
 1 Copyright © 2019 by ASME 

   Proceedings of the ASME 2019 International Mechanical Engineering & Exposition 
IMECE2019 

November 8-14, 2019, Salt Lake City, Utah, USA 

IMECE2019-10434 

PRODUCTION AND ANALYTICS OF A MULTI-LINKED ROBOTIC SYSTEM USING 
THE MOVING FRAME METHOD 

 
Morten Kvalvik 

Mechanical and Marine  
Engineering 

Western Norway University of 
Applied Sciences (HVL),  

Bergen, Norway 
mkvalvik94@gmail.com 

Eystein Gulbrandsen 
Mechanical and Marine 

Engineering 
Western Norway University of 

Applied Sciences (HVL),  
Bergen, Norway 

eysteing@gmail.com 

Andreas Fosså Hettervik 
Mechanical and Marine 

Engineering 
Western Norway University of 

Applied Sciences (HVL), 
Bergen, Norway 

andreas.fossa.hettervik@gmail.com 

 

ABSTRACT  
 
This paper extends research into flexible robotics through a 

collaborative, interdisciplinary senior design project. This paper 

deploys the Moving Frame Method (MFM) to analyze the 

motion of a relatively high multi-link system, driven by internal 

servo engines. The MFM describes the dynamics of the system. 

Lie group theory and Cartan’s moving frames are the foundation 

of this new approach to engineering dynamics. This, together 

with a restriction on the variation of the angular velocity used in 

Hamilton’s principle, enables an effective way of extracting the 

equations of motion. The result in a 3D analytical model for the 

motion of a snake-like robotic system. Furthermore, this project 
builds a snake-like robot driven by internal servo engines. The 

multi-linked robot will have two servos in each joint, enabling a 

three-dimensional movement. An internal microcontroller will 

compile the equations of motion through a remote computer 

using a wireless network. The set compiled equations will enable 

movement of the servos. Finally, a test is performed to compare 

if the theory and the measurable real-time results match. 

NOMENCLATURE 
 

  B  B-matrix 

 D  Combined angular velocity matrix 

( )E 
 Frame connection matrix 

ne  Unit vector for n-axis 

 *F  Generalized force list 

  F  Force and moment list 

 H  Generalized momenta 

( )
cJ


 3x3 Mass moment of inertia matrix 

  M  Mass matrix 

*M    Reduced mass matrix 
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*N    Reduced non-linear velocity matrix 

 q  Generalized velocity variable list 

 q  Generalized acceleration variable list 

 
( )R 

 Rotation matrix 

 X  Virtual cartesian velocity 

 X  Variation of cartesian velocity 

 X  Virtual generalized displacement 

K  The virtual system kinetic 

W  Virtual work 

Π  Variation of frame connection matrix 

π  Virtual rotational displacement 
( )Ω   Time rate of the frame connection matrix 
( )  Angular velocity components 

( )  Skew-symmetric angular velocity matrix 

  

INTRODUCTION 
 

• The pedagogical goal of this project is to foster 

interdisciplinary collaboration on a senior design project.  

• The research goal of this paper applies the MFM to create a 

real and virtual robot snake moving in three dimensions.  

 

This paper also presents the MFM. The MFM uses a set of 

notations that does not distinguish between 2D and 3D problems. 
This makes solving complex problems at a high academic level 

lead to undergraduate students completing these tasks. 

 

It is the nature of the MFM, is avoidance of the cross product and 

its reduction of group theory to matrix multiplications, that 

makes this accessible to an undergraduate team. 

 

We commence with the foundations of the MFM that exploits 

the Special Orthogonal Group, SO(3). Then we introduce the 

robotic linked system under study.  

 

Following this, we introduce the aspects of the MFM for robotics 
that exploit the Special Euclidean Group, SE(3) and the 

restriction on the variation of the angular velocity. This is then 

followed by the building and testing of the real device. 

 

Finally, this work extends previous work by Murakami [1] which 

was limited to planar motion. 

 

THE MODEL  
 

Figure 1 presents a model of the multi-linked robotic system 

made in Creo Parametric [2].  The analysis is initiated with the 
inertial body, represented as the tail with a green frame (the 

MFM does allow for a free moving system, but this paper, for 

edification, restricts that free motion). This progresses to the first 

body.  This first body is the engine body with the coupled blue 

frame. The analysis then progresses to the second body, 

represented with the red frame. From this, a pattern emerges with 

increasingly named bodies up to 20 bodies.  
 

 
Figure 1. Model and frames. 

 

OVERVIEW OF THE MOVING FRAME METHOD 
 

History 
 

The Moving Frame Method (MFM) presents a powerful 

pedagogy for dynamics and a more efficient means to extract the 

equations of motion for analysis. In the MFM, 3D, and 2D 

analyses manifest the same notation.  Furthermore, multi-body 

systems and single body systems also manifest the same 

notation.  

 
Élie Cartan (1869-1951) [3] assigned a reference frame to each 

point of an object under study (a curve, a surface, Euclidean 

space itself). Then, using an orthonormal expansion, he 

expressed the rate of change of the frame in terms of the frame.  

The MFM recognizes this and leverages this by placing a 

reference frame on every moving link. However, then we need a 

method to connect moving frames. For this, we turn to Lie. 

 

Marius Sophus Lie (1842-1899) developed the theory of 

continuous groups and their associated algebras. The MFM 

adopts the mathematics of rotation groups and their algebras, yet 

distils them to simple matrix multiplications that avoid the non-
associative properties of vectors.  However, then we need a 

simplifying notation.  For this, we turn to Frankel. 

 

Ted Frankel [4] developed a compact notation in his work on 

geometrical physics.  The MFM adopts this notation to enable a 

methodology that is identical for both 2D and 3D analyses. The 

notation is also identical for single bodies and multi-body linked 

systems. 

 

The method has been pedagogically assessed by Impelluso [5], 

and a summary can be found there.  Allow us first to introduce 
the underlying and modernized mathematics of the MFM, 

distinct from the problem under study. 
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FOUNDATION: MFM AND SO(3) FOR SINGLE BODIES 
 

At the center of mass of each body  we place a moving frame: 

 

( )( ) ( ) ( ) ( )

1 2 3
( ) ( ) ( ) ( )t t t t

   
= e e ee                           (1) 

 

In the previous, e is a unit vector and the subscript denotes the 

direction. Set t = 0 to deposit an inertial frame from a moving 

frame:  

 

   ( ) ( ) ( )

1 2 3 1 2 3(0) (0) (0)I I I I   = =e e e e e e e            (2) 

 

Define the absolute position vector rC

(α)
(t) of a frame as a 

translation xC

(α)
(t) formulated in the inertial frame 

I
e : 

 
( ) ( ) ( ) ( )I

C Ct tx =r e                                       (3) 

 

We use xC

(α)
(t) to represent the distance from the inertial frame to 

the center of mass of a body, thus the subscript C.  

 

The relative position vector of a frame (α + 1) from another 

frame (α) is represented by sC
(α+1/α)(t), and is expressed as a 

translation, yet formulated in the -frame:  

 
( 1/ ) ( ) ( 1/ )( ) ( ) ( )C Ct t ts    + += es                              (4) 

 

By adding the absolute position vector of the -frame rC

(α)
(t) and 

the relative position vector sC
(α+1/α)(t), we obtain the absolute 

position vector of the (α + 1) frame: 

 
( 1) ( ) ( ) ( 1/ )( ) ( ) ( ) ( )C C Ct t t s t    + += +r r e                        (5) 

 

We use a rotation matrix a member of the Special Orthogonal 

Group, (3)R SO , to relate the orientation of a moving frame to 

an inertial frame: 

 
( ) ( ) )  ( ) (It tR =e e                                    (6) 

 

The relative rotation of a frame (α + 1) from another frame (α) 

can be written as:  

 
( 1) ( ) ( 1/ )( ) ( ) ( )  t t R t   + +=e e                              (7) 

 

The orientation of the body (α + 1) can be expressed in the 

inertial frame by inserting an equation (6) into (7) and exploiting 

the closure property of Groups:  
 

( 1) ( ) ( 1/ ) ( 1)( ) ( ) ( ) ( ) I It Rt t tR R    + + += =e e e            (8) 

 

 

In SO(3), the inverse of a rotation matrix is the transpose:  

 

( ) ( )
1

( ) ( )( ) ( )
T

R t R t 
−

=                             (9) 

 

The time rate of frame rotation: 

 
( ) ( ) )  ( ) (I Rt t =e e                               (10) 

 

By using orthogonality, we can replace eI in (10) and get: 
 

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 
T

t tR Rt t   =e e                    (11) 

 

The time rate of frame rotation is now expressed in its own 

frame.  

 

We define the skew-symmetric angular velocity matrix.  We note 

that this element is a member of the associated algebra, so(3)  
 

( )

( ) ( )

3 2

( ) ( ) ( ) ( ) ( )

3 1

( ) ( )

2 1

( ) ( )

( ) ( ) ( ) ( ) ( )

0

0)

0

( ( )

T

R

t t

t t t t t

t

R

t

 

    

 

 

  

 

 −
 

= = − 
 − 

        (12) 

 

We may write equation (11) as:  

 
( ) ( ) ( )( ) ( ) ( )t t t  =e e                            (13) 

 
The skew-symmetric angular velocity matrix is isomorphic to 

the angular velocity vector of that frame: 

 
( )

1

( ) (α) ( )

2

( )

3

( )

( ) ( ) ( )

( )

t

t t t

t



 









 
 

=  
 
 

e                            (14) 

 

THE MFM FOR MULTI-BODIES (SE3) 
 

4 4  matrices of homogeneous transformations can relate 

orientations and positions. Denavit and Hartenberg [6] presented 

these in 1955, and they now are widely used in computer science 

and robotics. However, at that time, they did not recognize that 

such matrices were elements of a Lie group and were equipped 

with an associated Lie algebra. The MFM recognizes this and 

exploits the algebraic power. 

 
Define a frame connection as a structure that contains a frame, 

( ) ( )t
e  and its location. ( ) ( )C t

r .  

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 2 3( ) ( ) ( ) ( ) ( ) ( )C Ct t t t t t     =e r e e e r        (15) 
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The inertial frame connection may be written as ( )I
e 0  where no 

translation and rotation are present.  We may relate the two as: 

 

( )( ) ( ) ( )( ) ( ) ( ) ( )I

Ct t E t  =e r e 0                      (16) 

 

Thus, we define the absolute frame connection matrix 

 
( ) ( )

( )

4 4

3

( ) ( )
  ( )

0 1

C

T

R t x t
E t

 




 
=  
 

                         (17) 

 

With this, we recover equations (6) and (3).  Rather than continue 

with this introduction of how the MFM handles multi-bodies, 
allow us to proceed to the problem under study and present the 

rest of the MFM in the context of this problem. 

 

MULTI-LINK KINEMATICS 
 

Kinematics for Body 1 
 

In this restricted analysis, we deposit an inertial frame I
e  on the 

tail body known as body-I, at the center of mass. A moving 

frame, e(1)(t) is placed on the body-1 with the rotation between 

the bodies is about the 1st axis: 

 

(1) (1) (1))

(1) (

(1

1)

  i

1 0 0

( ) ( ) ( ) 0 cos ( ) s n ( )

0 sin ( ) cos ( )

IIt t t t t

t t

R  

 

 
 

= −
 
 

=



e e e                 (18) 

 

This first inertial body is equipped with a frame at the center of 

mass. For the first body-1, we add a frame at the center of mass. 

To reach the first body, we first translate in the 2-axis direction 

of the inertial frame a distance Il ; then we rotate about 1-axis of 

the inertial frame; finally we translate a distance Il to reach the 

center of mass of the first body.  ( )0 0
T

Il L=  In terms of 

frame connection matrices, we assert: 

 
(

3 3

3

3 3 1
(1) (1) 1)

(1) 1

3 3 3
10

( ) 0 ( ) ( )
( )  

0 1 0 110

x I x

T TT

I

T

I R t R t R t l
E

l l l
t

I     
= =     
  

+

   

   (19) 

 

The relationship between the first frame and the inertial frame is 

then expressed as:  

 

( ) ( )(1) (1) (1)( ) ( ))  (I

C Et t t=e 0er                        (20) 

 

Next, take the time rate of the frame connection: 

 

 ( ) ( )(1) (1) (1)( ) ( ) ( )I

C Et t t= 0e er                    (21) 

 

The time rate of the frame connection matrix, Ė
(1)

(t) is found by 

taking the time derivative of each element. Due rigid bodies, the 

derivative for the translation will be equal to zero. 

 
)(1)

(1

(1

1

3

) ( )
(

( )

0 0
)

T

R R
t

t l
E

t 
=  
 

                         (22) 

 

Express the inverse of the frame connection matrix (a member 

of SE(3)) as:  

 

 ( )
( ) ( ) ( )(

1

3

(1) 1)

(1)

(1)

1( ) ( )
(

1

)

0

( )
T T

T

IR R
E

t t
t

R t l l− −
=
 



+



              (23) 

 

Multiply the results of equation (20) with (23) Define the 
absolute time rate of the frame connection matrix for the first 

body Ω
(1)

as the product of (E(1)(t))
-1

and Ė
(1)

(t).  It is recognized 

that (3)Ω se , the algebra associated with the SE(3) group. 

 

 ( )( )(1) (1) ( )
1

1 ( ) Ω E tE t
−

  (24) 

 
Substitute the result with the inertial frame connection in (21).  

We obtain: 

 

 ( ) ( )( )(1) (1) (1) (1) (1) (1
1

)( ) ( ) ( ) ( ) ( ) ( )C Ct t t t t tE E
−

=e r re  (25) 

 

As a result, we can write (25) as:  
 

 ( ) ( )(1) (1) (1) (1) (1)( ) ( ) ( ) ( ) ( )ΩC Ct t t t t=e r re  (26) 

 

Ω
(1)

 multiplied out in a matrix form and recognizing that 
(1) ( )t

is the same as (12):  

 

 

3

(1) (1)
(1) ( )

0

( )

0T

v
Ω

t t 
=  
  

 (27) 

 

From equation (26), we extract:  

 

 (1) (1) (1)( ) ( ) ( )t t t=e e  (28) 

 

We associate this as the angular velocity vector: 
 

 

(1)

(1) (1)

( )

( ) ( ) 0

0

t

t t

 
 

=  
 
 

ω e  (29) 

 
The second equation extracted from (27) is  
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 ( )(1) (1) (1) (1) (1)

1( ) ( ) ( ) ( ) ( )C Cvt t t t t l== er e  (30) 

 

First, we reverse the effective cross product, and we assert this 

in the inertial frame 
 

 ( ) ( )(1) (1) (1) (1) (1)

1 1( ) ( ) ( ) ( ) ( )I

C t t l t R t l t = − = −e er  (31) 

 

Thus, we assert: 

 

 (1) (1) (1)

1( ) ( ) ( )x t R t l t= −  (32) 

 

Kinematics for Body 2 
 

Place a moving frame, e(2)(t), at the center of mass of the body-

2.  To get from to the 2nd frame from the first frame, move a 

distance 
1l  in the e2

 - direction, then rotate about the 3rd axes 
(2/1) ( )R t  this time, and move a distance 

2l .  

 

The orientation of the second frame is obtained from the first 

frame by a rotation 
(2) ( )t  about the common 3-axis.  

 

 

(2) (2)

(2) (1) (2/1) (1) (2) (2)

cos ( ) sin ( ) 0

( ) ( ) ( ) ( ) sin ( ) cos ( ) 0

0 0 1

t t

t t R t t t t

 

 

 −
 

= =  
 
 

eee  (33) 

 

Thus, we obtain the following frame connection matrix 

 

 

(2/1)

(2/1)

3 33

2

3 3

( /1) (2/1)

2

1 2

3

3 3

1

0 1

( ) 0
( )

00 1

( ) ( )
             

1

  
0 1

T

x x

T T

T

I l R t
E

I
t

R t R t l

l

l

    
=     
    

 
=  

+

 

            (34) 

 

The relative frame connection matrix becomes: 

 

 

(2/1) (2/1)
(2/1

3

) ( ) ( )
)

0
(

1

C

T

R s
E

t t
t

 
=  
 

                     (35) 

 
(2/1) ( )tE relates the first frame and second frame connections as:  

 

 ( ) ( )(2) (2) (1) (1) (2/1)( ) ( ) ( ) ( ) ( )C Ct t t tEt =e r e r               (36) 

 

The inverse:  

 

 ( ) ( ) ( )(2/1) (2/1) (2/1)
1

(2/1)

30 1

( ) ( ) ( )
( )

T

T T

CR R s
E

t t t
t

−
 −
 =
 
 

     (37) 

 

The rate of change of the frame connection matrix becomes:  

 

 
(2/1) (2/1)

(2/1) 2

3

( ) ( )
( )

00T

R t R t
t

l
E

 
=  
 

                       (38) 

 

The time rate of the frame connection matrix may be written as: 

 

3

(2/1) (2/1)
(2/1) 2( ) ( )

(
00

)
T

t t l
t

  
 =  

  

                         (39) 

 

By unskewing the angular velocity. The vector of the second 

frame is then obtained: 

 

(2/1) (2)

(2)

0

( ) ( ) 0

( )

t t

t

 
 

=  
 
 

ω e                                (40) 

 

The absolute time rate of the frame connection matrix Ω
(2)

(t) can 

be found by multiplying (37), (24) and (35) adding  (39), and 

used to relate the time rate of change to the moving frame in 

compact notation:  

 

 ( )
1

(2) (2/1) (1) (2/1) (2/1)( ) ( ) ( ) ( ) ( )tE Et t t t
−

 =  +              (41) 

 

Equation (41) yields the following: 

 

 

( )
( )

( ) ( )

( )

(2/1) (1) (2/1)

2 1(2/1) (1) (2/1) (2/1)

(2)
(2/1) (1) (2/1)

1 2

3

(2) (

3

2)

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

0 0

)

0

)

0

( (

T

T

T

T

T

R t t R t l l
R t t R t t

t R t t l t

v

l

t t


 

 

 
 
 

 +
 +
  = + +




 
 

=



 (42) 

 

First, define (2) ( )R t as: 

 

 (2) (1) (2/1)( ) ( ) ( )RtR Rt t=                            (43) 

 

Extract and manipulate the terms of (42), respectively: 
 

 ( )(2) (2/1) (1) (2/1)( ) ( ) ( ) ( )
T

t R t t t  = +                    (44) 

 

 
(2) (1) (2/1) (1)

2 1

(2) (2/1)

2

( ) ( )( ( ) 2 ) ( )

( ) ( )            

x t R t R t l l t

R t l t





= − +

−

             (45) 

 

Kinematics for multi-bodies: Body α 
 

As this method progresses to more bodies, a pattern appears.  

This section presents the pattern. Thus, we now reduce this to a 

B-matrix for α-bodies. For this system, the α represents the 
number 20th body.  
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For the α-frame, we create a moving coordinate frame using the 

relative frame connection, ( / 1) ( )E t −  to represent the relation 

between two adjacent bodies 

 

 
( ) ( ) ( 1) ( 1) ( / 1)( ( ) ( )) ( ( ) ( )) ( )C Ct t t t E t     − − −=e r e r             (46) 

 

Here we define the relative frame connection is defined using the 

relative rotation ( ) ( )/ 1
R t

 −  and the relative coordinates of the 

body-α frame origin ( )( / 1)

C ts  −  (which we keep time dependent, 

for now).  

 

 

( / 1) ( / 1)

( / 1)

3

( ) ( )
( )

0 1

C

T

R t s t
E t

   
 

− −

−
 

=  
 

               (47) 

 

We compute the relative frame connection as translation-

rotation-translation between the two bodies. We apply 1l− with 

the relative rotation-matrices, ( )/ 1 ( )−
R t   and the translation 

from to the next body l .  

 

 

( / 1)
3 3 1 3 3( / 1)

3 33

( / 1) ( / 1)

1

3

  

1

     

0

     
(

 

( ) 0

1 0 10

( ) )

0 1

x x

T TT

T

I l I lR t
E

R t R t l l

 
  

   

 

−
−−

− −

−

    
=     
    

 +
=  
 

           (48) 

 
The inverse of the absolute frame connection matrix (48) 

becomes: 

 

 ( ) ( )( ) ( )( ) ( )( (( / 1) / 1)
1

( / 1

)

3

)

10

T T

C

T
E

R t R t x t   
 

− −
−

−
 
 =
 

−



           (49) 

 
The time derivative of the frame connection matrix (48) is 

obtained by taking the time derivative of each element in the 

matrix (now recognizing rigid bodies):  

 

 

( / 1) ( / 1)

( / 1

3

) ( ) ( )
(

00
)

T

R t R t l
E t

   
  

− −

−
 

=  
 

             (50) 

 

The time rate of the frame connection matrix ( / 1)Ω   −  in relative 

form is defined as: 

 

 ( )( ) ( )( / 1) ( / ( / 1
1

1) )Ω  E t E t     − − −
−

                  (51) 

 

To acquire the rate of absolute frame connection ( )Ω  for the α-

body, mulitply eq. (49) by the previous absolute frame 

connection matrix ( 1) ( )Ω − t  and eq. (48). Then adding the time 

rate of the relative frame connection matrix (51): 
 

( )
1

( ) ( / 1) ( 1) ( / 1) ( / 1)( ) ( ) ( ) ( ) ( )tE Et t t t       
−

− − − − =  +     (52) 

 

The absolute frame connection matrix (52) for the α-body 

expanded will become: 

 

 ( ) ( )( ) ( )
( )

3

( )

0 0T
Ω

t v t
t

 
  

=  
  

                            (53) 

 

THE GENERALIZED COORDINATES  
 

The velocities and angular velocities for all α-bodies are grouped 

in a 6n x 1 matrix  ( )X t . These are referred to as Cartesian 

velocities: 

 
(1)

(1)

(2)

(2)

( )

( )

( )

( )

( )

( )

( )

( )

{ ( )}

C

C

C

x t

t

x t

t

x t

t

X t











 
 
 
 
 
 
 
 
 
 
 

                                 (54) 

 

The generalized essential velocity matrix detonated by  ( )q t  is 

a set that takes account for the minimal n*-degrees-of-freedom. 

In the model, the angular velocities for each body will be reduced 

to twenty generalized essential velocities (for a twenty-link 

system).  

 

  

(1)

(2/1)

(3/2)

( / 1)

( )

( )

( )(

( )

)

t

t

t

t

q t

 







 −

 
 
 
 

  
 
 
  

                             (55) 

 

We now relate the Cartesian velocity (54) with the generalized 

essential velocity matrix (55). The B-matrix is used: 

 

  ( ){ ( )} { ( )}B tX t q t=                            (56) 

 

The B-matrix is devoted to the appendix, where a thorough 

description is given. Here one can find an algorithm for α-bodies. 
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3 1 3 1 3 1 3 1 3 1

3 1 3 1 3 1 3 1 3 1

3 1 3 1 3 1 3 1

3 1 3 1 3 1 3 1

3 1 3 1 3 1

3 1 3 1 3 1

3 1 3 1 3 1

3 1

1,1

2,1

3,1 3,2

4,1 4,2

5,1 5,2 5,3

6,1 6,2 6,3

7,1 7,2 7,3

8,1 8,2 8,3

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

[ ( )] 0 0 0

0 0 0

0 0

x x x x x

x x x x x

x x x x

x x x x

x x x

x x x

x x x

x

B

B

B B

B B

B B B

B t B B B

B B B

B B B

=

3 1 3 1

( 1),1 ( 1),2 ( 1),3 ( 1),( 2) ( 1),( 1) ( 1),

,1 ,2 ,3 ,( 2) ,( 1) ,

0
x x

m m m m n m n m n

m m m m n m n m n

B B B B B B

B B B B B B

− − − − − − − −

− −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

      (57) 

 

KINETICS 
 

Application of Analytical Mechanics 
 

We begin by defining a Lagrangian as the difference between the 
kinetic and potential energy: 

 

 ( ) ( ) ( )( ) ( ) ( )( ), ( ) ( ), ( ) ( )q t q t K q t q t q tL U  = −              (58) 

 

Define the Action as the definite integral of the Lagrangian 

function over time: 

 

 ( )
1

0

( ) ( ), ( ),

t

t

A tq t q tL t d=                              (59) 

 
Hamilton’s principle states that “the motion of a system occurs 

in such a way that the definite integral (59) becomes a minimum 

for arbitrary possible variations of the configuration of the 

system, provided the initial and final configurations of the 

system are prescribed” [7]. This means that the equations of 

motion can be obtained by setting the variation of the Action 

equal to zero: 

 

 ( )
1

0

( ) 0( ), ( ),

t

t

qL q t t t dt =                        (60) 

 
To include the non-conservative forces, we exploit the extension 

of Hamilton’s Principle, known as the Principle of Virtual Work.  

Here, we formulate the Lagrangian as dependent only on the 

kinetic energy.  We will account for all other forces (conservative 

or non-conservative) as work, on the right side.  From this point 

onwards, we omit the dependencies of position and velocity for 

ease of notation. 

 

 
1 1

0 0

( ) ( )( )  ( )

t t

t t

K t dt W dt t  = −                      (61) 

 
The kinetic energy of each body in the system is expressed by 

the angular momentum HC

.(α.)
(t), and linear momentum LC

.(α.)
(t): 

 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )C C Ct t H t t J t     = =H e e          (62) 

 ( ) ( ) ( ) ( )( ) ( ) ( )I I

C C Ct L t m x t   = =L e e                  (63) 

 

Here, JC

.(α.)
represents the moment of inertia matrix for body α.  

The total kinetic energy of a body α with the frame placed at the 

center of mass is defined as:  

 

  ( ) ( ) ( ) ( ) ( )1
( )

2
C C CK t    =  + r L ω H                (64) 

 

For the whole system, the total kinetic energy is expressed in 

matrix form as:  

 

     
1

( ) ( ) ( )
2

T

K t  = X t M X t                        (65) 

 

The masses and moments of inertia for each body is contained in 

the generalized mass matrix [M]: 
 

 

 

(1)

3
3 3 3 3 3 3 3 3 3 3

(1)

3 3 3 3 3 3 3 3 3 3

(2)

3
3 3 3 3 3 3 3 3 3 3

(2)

3 3 3 3 3 3 3 3 3 3

( )

3
3 3 3 3 3 3 3 3 3 3

( )

3 3 3 3 3 3 3 3 3 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C

C

C

m I

J

m I

M J

m I

J





    

    

    

    

    

    

 
 
 
 
 
 

  
 
 
 
 
 
 

   (66) 

 

We now focus on the work done.  Hamilton’s Principle does not 

account for non-conservative forces such as applied loads or 

damping.  For that, we extend Hamilton’s Principle as the 

engineering Principle of Virtual Work.  Thus, we must formulate 

the work done. Wittenburg [8] used a weighted virtual angular 

velocity, to extract Euler’s equation. However, moment and 

angular velocity define the power, not the work.  This was the 

weakest point in the classical multibody dynamics. The MFM 

has rectified this [9], and independently so, by Holm [10].   
 

In the MFM, moment vs. virtual rotation represent a natural 

pair—they are conjugate to each other, and expressed in the 

moving body frame.  To represent the virtual rotation, the MFM 

presents a restriction on the angular velocity for use in the 

extension of Hamilton’s Principle.  The equations of motion are 

then easier to obtain. This restriction reduces as a simple matrix 

based equation: 

 

To continue, define virtual rotational displacement δπ(α)(t) as the 

un-skewed form of δπ(α)(t) ⃡           , which is defined as the product of the 

transpose and the variation of the rotation matrix:  
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 ( )( ) ( ) ( )( ) ( ) ( )
T

R Rt t t   =                    (67) 

 

With the following equation, we structure the virtual Cartesian 

displacements {δ X̃(t)}:  

 

 

( ) 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

1

2

2

x t

t

x t

X t t

x t

t











 





 
 
 
 
 
 =
 
 
 
 
  
 

                                 (68) 

 

Next, the variation of the velocities is called the virtual Cartesian 

velocities {δ Ẋ(t)}: 

 

  

(1)

(1)

(2)

(2)

( )

( )

( )

( )

( )

( )( )

( )

( )

C

C

C

t

t

x

x

X

t

t

t

t

x t









 





 
 
 
 
 

=  
 
 
 
 
 

                                (69) 

 

For the linear displacement, the variation of the derivative is 

equal to the derivative of the variation:  

 

 ( ) ( )( ) ( )C C

d
 x t  = x t

dt

                                (70) 

 

However, the restriction on the variation of the angular velocity 

is: 

 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
d

t  = t  + t t
dt

                     (71) 

 

The last two equations are written in compact form as: 
 

       ( ) ( ) [ ] ( )X t X t D X t  = +                      (72) 

 

Where [D] is a skew symmetric matrix that contains the angular 

velocity matrices for each frame:  

 

 

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3

1

3 3

3

( )

(

3

3 3 3 3 3 3 3 3

(

3

2)

)

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

( )

( )

0

0 0 0

( )

)0 (0

x x x x x x

x x x x x

x x x x x x

x x x x x

x x x x x x

x x x x x

t

tD t

t

























 
 
 
 
 
 
 
 
 



      (73) 

 

The variation of the kinetic energy is re-expressed as:  

 

     ( ) ( ) ( )
T

K t  = X t M X t                           (74) 

 

Next, we need the forces and moments acting on the different 

bodies of the system. They are expressed in a single column 

matrix {Q(t)}.  
 

For each of the bodies, a force vector consisting of the forces and 

moments are listed in a set. This force will include the forces and 

torques exerted by translational motors and internal forces.  
 

 
 

(1) (1) (1)

3 1 3

(1) (1)

3 1

(2) (2) (2)

3 1 1

(2) (1) (2)

3 1

(3) (3)

3 1

(3)

3 1

( 1)

3 1

( 1)

3 1

( )

3 1

( )

3 1

( )

( ) ( )

( )

( ) ( ) ( )

( )

( ) ( )

( )

( )

( )

( )

x

x

x

x

x

x

x

x

x

x

F t N m ge

M t T t

F t N m ge

M t T t T t

F t N

F t M t

F t

M t

F t

M t









−

−

  −
 

− 
  −
 

− 
 
  

= = 
 
 
 
 
 
 
 
  

(3)

3

(2) (3)

( 1) ( 1) ( 1)

( 1) ( )

( ) ( ) ( )

( )

( ) ( )

( ) ( )

( )

m ge

T t T t

N m ge

T t T t

N m ge

T t

  

 

  



− − −

−

 
 
 
 
 
 
 −
  

− 
 
 
 −
 

− 
 −
 
  

              (75) 

 
The terms are: 

 
     the  respectively body

Force from gravity on the respectively body

Torque from the motor

Reverse torque from the previous motor

Normal force forN

mg

T

T

− =

=

−

=

=

 

 

The Equation of motion will be numerically integrated. It will 

produce a 3   1 n x  row vector with the next time step for the 

essential generalized velocity 1( )nq t + . 

 

The virtual work done by the generalized forces can then be 
expressed as: 

 

    ( ) ( )
T

W X t Q t =                               (76) 
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The B-matrix that relates the Cartesian velocities {Ẋ(t)} to the 

essential generalized velocities ( )q t , also relates the virtual 

generalized displacements {δ X̃(t)} to the essential virtual 

displacements  ( )q t  

 

     ( ) ( ) ( )X t B t q t =                             (77) 

 

The transpose of the above is used to rewrite equation (76): 

 

 ( )    *( ) ( )
T

W t q t F t =                           (78) 

 

Where the essential generalized forces  * ( )F t  are defined as:  

 

      * ( ) ( ) ( )
T

F t B t Q t=                              (79) 

 

By inserting the expressions obtained for the variation of the 

kinetic energy and the virtual work into equation (61), we obtain 

the basis for the equation of motion:  

 

         ( )
1

0

*( ) ( ( ) () ) 0 

t
T

t

T

 q t F tX t dtM X t  + =        (80) 

 

Equation of motion  
 

After performing integration by parts on (80), and accounting for 

zero virtual displacement at the endpoints, we obtain a second 

order coupled differential equation: 

 

      * * *( ) ( ) ( ) ( ) ( )M t q t N t q t F t   + =                (81) 

 

Where the following terms are defined: 

 

     ( ) ( ) ( )
T

M t B t M B t                             (82) 

        ( )( ) ( ) ( ) ( ) ( )
T

N t B t M B t D t M B t    +              (83) 

 
Solving (81) with respect to the list of generalized accelerations 

 ( )q t , yields: 

 

      ( )
1

* * *( ) ( ) ( ) ( ) ( )q t M t F t N t q t
−

   = −                 (84) 

 

This list of five equations, one for each generalized coordinate, 

will shortly be integrated numerically using the method of 
Runge-Kutta. 

 
 
 
 

SIMPLIFICATION OF MODEL 
 

An accurate simulation should account for gravity, normal 

reaction force and friction of motion.  This would require, for the 

sake of simulation, a module to assess if the robot snake has 
lifted off the table; and that, then determines the application of 

gravity and normal reaction forces and friction.  However, it is 

emphasized that this is an undergraduate student project. Thus, 

in this simulation, one may consider the snake moving in a zero-

gravity field with no friction. 

 
 
3D VISUALIZATION AND WEBGL 
 

WebGL (Web Graphics Library) is a JavaScript interface for 

rendering interactive 2D and 3D computer graphics.  

 
http://home.hib.no/prosjekter/dynamics/2019/robot/ 

 

VALIDATE THE EQUATION OF MOTION  
 
To validate and test the MFM, the following was done:  

 

We provided time-dependent polynomial functions for the angle 

motion and used that to obtain the associated moments from Eqn. 

(84). Then, we applied those moments to confirm the angles. 

 

We did this using RK4 numerical integration, to obtain the 
predicted motion of the robot. The accordion and cobra 

movement (ref.: Website) were given polynomial functions to 

simulate and validate 2D motion. The simulation is visually 

compared to the motion wanted, which will confirm the MFM 

and its application. To simulate 3D movement a spiral function 

was given as an input on the website.   Figure 2 presents a 

snapshot of the animation. 

 

 
 

Figure 2.  One snapshot of the Virtual Snake Robot 

 

 

 

 
 

 

http://home.hib.no/prosjekter/dynamics/2019/robot/
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BUILDING THE REAL MODEL 
 
 
 
 
 
 
 
 
 
 

Figure 3. Two snapshots of the Physical Snake Robot 

 
Robotic Integration 
 
To validate and test the MFM, we built a multi-link robot as 

shown in Figure 3. The robot provides a real physical system for 

comparison. 

 
Design method and criteria 
 
The multi-linked robotic system consists of multiple joints which 

are driven by electrical servo motors. The robot provides data 

during run time providing degrees on each joint. This is used to 

compare the robotic model to the theoretical simulation.  

 

Mechanical design 
 
The design of the robot consists of eight joints excluding the 

head and tail. The joints are connected with servo motors, which 
determines the angle of each joint in regard to the previous. This 

gives the robot a horizontal movement. In order to reduce weight 

and more efficient prototyping, the bodies where 3D-printed 

using polylactic acid (PLA). Finite element method simulations 

show that a thickness of 5 mm and a few strengthening features 

in the design, makes it sufficient to withstand the maximum load 

that the motors can exert on the frame of the robot. Overall, this 

structural design results in a robust, lightweight cylindrical frame 

construction. 

 

Hardware components 
 
The robot is controlled by a microcontroller sending pulse width 

modulation (PWM) signals to the servo motors. The width of the 

pulse determines the angle of the motor, which in turn determines 

the angle of the joint. The microcontroller contains the code 

necessary to control the motion of the robot. As power supply the 

robot has a battery pack containing rechargeable NiMH battery 

cells, with a total capacity of 8Ah at 7V. The microcontroller has 

a separate power supply to produce a stable 5V required to 

operate. 

 

Software design 
 
All software is written in the C language. The microcontroller 

contains the program controlling the motion of the robot. The 

different PWM signals given to the servo motors is the recipe for 

the sinusoidal formation. For each time-step a constant input of 

angle is given, resulting in a linear response of motion. The 

program writes a log file of data from the servo motors in a text 

document. 
 

Validation of the MFM  
 

The data from the servo motors contains the position and 

duration corresponding to each time-step of the movement. This 

way, the robot’s actual movement can be compared to the 

simulated results. A list of data and a corresponding graph for 

each joint of the robot and the simulation is put side by side for 

visual inspection.  

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 4. Graph showing the comparison between  

the robot and the simulation (MFM). 

 
CONCLUSION AND FUTURE WORK 
 

The linear curve from the output of the motors and the 

polynomial curve from the simulation intersects proximally at 

the same maxima. Because the two curves are of a different 

characteristic, the path will deviate. Thus, the initial conditions 

and the maxima which are the crucial intersection points can be 

compared using the two different estimations. Future work may 

contain a polynomial function for the motors to get a better 

assessment. 

 

To validate the 3D movement, one may observe that the RK4 
numerical analysis for the equation of motion gives a correct 

output as the intended path. Hence, the equation of motion holds 

for a multi-linked robotic system. For future work one may use 

the real-life forces from the robot to get a visual comparison to 

measure the deviation from the desired movement. Due to 

internal friction in motors in combination with environmental 

effects the desired path is assumed to deviate.  

 

Further, to obtain a more accurate motion of the model, it is 

possible to implement an artificial intelligence engine. The 

engine predicts the motion and adjusts the real-time feedback 
position.  
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The time rate of the B-matrix algorithm may be computed, as 

shown in the B-matrix. This will improve how to obtain the 

equation of motion for a generalized alpha-body multi-linked 

system.  

 
The MFM and the algorithms hold for 2D and 3D movement. 

For future work the control system may be improved, allowing 

the robot to move in three dimensions as simulated using 

JavaScript.  

 

This shows that a complex time-dependent 3D problem can be 

solved by undergraduates, which would be difficult using classic 

multi-body dynamics approach.  
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APPENDIX 
 

The time-dependent is removed from the rotation matrix, due to 

the comprehensiveness of the equation. 

 
Nomenclature for the B-matrix 
 
α = body 

m = row 

n = columns 

1, ,i j k  : 

 

 
(1)

1,1 1 1B R l e= −  (85) 

 

 1,2 1B e=  (86) 

 

 ( )(1) (2/1)

3,1 1,1 2 1 1( )B B R R l l e= − +  (87) 

 

 (2/1)

4,1 1

T

B R e=  (88) 

 

 ( )(1) (2/1) (3/2) (2/1)

5,1 3,1 3 2 1( )B B R R R l R l e= − +  (89) 

 

 (3/2) (2/1)

6,1 1

T T

B R R e=  (90) 

 

 ( )(1) (2/1) (3/2) (4/3) (2/1) (3/2)

7,1 5,1 4 3 1( )B B R R R R l R R l e= − +  (91) 

 

 (4/3) (3/2) (2/1)

8,1 1

T T T

B R R R e=  (92) 

 

 

(1) (1) (2/1)

1 2 1

( / 1)

( 1),1 12(1)

3
( 1/ 2)

1

3

( )

i
j j

i
m j

ii
k k

i

k

R l R R l l

R l
B e

R

R l



−

− =

=
− −

−

=

 − − +
 
   
  + 

=    
−  
   
   

   






 (93) 

 

 
( / 1)

,1 1

2

T

i i

m

i

B R e


−

=

 
=  
 
  (94) 

 

 
(2)

3,2 2 3B R l e= −  (95) 

 

 4,2 3B e=  (96) 

 

 ( )(2) (3/2)

5,2 3,2 3 2 3( )B B R R l l e= − +  (97) 

 

https://www.ptc.com/en/products/cad/creo/parametric
https://doi.org/10.1177%2F0306419017730633
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 (3/2)

6,2 3

T

B R e=  (98) 

 

 ( )(2) (3/2) (4/3) (3/2)

7,2 5,2 4 3 3( )B B R R R l R l e= − +  (99) 

 

 (4/3) (3/2)

8,2 3

T T

B R R e=  (100) 

 

 

(2) (2) (3/2)

2 3 2

( / 1)

( 1),2 33(2)

4
( 1/ 2)

1

4

( )

i
j j

i
m j

ii
k k

i

k

R l R R l l

R l
B e

R

R l



−

− =

=
− −

−

=

 − − +
 
   
  + =    
−  
   
   

   






 (101) 

 

 ( / 1)

,2 3

3

T

i i

m

i

B R e


−

=

 
=  
 
  (102) 

 

 
(3)

5,3 3 1B R l e= −  (103) 

 

 6,3 1B e=  (104) 

 

 ( )(3) (4/3)

7,3 5,3 4 3 1( )B B R R l l e= − +  (105) 

 

 (4/3)

8,3 1

T

B R e=  (106) 

 

 

(3) (3) (4/3)

3 4 3

( / 1)

( 1),3 14(3)

5
( 1/ 2)

1

5

( )

i
j j

i
m j

ii
k k

i

k

R l R R l l

R l
B e

R

R l



−

− =

=
− −

−

=

 − − +
 
   
  + =    
−  
   
   

   






 (107) 

 

 ( / 1)

,3 1

4

T

i i

m

i

B R e


−

=

 
=  
 
  (108) 

 

 

( ) ( ) ( 1/ )

1

( / 1)
( )

( 1),( 2) 1( )

2
( 1/ 2)

1

2

( )n n n n

n n n

i
j j

i
m n j nn

ii n
k k

i

k n

R l R R l l

R l
B e

R

R l




+

+

−

− − = +

= +
− −

−

= +

 − − +
 
   
  + =    
−  
   
   

   






 (109) 

 

 ( / 1) ( )

,( 2)

1

T

i i

m n

i n

B R e


−

−

= +

 
=  
 
  (110) 

 ( )( ) ( ) ( 1/ ) ( )

( 1),( 1) ( 1)( )n n n n

m n n n nB R l R R l l e +

− − += − − +  (111) 

 

 ( / 1) ( )

,( 1)

1

T

i i

m n

i n

B R e


−

−

= +

 
=  
 
  (112) 

 

 
( ) ( )

( 1),

n

m n nB R l e 

− = −  (113) 

 

 ( )

,m nB e =  (114) 

 

For ease, the B-matrix is repeated. 

 

 

3 1 3 1 3 1 3 1 3 1

3 1 3 1 3 1 3 1 3 1

3 1 3 1 3 1 3 1

3 1 3 1 3 1 3 1

3 1 3 1 3 1

3 1 3 1 3 1

3 1 3 1 3 1

3 1

1,1

2,1

3,1 3,2

4,1 4,2

5,1 5,2 5,3

6,1 6,2 6,3

7,1 7,2 7,3

8,1 8,2 8,3

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

[ ( )] 0 0 0

0 0 0

0 0

x x x x x

x x x x x

x x x x

x x x x

x x x

x x x

x x x

x

B

B

B B

B B

B B B

B t B B B

B B B

B B B

=

3 1 3 1

( 1),1 ( 1),2 ( 1),3 ( 1),( 2) ( 1),( 1) ( 1),

,1 ,2 ,3 ,( 2) ,( 1) ,

0
x x

m m m m n m n m n

m m m m n m n m n

B B B B B B

B B B B B B

− − − − − − − −

− −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 (115)

 


