative of 

coordinate 

definition 

( ) ( ) ( )

( ) ( )

C

C

t t mv t

t mv t

= +L e

e
 

( ) ( ) ( )

( ) ( )

C C

C

t t J t

t J t





= +H e

e
 

Exploiting 

angular velocity 

matrix ( )C C

( ) ( )

v ( ) ( ) v ( )

t t

m t t t

=

+

L e
 ( )

( ) ( )

( ) ( ) ( )

C

C C

t t

J t t J t  

=

+

H e
 

Kinetic 

expression 
)()( tt FL =  )()( tt CC MH =  

Component 
form 

( )C C

( )

v ( ) ( ) v ( )

F t m

t t t

=

+
 

( ) ( )

( ) ( )

C C

C

M t J t

t J t



 

= +
 

 

In the second row of the first column, we find a vector based 

assertion of linear momentum.  In the second row of the second 

column, we find a coordinate based assertion of the angular 

momentum, also stated in a moving, yet explicitly stated, body 

frame. 

 

In the equations in this table, the column components of the 

angular velocity derive from the skew symmetric angular 

velocity matrix for the moving body. Furthermore, CJ  

represents the body’s moment of inertia matrix.   

 

Next, we take derivatives (again, this is merely a summary).  The 

final row of each column presents the coordinate expressions for 

Newton’s and Euler’s laws.  We will discuss additional aspects 

of the MFM as we apply it to collision studies.  

 

MFM APPLIED TO CONTACT 
 

We now use the MFM to structure collision behavior.  We choose 

to base this on the coefficient of restitution; however, others may 

use this framework to base it on other constitutive models. 

 

It may initially appear that a great deal of the following work is 

regurgitation from the college pedagogy of particle collisions. 

We ask the indulgence of the reader, for the power of the MFM 

becomes evident, later into this discussion. 

 

Consider the incipient collision of the two bodies in Figure 1, but 

detailed in Figure 2 (which evinces the eccentric nature of the 

collision).  Assume the time definitions in Table 2, and that there 

comes an instant, as the bodies collide, when the internal force 

of impact, peaks. 

 

 
FIGURE 2. COLLIDING BODIES 

 

As with the standard approach to all contact problems, we 

assert the time interval, while not infinitesimally small, is 

sufficiently small for the stated assumptions of this 

analysis, below. 

 
TABLE 2 

Time of Contact 

Symbol Description 

1t  Loading is incipient; the bodies are poised to 

contact (separated here, only for image clarity) 

't  Peak loading: loading has completed, and 

unloading commences 

2t  Unloading has completed; the bodies are poised to 

separate. 

 
For this introductory study, we assume, for ease, a convex outer 

surface to limit the possibility of bodies to re-collide.  

 

Assert the following definitions, notations and additional 

assumptions: 

 

• Point (1)C represents the center of mass of body 1. 

• Point (2)C represents the center of mass of body 1. 

• Point A represents the point on body-1 that makes contact 

with body-2. 

• Point B represents the point on body-2 that makes contact 

with body-1. 

• This common point is the contact point: :@A B t t = . 

• A plane through :@A B t t = , tangent to the external 

surfaces is the plane of contact. 

• The line of contact passes through :@A B t t =  and is 

perpendicular to the plane of contact. 
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• Assume the contacting bodies are frictionless at the 

contact surface. 

• Assume the contact forces are parallel to the line of 

impact (frictionless contact).   

• The green vectors represent the current translational 

velocity of the CM 

 

We categorize two possible types of collisions: 

 

• If the centers of mass of each body are on the line of 

impact, we classify the impact as central impact. 

• If either of the two centers of mass are not on the extended 

line of impact, we classify the impact as eccentric impact. 

At 't t= , when point A and B are spatially coincident, establish 

the origin of an inertial frame, 1 2 3

I I I Ie e e e , as shown in 

Figure 1, as follows: 
 

• The first axis, 
1

I
e , is directed along the line of impact and 

points from body-1 to body-2.   

• The second, tangent, axis 
2

I
e is orthogonal in space, to 

2

I
e  

• The third, tangent, axis 
3

I
e  can be constructed from the 

right hand rule. 

 

Before we turn to kinetics in moving frames, we say a few words 

about the deposition of frames.  In the application of the MFM, 

we would normally attach a body frame to each moving body—

for the power of the MFM is that it formulates all of dynamics in 

moving frames.  Furthermore, moving frames lend clarity to the 

various non-inertial forces such as Coriolis and Centrifugal (see 

Impelluso [13]).   

 

If needed, we deposit an inertial frame from a moving frame 

using the pointwise principle of Euclidean space.  However, we 

avoid that approach in this analysis.  In this analysis, we will 

place the inertial frame at what is predetermined to be the contact 

point through some search algorithm that checks for incipient 

collision.  Any such algorithm should be able to define the 

direction of collision and the contact points on each body; but 

this is not our concern. 

 

Newton’s Laws for the Case of Spatial Eccentric Impact 

between Two Free Bodies 

 

We state Newton’s Law for each body (the rate of change of 

linear momentum is equal to the applied forces): 

 
(1) (1)( ) ( )t t=L F           (2) (2)( ) ( )t t=L F          (4a,b) 

 

Let us now distinguish the overall contact forces by their two 

distinct phases (where we place a hat on the unloading force to 

emphasize, notationally, its distinction from the representation of 

rotation matrices): 

 

• A time-dependent normal contact force during loading: 

( )tP  for 
1 't t t   

• A time-dependent normal contact force during unloading: 

ˆ ( )tR for 
2't t t   

 

We may now represent the force on each body in the inertial 

frame, at the instant of contact. Assume the positive direction of 

this contact force lies in the 
1

I
e  direction. 

 

The following holds for the duration of the loading phase 

1 't t t  , recollecting that we are assuming frictionless contact 

(thus only one component). 

 

1

(1)

( )

( ) 0

0

I

P t

tP e          
1

(2)

( )

( ) 0

0

I

P t

tP e       (5a,b) 

 

The following holds for the duration of the unloading phase 

2't t t  , recollecting that we are assuming frictionless contact 

(thus only one component).   

 

1

(1)

ˆ ( )

ˆ ( ) 0

0

I

R t

tR e         
1

(1)

ˆ ( )

ˆ ( ) 0

0

I

R t

tR e       (6a,b) 

 

Next, state the Linear Momentum for the center of mass, C, for 

each body, but in that body’s moving frame: 

 
(1) (1) (1) (1)

(2) (2) (2) (2)

( ) ( ) ( )

( ) ( ) ( )

C

C

t t m v t

t t m v t

=

=

L e

L e
                  (7a,b) 

 

As per Table 1, assert the rate of change of the linear momentum. 

 

( )

( )

(1) (1) (1) (1) (1) (1)

(2) (2) (2) (2) (2) (2)

( ) v ( ) ( ) v ( )

( ) v ( ) ( ) v ( )

C C

C C

t m t t t

t m t t t





= +

= +

L e

L e

   (8a,b) 

 

To proceed, we must extract components. To extract the 

components, we must select one common frame.  We choose to 

do this work in the moving frame; thus, we must reassert the 

forces in the moving frame, through some rotation matrix (one 

superscript for each body) using Eqn. 2.  Finally, we equate the 

rate of change of linear momentum with force, extract the 

components and obtain: 
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TABLE 3 

Newton’s Equation for each body for both loading and 

unloading 

Loading   

Body 1 Body 2  

( )
1

'

(1) (1) (1)

1 1 1( ') ( ) ( )

t

C C

t

m v t v t P t dt− = −  ( )
1

'

(2) (2) (2)

1 1 1( ') ( ) ( )

t

C C

t

m v t v t P t dt− =   (9a,b) 

Unloading 

Body 1 Body 2  

( )
2

(1) (1) (1)

1 2 1

'

ˆ( ) ( ') ( )

t

C C

t

m v t v t R t dt− = −  ( )
2

(2) (2) (2)

1 2 1

'

ˆ( ) ( ') ( )

t

C C

t

m v t v t R t dt− =   (10a,b) 

 

For the sake of edification, it is wise to apply some restrictions, 

early on.  We will decide, in this problem, that the body frame of 

the first and second body remain parallel to the inertial frame, 

during the duration of loading and unloading. Thus, in this 

pedagogical presentation, the rotation matrices are the identity 

matrices.  We will relieve ourselves of this restriction in the 

summary when we suggest how others may expand this work.  

 

Most important, keep in mind the distinction between points that 

make contact—A on body 1, B on body 2—versus the center of 

mass, C1, on body 1 and C2 on body 2.  Until we state otherwise, 

the following discussion concerns Newton’s laws asserted at the 

center of mass, Ci, of each body, not contact points. 

 

We integrate just the first components from each of the previous 

equations. We do this between the temporal boundaries of the 

loading and unloading phases. We express the normal 

components without subscript as: 
1( ) ( )P t P t  and 1

ˆ ˆ( ) ( )R t R t  

 

TABLE 4 

Integration of Components of Newton’s Equation for each 

body for both phases 
Loading   

Body 1 Body 2  

( )
1

'

(1) (1) (1)

1 1 1( ') ( ) ( )

t

C C

t

m v t v t P t dt− = −  ( )
1

'

(2) (2) (2)

1 1 1( ') ( ) ( )

t

C C

t

m v t v t P t dt− =   (11a,b) 

Unloading 

Body 1 Body 2  

( )
2

(1) (1) (1)

1 2 1

'

ˆ( ) ( ') ( )

t

C C

t

m v t v t R t dt− = −  ( )
2

(2) (2) (2)

1 2 1

'

ˆ( ) ( ') ( )

t

C C

t

m v t v t R t dt− =   (12a,b) 

 

We now add all four of Equations (11) and (12), canceling the 

total impulse terms and the velocities at peak impact.  (The other 

two directions have no change in the velocity due to the no-

friction assumption.)  We have re-derived the conservation of 

linear momentum: 

 
(1) (1) (2) (2) (1) (1) (2) (2)

1 1 1 1 1 2 1 2( ) ( ) ( ) ( )C C C Cm v t m v t m v t m v t+ = +      (13) 

 

We assume we know the incipient velocities on the left side of 

(13); we assume the right side is unknown. This (and the 

following few comments) continue to remain identical to the 

traditional approaches; the power of the MFM is pending.  

 

Assert the following as the total loading and unloading forces in 

the contact direction: 

 

• The total impulse of the impending contact force during 

the loading phase: 

1

t

t

Pdt



 . 

• The total impulse of the restitution contact force during 

the unloading phase: 
2t

t

Rdt


 .  

Define the coefficient of restitution as the ratio of these total 

impulse values: 

 
2

1

'

'

( ) / ( )

t t

t t

e R t dt P t dt                           (14) 

 

We will treat this value as a phenomenological constant, in our 

analysis.  Others may choose alternate paths. 

 

We apply the definition of the coefficient of restitution (14) to 

(12a): 

 

( )
2

1

'

(1) (1) (1)

1 2 1

'

ˆ( ) ( ') ( ) ( )

t t

C C

t t

m v t v t R t dt e P t d− = − = −       (15) 

 

Combining (15) with (11a), we find: 

 

( )(1) (1) (1) (1)

1 2 1 1 1 1( ) ( ') ( ') ( )C C C Cv t v t e v t v t− = −              (16) 

 

We repeat this for body-2 and we obtain the equation: 

 

( )(2) (2) (2) (2)

1 2 1 1 1 1( ) ( ') ( ') ( )C C C Cv t v t e v t v t− = −             (17) 

 

We remind ourselves that these two equations apply only for the 

1-direction. 

 

At this point, we should progress to the assumption that at the 

time, 't , of extreme impact, the velocities of the contact material 

points on the colliding bodies will be the same.  To assert this, 

we need to assert the velocities of the material points (A, and B) 

from the velocities of the respective centers of mass.  For this, 

we will exploit the paraphernalia of moving frames.  This will 

necessarily demand we pay attention to body rotations.  Thus, we 

decide to discuss these body rotations first, in the context of 

Euler’s equations, before we apply our constraint on the 

contacting point’s velocities (just to gain more familiarity with 

the MFM). 
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Euler’s Laws for the Case of Spatial Eccentric Impact 

between Two Free Bodies 

 

We now apply Euler’s equation about each body’s center of 

mass: 

 
(1) (1)( ) ( )C Ct tH M          (2) (2)( ) ( )C Ct tH M       (18a,b) 

 

A Notational Digression 

Before we continue, allow us to re-inform the cross product.  

Given two vectors, each in their own frame, we assert, using 

Frankel’s compact notation as follows: 

 

( )
1

1 1 1 2

3

( )

( ) ( ) ( ) ( )

( )

v t

t t t v t

v t

 
 

=  
 
 

v e e e                 ( )
1

1 1 1 2

3

( )

( ) ( ) ( ) ( )

( )

w t

t t t w t

w t

 
 

=  
 
 

w e e e  

( )
3 2 1

1 1 1 3 1 2

2 1 3

0 ( ) ( ) ( )

( ) ( ) ( ) ( ) 0 ( ) ( ) ( ) ( ) ( )

( ) ( ) 0 ( )

v t v t w t

t t t v t v t w t t v t w t

v t v t w t

−   
  

 = − =  
  −   

v w e e e e  

 

Moments 

Continuing, since the collision is eccentric, let us introduce new 

geometric terms: the moment arms from each body’s center of 

mass, to the appropriate contact points—
(1) ( )A ts , 

(2) ( )B ts —stated 

in the inertial frame.  We take the coordinates of these points and 

assert them as skew symmetric form in preparation for their use 

in the cross product operation. 

 

3 2

(1)

3 1

2 1

0

( ) 0

0

A A

A A A

A A

s s

s t s s

s s

      

3 2

(2)

3 1

2 1

0

( ) 0

0

B B

B B B

B B

s s

s t s s

s s

 

(19a,b) 

 

We now assert components of the loading equations (18a, b) as 

follows (where the un-subscripted omega represents all three 

angular velocity components in the moving body frame): 

 

(1) (1) (1) (1) (1)

(2) (2) (2) (2) (2)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

I T

C Loading A A

I T

C Loading B B

t s t P t R t s t P t

t s t P t R t s t P t

M e e

M e e

(20a,b) 

 

In (20), the terms in the middle represent the moment in the 

inertial frame.  In the far right, we assert the moment in the 

moving body frame using the orthogonality of the rotation 

matrix.  

 

We now repeat this work for the unloading period: 

 

(1) (1) (1) (1) (1)

(2) (2) (2) (2) (2)

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

I

C unloading A A

I

C unloading B B

t s t R t R t s t R t

t s t R t R t s t R t

M e e

M e e

(21a,b) 

 

We must reconcile the two different frames in Equation (20) and 

(21).  We asserted that we deposited the inertial frame at the time 

of peak contact.  Furthermore, for each body, we oriented the two 

body frames at that same time.  Thus, we recognize: 
(1) (2)( ) ( )R t I R t = = .   

 

Naturally, the reader is free to amend this for more advanced 

collision models. 

 

Finally, we remove the time dependency from the moment arm, 

by assuming any deformation is negligible (however, the reader 

is free to amend this, too). 

 

As an aside, we assumed aligned axes to produce a diagonal 

moment of inertia matrix, for the sake of edification. We will also 

relieve this restriction, in the summary.  Thus, we obtain the 

following: 

 

TABLE 5 

Moments on each body for Loading and Unloading 
Loading   

Body 1 Body 2  

(1) (1)

3 1

2 1

0

( ) ( ) ( )

( )

C Loading A

A

t t s P t

s P t

M e  (2) (2)

3 1

2 1

0

( ) ( ) ( )

( )

C Loading B

B

t t s P t

s P t

M e  (22a,b) 

Unloading 

Body 1 Body 2  

(1) (1)

3 1

2 1

0

ˆ( ) ( ) ( )

ˆ ( )

C Unloading A

A

t t s R t

s R t

M e  (2) (2)

3 1

2 1

0

ˆ( ) ( )

ˆ

C Unloading B

B

t t s R

s R

M e  (23a,b) 

 

Rate of change of Angular Momentum 

For any time, we have the general form (where, for space limits, 

we focus on body 1): 

 

(1) (1) (1) (1) (1)( ) ( ) ( ) ( )C t t J t J tH e ω ω ω            (24) 

 

 

(1) (1) (1) (1) (1) (1) (1) (1)

2 2 3 3 2 3 1 1

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)

1 1 3 3 1 3 2 2

(1) (1) (1) (1) (1) (1) (1)

1 1 2 2 2 1 3

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

C

J t t J t t J t

t J t t J t t J t

J t t J t t J

H e

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω (1)

3 ( )tω

 (25) 

 

At this point, we continue with some assumptions.  We assume 

there is no angular velocity about the line of contact, and the 

angular acceleration about that line is negligible: 
(1) (1)

1 1( ) ( ) 0t tω ω .   

 

Thus, we find, for the rate of change of angular momentum, in 

general: 
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(1) (1) (1) (1) (1) (1)

2 2 3 3 2 3

(1) (1) (1) (1)

2 2

(1) (1)

3 3

( ) ( ) ( ) ( )

( ) ( )

( )

C

J t t J t t

t J t

J t

H e

ω ω ω ω

ω

ω

  (26) 

We discard the first equation in each set (for the 1-coordinate), 

as it concerns change in rotation about the 1-axis (the impact 

force is in the 1-direction, and this nulls out the resulting 

moments).  We now formulate Euler’s equation, after also 

assuming rigid bodies (and removing the time dependency from 

the moment arm). 

 

Finally, assuming rigid body contact, remove the time 

dependency from the moment arms. 

 

TABLE 6 

Euler’s equation for each body during both phases 

 
(27a, b, c, d) 

We integrate all eight between their respective temporal 

boundaries, while reformulating the previous table using the 

Coefficient of Restitution, and parenthesize expressions for 

clarity. 

 

TABLE 7 

Integration of components of Euler’s equation for each 

body during both phases 

 
(28a, b, c, d) 

 

We can now algebraically equate the left and right sides of each 

row, above. 

 
(1) (1) (1) (1) (1) (1) (1) (1)

2 2 2 2 1 2 2 2 2 2( ) ( ) ( ) ( )e J t J t J t J tω ω ω ω    (29a) 

(1) (1) (1) (1) (1) (1) (1) (1)

3 3 3 3 1 3 3 2 3 3( ) ( ) ( ) ( )e J t J t J t J tω ω ω ω    (29b) 

(2) (2) (2) (2) (2) (2) (2) (2)

2 2 2 2 1 2 2 2 2 2( ) ( ) ( ) ( )e J t J t J t J tω ω ω ω  (29c) 

(2) (2) (2) (2) (2) (2) (2) (2)

3 3 3 3 1 3 3 2 3 3( ) ( ) ( ) ( )e J t J t J t J tω ω ω ω  (29d) 

 

Reformulate equations (29), (16) and (17) to obtain the critical 

values at the time of impact. 

 

 

 

 

 

TABLE 8 

The six unknown variables at the time of peak impact 

 
(30a, b, c, d, e, f) 

 

We save these equations.  We use them indirectly, as follows.  We 

must eventually transfer the velocity expressions (last two rows, 

above) from the center of mass, to an equation concerning the 

contact point.  For it is only then that we can apply the 

assumption that at peak time, the velocities of the two contact 

points are the same. The MFM gives us this power.  

 

Thus, we digress one last time.  We may assert, focusing on body 

1 and point A, that the velocity of point A, is the velocity of the 

Center of Mass, plus the velocity of A as observed from moving 

point, C: 

 
(1) (1) (1)

/A C A C= +r r s                              (31a) 

 

( )(1) (1) (1) (1)

A C Ad s dt= +v v e                      (31b) 

 
(1) (1) (1) (1) (1) (1) (1) (1) (1)( ) ( ) ( )I

A C A C At s R t t s = + = +v v e v e   (31c) 

 

Expending the terms, we find: 

 
(1) (1) (1)

1 2 3 3 2

(1) (1) (1) (1) (1)

2 1 3 3 1

(1) (1) (1)

3 1 2 2 1

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

C A A

I

A C A A

C A A

v t s t s t

t v t R s t s t

v t s t s t

v e

ω ω

ω ω

ω ω

     (31d) 

 

Similarly, we also find, for point B on Body 2: 

 
(2) (2) (2) (2) (2)

1 2 3 3 2

(2) (2) (2) (2) (2) (2) (2)

2 1 3 3 1

(2) (2) (2) (2) (2)

3 1 2 2 1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

C B B

I

B C B B

C B B

v t s t s t

t v t R t s t s t

v t s t s t

v e

ω ω

ω ω

ω ω

  (31e) 

 

We assume there is no rotation during this finitely-small time of 

contact, meaning that the rotation matrix becomes the identity 

matrix (1) (2)

3 3( ) ( ) xR t R t I  Thus, this gives us the equations for 

the velocities at point A and B for body 1 and 2 to be: 
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(1) (1) (1) (1) (1)

1 2 3 3 2

(1) (1) (1) (1) (1) (1)

2 1 3 3 1

(1) (1) (1) (1) (1)

3 1 2 2 1

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

C A A

I

A C A A

C A A

v t s t s t

t v t s t s t

v t s t s t

v e

ω ω

ω ω

ω ω

             (32a) 

(2) (2) (2) (2) (2)

1 2 3 3 2

(2) (2) (2) (2) (2) (2)

2 1 3 3 1

(2) (2) (2) (2) (2)

3 1 2 2 1

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

C B B

I

B C B B

C B B

v t s t s t

t v t s t s t

v t s t s t

v e

ω ω

ω ω

ω ω

            (32b) 

 

We now impose our last and most critical restriction. We assume 

that at the peak moment of collision 't t= , the normal velocity 

of points A and B are the same.  We apply this only for the 1-

direction. 

 
(1) (2)( ') ( ')A Bv t v t                               (33) 

 
(1) (1) (1) (1) (1) (2) (2) (2) (2) (2)

1 2 3 3 2 1 2 3 3 2( ) ( ) ( ) ( ) ( ) ( )C A A C B Bv t s t s t v t s t s tω ω ω ω  (34) 

 

Bookkeeping 

In general, for any spatial contact, there are 12 unknowns: 3 final 

angular velocities and 3 final translational velocities; each, for 

two bodies. 

 

The line of contact pre-determines the 1-axis.  We have already 

asserted that contact is smooth in the 2 and 3 directions.  This 

latter means no change in velocities along the tangent plane.  We 

have also asserted that the contact will not affect the rotation 

about the collision axis: this means there is no change in the 

angular velocities about this axis.  Thus, we have six unknowns, 

which we list here: 

 
(1)

1 2( )Cv t     
(2)

1 2( )Cv t     
(1)

2 2( )tω     
(2)

2 2( )tω     
(1)

3 2( )tω     
(2)

3 2( )tω  

 

We have established two equations already: 

 

• Identical material contact point velocity (34) 

• Conservation of linear momentum in 1-direction (13) 

We need four more equations.  We obtain these adding the left 

and right column of each row of Table 7 to obtain a kinetic 

expression for the duration of impact.  We do the first row: 

 

1 1

(1) (1) (1) (1) (1) (1) (1) (1)

2 2 2 2 1 2 2 2 2 2

3 3

( ) ( ) ( ) ( )

( ) ( )

t t

A A

t t

J t J t J t J t

s P t e s P t

ω ω ω ω

  (35) 

 

1

(1) (1) (1) (1)

2 2 1 2 2 2 3( ) ( ) 1 ( )

t

A

t

J t J t s e P tω ω       (36) 

 

To remove the term on the right above, we add (11a) and (12a) 

to obtain: 

 

( ) ( )
1

(1) (1) (1)

1 1 1 2( ) ( ) 1 ( )

t

C C

t

m v t v t e P t



− = +                (37) 

 

We combine (37) and (36) and obtain, for that row and the other 

three, the final four equations, each recast with the unknowns on 

the left. 

 

Row 1:     (1) (1) (1) (1) (1) (1) (1) (1)

2 2 2 3 1 2 3 1 1 2 2 1( ) ( ) ( ) ( )A C A CJ t s m v t s m v t J tω ω    (38) 

Row 2:      (1) (1) (1) (1) (1) (1) (1) (1)

3 3 2 2 1 2 2 1 1 3 3 1( ) ( ) ( ) ( )A C A CJ t s m v t s m v t J tω ω     (39) 

Row 3:     (2) (2) (1) (1) (1) (1) (2) (2)

2 2 2 3 1 2 3 1 1 2 2 1( ) ( ) ( ) ( )B C B CJ t s m v t s m v t J tω ω     (40) 

Row 4:     (2) (2) (1)(1) (1) (1) (2) (2)

3 3 2 2 1 2 2 1 1 3 3 1( ) ( ) ( ) ( )B C B CJ t s m t s m v t J tω ω     (41) 

 

NUMERICAL VALIDATION 
 

For the case under study, we present the collision of two cuboids.  

We classify this as an eccentric impact, since the center of mass 

of the bodies are not on the line of collision.  In this analysis, the 

blue cuboid, (cuboid (1)), is assigned a mass (1) 1000m Kg .  

Geometric values are: 
(1) 4w   

(1) 5h   
(1) 2d  

(2) 3w  
(2) 2.5h  

(2) 1d  
 

 
FIGURE 3. COLLISION OF TWO CUBOIDS 

 

In this study, the blue cuboid is moving toward the orange cuboid 

with a velocity of 1 m/s. The orange cuboid is initially 

motionless. No object has an angular velocity prior to the 

collision. With this, we commence the analysis, leveraging the 

previous foundational work. 

 

Using the previous frames, we first locate the point of contact.   

 

The point of contact for cuboid (1) is predetermined to be: 

 
(1)

1

(1) (1) (1) (1)

2

(1)

3

2

( ) ( ) 2.5

1

A

A A

A

s

t s t

s

   
   

= =   
  
  

s e e                      (a) 

 

The point of contact for cuboid (2) is predetermined to be: 
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(2)

1

(2) (2) (2) (2)

2

(2)

3

1.5

( ) ( ) 1.25

0.5

B

B B

B

s

t s t

s

  − 
   

= = −   
   −  

s e e                 (b) 

 

Let us first reassert our six equations: 

 
(1) (1) (2) (2) (1) (1) (2) (2)

1 2 1 2 1 1 1 1( ) ( ) ( ) ( )C C C Cm v t m v t m v t m v t+ = +         (13) 

(1) (1) (1) (1) (1) (2) (2) (2) (2) (2)

1 2 3 3 2 1 2 3 3 2( ) ( ) ( ) ( ) ( ) ( )C A A C B Bv t s t s t v t s t s tω ω ω ω  (34) 

 
(1) (1) (1) (1) (1) (1) (1) (1)

2 2 2 3 1 2 3 1 1 2 2 1( ) ( ) ( ) ( )A C A CJ t s m v t s m v t J tω ω   (38) 

  
(1) (1) (1) (1) (1) (1) (1) (1)

3 3 2 2 1 2 2 1 1 3 3 1( ) ( ) ( ) ( )A C A CJ t s m v t s m v t J tω ω    (39) 

(2) (2) (1) (1) (1) (1) (2) (2)

2 2 2 3 1 2 3 1 1 2 2 1( ) ( ) ( ) ( )B C B CJ t s m v t s m v t J tω ω    (40) 
(2) (2) (1)(1) (1) (1) (2) (2)

3 3 2 2 1 2 2 1 1 3 3 1( ) ( ) ( ) ( )B C B CJ t s m t s m v t J tω ω    (41) 

 

We note that Eqn. (34) can be reformulated with the equations 

from Table 8.  However, before doing that, we first simplify our 

equations for the case under study by asserting the following 

kinematic information prior to impact. 

 
(1) (1) (2) (2) (2)

2 1 3 1 2 1 3 1 1 1( ) ( ) ( ) ( ) ( ) 0Ct t t t v tω ω ω ω  

 

After modifying Table 8, for the above zero-terms, we find: 

 
(1) (1) (2) (2) (1) (1)

1 2 1 2 1 1( ) ( ) ( )C C Cm v t m v t m v t+ =               (13) 

 
(1) (2) (1) (1) (1) (1)

1 2 1 2 2 3 2 3 2 2

(2) (2) (2) (2) (1)

2 3 2 3 2 2 1 1

( ) ( ) ( ) ( )

( ) ( ) ( )

C C A A

B B C

v t v t s t s t

s t s t ev t

ω ω

ω ω
         (34) 

 
(1) (1) (1) (1) (1) (1)

2 2 2 3 1 2 3 1 1( ) ( ) ( )A C A CJ t s m v t s m v tω         (38) 

 
(1) (1) (1) (1) (1) (1)

3 3 2 2 1 2 2 1 1( ) ( ) ( )A C A CJ t s m v t s m v tω           (39) 

 
(2) (2) (1) (1) (1) (1)

2 2 2 3 1 2 3 1 1( ) ( ) ( )B C B CJ t s m v t s m v tω           (40) 

 
(2) (2) (1)(1) (1) (1)

3 3 2 2 1 2 2 1 1( ) ( ) ( )B C B CJ t s m t s m v tω           (41) 

 

 

We recast all of these in matrix form for solution: 

 
(1) (2) (1) (1) (1)

1 2 1 1

(2)

1 2

(1) (1) (1)

3 2 2 2

(1) (1) (2)

2 3 2 2

(1) (2) (1)

3 2 3 2

(1) (2) (2)

2 3 3 2

0 0 0 0 ( ) ( )

1 1 0 0 0 0 ( )

0 0 0 0 ( )

0 0 0 0 ( )

0 0 0 0 ( )

0 0 0 0 ( )

C C

C C

A

A

B

B

m m v t m v t

v t ev

s m J t

s m J t

s m J t

s m J t









  
  

− −  
  −
  = 
  
  
  
  −  

(1)

1 1

(1) (1)

3 1 1

(1) (1)

2 1 1

(1) (1)

3 1 1

(1) (1)

2 1 1

( )

( )

( )

( )

( )

A C

A C

B C

B C

t

s m v t

s m v t

s m v t

s m v t

 
 
 
 −
 
 
 
 
 − 

 

 

 
RESULTS 
 

We now compare the predictions of the MFM and MSC 

ADAMS.  In all our tests, the geometries of the two bodies is as 

stated in the previous section.  In all cases, the impact velocity 

of the first body is 1 meter/sec.  In all cases, the mass of the first 

body—body (1)—is 1000 Kg.   Thus, in all cases, the initial 

kinetic energy is 500 Joules. 

 

We have not prohibited re-collision of the bodies (but this is 

straightforward to address).   

 

We present tests wherein the bodies collide, face to face, edge to 

edge, and corner to corner.  However, this restriction can easily 

be removed.   

 

Before we proceed to the results, we discuss the visualization of 

the results of the MFM.   

 

To provide a visualization of the calculations and to demonstrate 

how suitable MFM is for programming, we created a 3D 

simulation with Web Graphics Library (WebGL). WebGL is a 

JavaScript interface for rendering interactive 2D and 3D 

computer graphics. WebGL is compatible with most of the major 

web browsers such as Chrome, Firefox, Safari, and Opera. In 

addition, it is free and can be used without the need for plugins. 

Readers my view results on their own cell phones.  The reader 

may confirm these results on this web page. 

 

http://home.hib.no/prosjekter/dynamics/2019/contact/ 

 

Note also, that this web-based visualization, also reports the 

absolute kinematic results, whereas in the following discussion, 

we report the ratio of result between MFM and MSC. 

 

In all cases—face-to-face, edge-to-edge, and corner-to-corner—

the MFM and MSC agree on the final angular and linear 

velocities.  In both cases, there is no increase in kinetic energy 

due to numerical integration effects.  Linear momentum is of 

course, conserved.   

 

Table 9 presents the results for Edge Collision.  In this table, the 

coefficient of restitution changes, while the density ratio for the 

two bodies, remains as 1.0 (actual mass of the second body can 

be computed from this ratio, the mass of the first body and the 

volumes). 

 

TABLE 9 

Edge Collision with varying COR 

 
 

http://home.hib.no/prosjekter/dynamics/2019/contact/
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Table 10 presents the results for Edge Collision.  In this table, the 

density ratio varies from 0.5 to 1 and 2, for constant coefficient 

of restitution=0.75. 

 

TABLE 10 

Edge Collision with varying Density Ratio 

 
 

Table 11 presents the results for Corner Collision.  In this table, 

the coefficient of restitution changes, while the density ratio for 

the two bodies, remains as 1.0. 

 

TABLE 11 

Corner Collision with varying COR 

 
 

Table 12 presents the results for Corner Collision.  In this table, 

the density ratio varies from 0.5 to 1 and 2, for constant 

coefficient of restitution=0.75. 

TABLE 12 

Corner Collision with varying Density Ratio 

 
 

There will come a day when PDF research papers come with 

embedded WebGL windows.  Until then, we provide, below, as 

a perfunctory gesture, two snapshots of post collision behavior.  

Naturally, these pale in comparison to the actual 3D web page 

listed above, which the reader should consult. 

 

 
FIGURE 4. CORNER POST COLLISION 

 

In Figure 4 we display the cuboids shortly after the collision 

taken from MSC ADAMS. The coefficient is set to 1.0 and the 

density ratio of the material of the cuboids are 1.0. Here we see 

both cuboids rotation about the 2- and 3-axis of their moving 

frames (all be it very slowly for Cuboid 1), which makes them 

rotate about every axis from an inertial point of view. 

 

 
FIGURE 5. EDGE POST COLLISION 

 

The collision in Figure 5 have the same set of values for the 

coefficient of restitution and density ratio as the collision of 

Figure 4. This is taken some time after the collision. Here we see 

the cuboids rotate about the 2-axis of their moving frames, and 

since there is only one rotation, it looks the same from inertial.  

 

DISCUSSION 
 

Various methods exist for collision analysis.  Many involve 

incremental analyses that which ensures no body penetration. 

Often, these results require time stepping.  This, in turn, allows 

for varied constitutive laws. 

 

The MFM presents a structured, geometric approach to model 

collisions.  We obtain the same results as in commercial 

software.  However, we have noted that our results are algebraic 

in nature, require no time stepping and are rapid to obtain, and 

easily coded. 

 

The results indicate that the MFM can structure a collision 

analysis and produce the same results as MSC, but faster—so 

fast, the analysis runs on a cell phone. 

If desired, the analyst may readily insert friction in the tangential 

directions.  

 

Another, modification, with greater potential, is to modify the 

rotation matrices and make them time dependent. 

Furthermore, future work could assert that the moment arms to 

the collision points from the center of mass of each body, are also 

time dependent. 

 

Any constitutive model may be inserted into this geometric 

structure. 

 

In the future, one may supplement this approach with an 

algorithm to detect the points on incipient collision.  From there, 

one defines the collision axis; then one constructs one more 

orthogonal axis and, finally, the third one in accordance with the 

right hand rule.   

 

Finally, one may also then supplement this approach with a 

method to obtain moment of inertia matrices that are not 

necessarily diagonal.  However, this is not a substantive 

challenge. 

 

For now, however, we close this paper with the statement that the 

MFM presents a very inexpensive, extensible, and simple model 

of collisions.  
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FLOW CHART 
 

At the start of the semester, we made a flow chart/milestone plan 

(see next page) to get an overview of the task at hand. 

Throughout the semester we have been comparing our work with 

this chart and used it as an indicator of our progress.  

 

To further specify what we had to do to complete our milestones, 

we also made a timetable with sub-objects that lead up to the 

main milestones.  

 
Status:

For Bachelor project at HVL 2019

To do list: Start date End date Status Finished

1.0 Find a project and a company 01.10.18 20.11.18

1.1 Create a group

1.2 Find a interesting project

1.3 Get in touch with the supervisor

1.4 Get in touch with the company

2.0 Get the application approved 10.02.19 05.03.19

2.1 Write and submit an abstract

2.2 Set up a meeting with the company

2.3 Get a supervisor from the company

2.4 Set the bounderies of the project with the company

2.5 Sign necessary contracts 

3.0 Start studying the subject and find information 02.01.19 31.01.19

3.1 Read and understand chapter 9.3

3.2 Convert chapter 9.3 from 2D to 3D

3.3 Look through collision examples from textbooks that uses traditional dynamics

3.4 Look through collision examples that uses the Moving Frame Method

3.5 Learn how to simulate in MSC Adams

4.0 Finish the theoretical collision analysis in 3D 28.01.19 02.02.19

4.1 Make a general example of two bodies colliding in 3D

4.2 Set some parametres (time of impact, etc)

4.3 Calculate the coefficient of restitution

4.3 Calculate the forces and projectiles

5.0 Run the collision simulation in Adams 31.01.19 28.02.19

5.1 Make models in Creo 

5.2 Convert the models to MSC Adams files

5.3 Run simulations with the same parametres as in the theoretical analysis

5.4 Compare results

5.5 Make the simulation presentable to the company

6.0 Prepare the Formative assessment presentation 10.02.19 05.03.19

6.1 Make a powerpoint presentation

6.2 Write a script and assign parts

6.3 Rehearse

7.0 Write the project into journal format 24.02.19 13.03.19

7.1 Absctract

7.2 Intro

7.3 Background

7.4 Main

7.5 Conclusion

8.0 Finish the underwater collision analysis for ABB 31.01.19 22.03.19

8.1 Gather all the requiered information from ABB

8.2 Calculate the forces from the impact

8.3 Analyse the impact using MSC Adams 

8.4 Conclude

9.0 WebGL/Java 01.03.19 30.03.19

9.1 Learn WebGL and Java

9.2 Gather pre-existing codes and write the necessary new ones

9.3 Create a simple collision simulation

10.0 Write the project into bachelor format 15.03.19 20.04.19

10.1 Frontpage (Forside_bacheloroppgave.doc)

10.2 Intro (Rapport_bacheloroppgave.doc)

10.3 Abstract

10.4 Method

10.5 Results

10.6 Discussion

10.7 Conclusion

10.8 Referance list

10.9 Attachments 

10.10 Backside (Bakside_bacheloroppgave.doc)

11.0 Send report to supervisor for corrections 30.03.19 27.04.19

11.1 Check report before posting

12.0 Deliver report and self-assessment 11.05.19 16.05.19

12.1 Fix corrections in the report

12.2 Write self-assessment

13.0 Prepare for the final presentation 19.05.19 24.05.19

13.1 Make a Powerpoint presentation

13.2 Write script and assign parts

13.3 Rehearse

14.0 Deliver final versjon of report 24.05.19 03.06.19

14.1 Make final adjustments

14.2 Hope that everything is OK

15.0 Prepare for EXPO 24.05.19 12.06.19

TIMETABLE Started and everything is OK

Started but with minor problems

Started but with serious problems

https://doi.org/10.1177/0306419017730633
https://www.khronos.org/webgl/
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Looking back, we now see that we were quite off on a number of things. Most importantly, the theoretical collision analysis (4.0) took 

way longer than we had anticipated to finish. And as a result of that, we had to work on many of the later objectives (such as 5.0, 7.0 

and 9.0) at the same time as we worked on the theoretical collision analysis.  

 

This delay made us unable to look into the underwater collision analysis that we had talk about with ABB. We always knew that there 

was a chance that we had taken on too much with this project, and the cooperation with ABB was always set as an addition to our project, 

but it is still unfortunate that we didn’t get the time to test our new collision model on their problem.   

 

Still, the main object of our project was to develop a new model for impact analysis, and that we did.   

Name: Spatial Impact Analysis

Start date: 20.11.2018

For Bachelor Project at HVL 2019 End date: 13.06.2019

By Terje Sværen and Bård Inge Nygård Company: ABB  

Milerstones Start End Duration

1.0 Find a project and a company 01.10.18 20.11.18 50

2.0 Get the application approved 20.11.18 14.12.18 24

3.0 Start studying the subject and find information 02.01.19 31.01.19 29

5.0 Milestone plan dealline 28.01.19 02.02.19 5

4.0 Finish the theoretical collision analysis in 3D 31.01.19 28.02.19 28

5.0 Run the collision simulation in Adams 10.02.19 05.03.19 23

6.0 Prepare the Formative assessment presentation 24.02.19 13.03.19 17

7.0 Write the project into journal format 31.01.19 22.03.19 50

8.0 Finish the underwater collision analysis for ABB 01.03.19 30.03.19 29

9.0 WebGL/Java 15.03.19 20.04.19 36

10.0 Write the project into bachelor format 30.03.19 27.04.19 28

11.0 Send report to supervisor for corrections 11.05.19 16.05.19 5

12.0 Deliver report and self-assessment 19.05.19 24.05.19 5

13.0 Prepare for the final presentation 24.05.19 03.06.19 10

14.0 Deliver final versjon of report 24.05.19 12.06.19 19

15.0 Prepare for EXPO 01.06.19 13.06.19 12
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