

Faculty of Engineering and Science Department of

Computing, Mathematics and Physics

SENSORSHIP
Extracting and visualizing vessel data

Bachelor, Computing

Department of Computing, Mathematics and Physics

Faculty of Engineering and Science

Submission date: 03/06-2019

Number of words: 11437

John Bruhaug

Adrian Solheim

Petter A. Salberg

Daniel N. Pettersen

We confirm that the submitted work is independently produced and that all references and

sources are clearly stated according to Forskrift om studier og eksamen ved Høgskulen på

Vestlandet, § 9-1.

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

2

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Preface 6

Term List 7

1. Introduction 9

1.1 Goal and Motivation 9

1.2 Context 9

1.3 Limitations 11

1.4 Resources 11

1.5 Organization of the Report 12

2. Project Description 13

2.1 Practical background 13

2.2 Project Owner 13

2.3 Previous Work 13

2.4 Initial Requirements Specification 14

2.5 Initial Solution Idea 14

3. Project Design 15

3.1 Possible Approaches 15

3.1.1 Alternative Approach – Hybrid Approach with Electron and D3 15

3.1.2 Alternative Approach – Native C++ with Qt 15

3.1.3 Alternative approach – Native/Hybrid Approach with React Native 15

3.1.4 Alternative Approach – Native with Xamarin and C# 16

3.1.5 Alternative Approach – Data Science Approach with Python and Plotly 16

3.1.6 Discussion of Alternative Approaches. 16

3.2 Specification 17

3.3 Selection of Tools and Programming Languages 17

Vue.js 17

Node.js 17

Electron.js 17

D3.js 17

Git 18

3.4 Project Development Method 18

3.4.1 Development Method 18

3

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

3.4.2 Project Plan 19

3.4.3 Risk Management 19

3.5 Evaluation Method 21

4. Detailed Design 22

4.1 Architecture 22

4.1.1 External Architecture 22

4.1.2 Data Elements 22

4.1.3 Internal Architecture 23

4.2 Modules 24

4.2.1 Authentication 24

4.2.2 Vuex 24

4.2.3 Actions 25

4.2.4 State 26

4.2.5 Views 27

4.2.6 Dynamic Routing 27

4.2.7 Graphs 28

4.3 Use-Cases 31

4.3.1 Login Sequence Diagram 33

4.3.2 Navigation Vessels to Graph Sequence Diagram 34

4.3.3 Create CSV file Sequence Diagram 35

4.4 User Interface Design 36

4.5 The Application Workflow 37

4.5.1 Login 37

4.5.2 The Home Screen 38

4.5.3 Inside the Vessel 39

4.5.4 Print CSV 40

5. Evaluation 41

5.1 Evaluation Method 41

5.2 Evaluation Results 42

4

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

6. Results 43

6.1 Results According to the Project Owners 43

6.2 Results According to the Project Group 43

7. Discussion 45

7.1 Hybrid 45

7.2 JavaScript 45

7.3 Vue.js 45

7.4 Electron.js 46

7.5 Scrum 46

7.6 Data Visualization 47

7.7 Hard-coding and Dynamic Coding 47

7.8 MVVM Design Pattern 48

7.8.1 Model 48

7.8.2 View Model 48

8. Conclusion 49

8.1 Judgement 49

8.2 Further use 49

8.3 Further development 49

References 50

Appendix 51

A: Gantt Diagram 51

5

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Preface

This report is a summary of the bachelor project in Computing at Western Norway University

of Applied Science, by students John Bruhaug, Adrian Solheim, Petter A. Salberg and Daniel

N. Pettersen. The report has been written during the semester where the students have

been developing an application for Kyma AS. The report has regularly been updated during

the project.

During the last three months the project group has learnt a new programming language and

multiple different tools, and applied them to develop a dashboard application, and

connected this application to an API. The students encountered numerous bugs and issues

that had to be solved along the way.

The students would like to thank Kyma for the opportunity to work on such an interesting

project with the ability to choose the technology stack ourselves, and for the office space

with a beautiful view that was granted to us during the project’s duration.

We would like to give a special thanks to Trond B. Kvamme for checking in on us regularly

and giving us constructive feedback along the way. We also appreciate his comments and

suggestions on Github.

We would also like to thank our advisor Violet Ka I Pun for her efforts in guiding us through

this project and rigorously reviewing our reports and documentation throughout the project.

6

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Term List

REST-API ​- Representational State Transfer - Application Programming Interface is a way to

transfer the state of a programming object through a web service.

JSON ​- JavaScript Object Notation is a standard format for data. It is a way of sending data

stored in objects.

Vessel sensors​ - Sensors on the vessel collect data and sends it to Kyma. They store it in their

data center.

Technology stack​ - Are all the services, programming languages, and frameworks used to

build one single application

DOM​- Document object model. It is it defines HTML elements as objects.

SQL​ - Structured Query Language, used to access and manage some databases.

Front-end ​- The part of the application that the user interacts with directly

Back-end​ - the part of the application that is not directly accessed by the user. Workers in

the background

Performance data​ - Data about how the vessel is performing.

Paging ​- A page is what the user sees on the device screen at a certain point in the

application, such as a login page or a home page. Paging means reducing the number of

pages in the application.

Scalability​ - The ability to customize the screen size of the application.

CSV ​- Comma Separated Values. A form of formatting data when storing as file.

Github​ - A software development platform.

Granularity​ - The scale or level of detail in a set of data.

Repository​ - A data structure used to store metadata for a set of files and/or directories. It

also stores the history of changes made to the files and directories.

Sprint​ - A short time-boxed period where a team works to complete a set amount of work.

RAM​ - Random access memory, type of storage unit used in computers, which gives access

to all the saved data in a random order.

Data​ ​center​ - A building, dedicated space within a building or a group of buildings used to

house computer systems and associated components, such as telecommunications and

storage systems.

7

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

UI​ - User Interface: Determines if the application is presentable to the users of the

application/website.

UX​ - User Experience: Determines ease of use, a good UX makes sure the user knows what to

do at each point.

8

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

1. Introduction
1.1 Goal and Motivation

Kyma is a company that provides vessel performance monitoring tools for vessel owners and

clients. They make sensors in addition to collecting all the data from the vessels to a data

center and making the data available through their API, the Kyma API. Kyma’s clients have a

hard time understanding what the Kyma API is and how you can use it. Kyma wants a “proof

of concept” that illustrates the value and the usefulness of the API.

Therefore the goal of this project is to make an application that will demonstrate how one

can use the API so that everyone involved in the industry can understand the value of the

Kyma API, even if they have no computer background.

To achieve this we will make a dashboard application that will get data about vessels from

the data center through the Kyma API and display it in a way that the information can be

understood. Instead of getting loads of numbers for the owners to read, we take those

numbers and turn them into graphs that paints a picture of how the vessels performs, and

the status of the vessels.

The application is going to be lightweight and easy to use and will quickly fetch the data from

the API and store it on the device. Then it will show the data that is the most useful to the

owners visualizing it in different graphs. This will be a powerful tool for Kyma to show their

clients what can be achieved using the Kyma API.

1.2 Context

Kyma wants an application that they can use to show the value of the data they get from the

sensors of the vessels (see Figure 1.1) which can be fetched from the Kyma API. The

application will be a prototype to give clients a better understanding of the information that

the sensors of the vessels provides, giving them the ability to analyze the data and gain a

better understanding of the performance of the vessels.

It is valuable for a vessel owner to get the sensor data for multiple reasons. For instance,

they can use the sensor data to check if the vessels conforms to the specifications promised

by the shipwright. The vessel might perform worse generating extra costs. They can use the

sensor data to prove performance loss and request reimbursement. They can also analyze

fuel consumption of different types of fuel to try to maximize the vessel’s cost efficiency.

9

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Figure: 1.1 Sensors on a vessel[1].

An API is an interface that allows two software programs to communicate with each other.

The API defines the correct way for a developer to write programs that requests services

from an operating system or other applications.

“​The Kyma WEB-API provides an interface between the customer’s own computer systems

and the ‘Kyma Cloud’ which is a repository for the raw logging data received from the Kyma

Ship Performance System on-board their vessels.​”​[2].​ Kyma allows their users to connect to

their API. With this connection the clients have the ability to create their own applications

for fetching data on demand. The ‘Kyma Cloud’ is a data center that contains data provided

by sensors on vessels and is updated on fixed intervals.

Figure 1.2: The Kyma system[2].

10

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Figure 1.2 shows an overview of the Kyma System where our application would involve the

integration part. Our application mainly lies in the integration phase and serves as an

interface between the API and the clients, who can analyze and customize for their needs.

1.3 Limitations

The application is going to run on a Microsoft Surface. The hardware on Microsoft Surface is

limited in certain aspects. The biggest one being It has less memory than a regular laptop,

and we need to keep this in mind when we develop this application.

Lack of experience is a limiting factor considering no one in the project group has any

noticeable experience with the technology stacks needed to develop a desktop application,

or within such a large project.

Time is our biggest constraint because of the time it takes to not only develop the

application, but also learn the necessary tools. In addition, we also need to spend time

writing the report and documentation for the project.

1.4 Resources

Resources that Kyma provides to us is the access to a demo environment through their API,

office space for the project group, and feedback. Kyma has a lot of data that can be used in a

demo environment and this data is considered a resource that Kyma provides. In addition,

we have access to relevant expertise from Kyma and they also provide us with a Github

repository. This repository will be used to store our project code. Kyma can also follow along

with our work on this repository and give feedback.

Official documentation for our chosen technology stacks will be a key resource for us before

and during development. This documentation can be found online and will greatly assist us

in learning the technology stacks and finding solutions to problems that may arise during

development.

Our internal supervisor at HVL is also a resource that will benefit us, regarding the

administrative work from HVL including this report.

11

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

1.5 Organization of the Report

● Chapter 1 ​starts with an introduction to our project. This chapter contains our goals

and motivations, context, limitations and resources available to us.

● Chapter 2​ gives a description of Kyma, what previous work our project is built upon

and what the project owner`s initial requirements specification are. The chapter also

describes our initial solution idea.

● Chapter 3​ explores different approaches to this project where we list what

technologies we can use. Further we explain the project specification in more detail

and what tools and technologies we have chosen to use for this project. We also go

through how the project is organised and planned, how the risk is managed and how

the results will be evaluated at the end of the project.

● Chapter 4​ describes in the detail how the application is made and how it functions.

● Chapter 5​ explains in more detail what methods we used to evaluate the results.

● Chapter 6​ describes the project results with regards to the evaluation.

● Chapter 7​ contains a recap where we discuss our experience and results in detail.

● Chapter 8​ contain the conclusions of the project report.

12

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

2. Project Description

2.1 Practical background

Kyma has a data center that stores a lot of data about the clients’ vessels. They have an API

which can be used to retrieve the data from the data center. They want an application that

can retrieve this data and show it in an elegant and efficient way to the clients, to

demonstrate the value of the data.

2.2 Project Owner

The company was established as a consultancy in marine engineering and naval architecture

in 1965. They are specialists in vessel machinery and controls systems, and use

computer-based systems for steam turbine plants and motor driven vessels. They have

introduced several specialized products to the field of marine performance monitoring

Kyma AS has existed in its present form since 1. Jan 1995, as an independent share holding

company. Today the company delivers high quality products for performance monitoring to

all types of vessels, mainly freighters and tankers. Their products represent state of the art

technology. Quality assurance is continuous and a necessary process for efficient production

and development of new products. Kyma has highly qualified staff within all areas of their

production, and is located in modern production facilities in Bergen, Norway.

2.3 Previous Work

This bachelor project is highly connected to the data center which is developed and

maintained by Kyma AS. Data is retrieved through the Kyma API which is also developed and

maintained by Kyma AS.

The API allows users to log in and make request to the data center. The API will then respond

with data in a JSON format. The users can use this method to get data about their vessels.

13

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

2.4 Initial Requirements Specification

Kyma would like an application that achieves the following:

● The user can login to the application with an API-key.

● The user can use a GUI to choose what data to extract about their available vessels.

● Run on a Microsoft Surface Pro.

● Filter and only show the most useful data.

● Retrieve data and print out CSV file.

2.5 Initial Solution Idea

We imagine an application which can display the data in a meaningful way will make the

data more readable and easier to understand; we think this will be a good solution to show

the value of the data stored. The solution should have a simple and easy to use interface,

making the filtration of data as quick as possible.

Figure 2.1: Initial idea of what the application should look like. Image is slightly modified from

source to fit our project[3].

14

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

3. Project Design

3.1 Possible Approaches

There are a several approaches we have considered, each with different strengths and

weaknesses. Following is a deeper analysis of these approaches, followed by a discussion.

3.1.1 Alternative Approach – Hybrid Approach with Electron and D3

The chosen approach is working with Electron because the data retrieved by the API is

already in JSON format, and to work in JavaScript is the most suitable choice. It is easy to

port to a desktop environment, which suits the platform (Windows) that we are aiming for.

Electron has high level abstractions, through JavaScript libraries, that will speed up the

development process and allow us to produce a prototype in less time. As with React,

Electron has a lot of data visualization options to choose from due to the immense quantity

of JavaScript libraries. We intend to use the data visualization library D3 in the project.

Though all of these great qualities, its high level abstractions could have a negative impact

on our runtime efficiency, and applications built with electron are also large in size and may

not be able to run on smaller and older systems.

3.1.2 Alternative Approach – Native C++ with Qt

Qt in C++ would offer us a lot of power if that would be necessary for us. It also does include

its own data visualization library called Qt Data Visualization which uses OpenGl as its

hardware accelerator. Considering the context of our project in terms of running an

application on Windows, this would be a perfect fit for us with regards to running an

application on Windows. However, we felt that for our timespan it may take too long to

develop an application in Qt considering its codebase is in C++. C++ provides the ability for

more fine-grained control over how the program should run, but does require writing more

code and writing it more carefully.

3.1.3 Alternative approach – Native/Hybrid Approach with React Native

React uses JavaScript and has a strong connection to web application development.

However, it does not include the document object model DOM with HTML or styling for its

render process. It uses a virtual DOM which could potentially complicate things when

importing libraries that makes use of regular DOM. By using JavaScript the application would

also be able to support a lot of the libraries that Electron does in Node.js, such as our chosen

data visualization library D3. React native can be ported to several platforms with some

15

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

changes in our code because it is native and does need native elements to be specified for

each platform.

3.1.4 Alternative Approach – Native with Xamarin and C#

Xamarin is a cross platform framework built on the C# .NET framework. The main appeal of

the framework is that it can take advantage of platform-specific hardware acceleration,

which provides efficient performance. Our application does not need to be cross platform,

but it would facilitate our development process and it would be an extra bonus. Despite all

the benefits that Xamarin could provide us with a few downsides, of which the greatest was

that it has very high monetary cost. Another downside of it was that it does not do data

visualization as well as JavaScript.

3.1.5 Alternative Approach – Data Science Approach with Python and Plotly

Python was another very viable option with libraries like matplotlib and plotly. The Plotly

library makes it easy to handle JSON formatted data with extensive methods to plot the

data. Plotly is built on top of D3.js, which is a JavaScript library, and is easier to use and more

feature rich than matplotlib. However, this only gets us to data visualization. We would still

need an underlying framework to create the application to display the data visualization.

3.1.6 Discussion of Alternative Approaches.

The chosen approach for our project was a hybrid approach with Electron-Vue, and D3 as the

data visualization library. When choosing the approach, we had to keep in mind a few

factors, mainly its compatibility with JSON, omitting the data processing layer. Secondly, the

high abstractions of JavaScript allow a higher rate of development over time and allows us to

focus on the data visualization, rather than the visual layout and developing an efficient and

fast application.

Figure 3.1: Comparison model of our different tech stack approaches, red is bad and green is

good.

16

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

3.2 Specification

The application will have to be a desktop application that is able to run on a Microsoft

Surface. The user need to authenticate through a login page with an API key, which will

redirect into the main dashboard. The dashboard will show on entry a list of all owned

vessels linked to that API key. By selecting a vessel one would enter a monitor view with its

specific data. This view includes options for filtering, selecting and visualizing the data giving

the ability to analyse and gain new insight into the data.

3.3 Selection of Tools and Programming Languages

We are writing the application in JavaScript. JavaScript is a programming language that has a

plethora of frameworks and libraries. They are powerful tools which will be extremely

helpful in creating our application.

Vue.js

This is a framework which will help with the structure of our code, allow communication

between the different parts of our application.

https://vuejs.org/

Node.js

This is a JavaScript runtime environment which executes code outside of the browser. It will

help us with the running of our code and making the testing much more effective.

https://nodejs.org/

Electron.js

Electron is a framework, it allows for the development of desktop applications using both

front end and back end components. Electron uses Node.js, but has many additional features

making it easier to use for development.

https://electronjs.org/

D3.js

D3 is a JavaScript library for producing dynamic, interactive data visualizations in web

browsers. It makes use of the widely implemented SVG, DOM elements, and CSS standards.

This will help us in making the visual aspect of the application.

https://d3js.org/

17

https://vuejs.org/
https://nodejs.org/en/
https://electronjs.org/
https://d3js.org/

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Git

Git is the version control software we are going to use. It will allow us to have the latest

working version of our code readily available. It makes sharing changes and updating

progress easy and also shows a log of what has been done.

https://git-scm.com/

Chart.js

Chart.js is a JavaScript library for drawing graphs in web browsers like D3, but not as

powerful. Unlike D3, Chart.js does not manipulate DOM elements. It is therefore a lot easier

for us to implement. Chart.js is better suited for what this project needs because we will save

a lot of time implementing it and will barely notice the lost functionality of D3.

https://vue-chartjs.org/

3.4 Project Development Method

3.4.1 Development Method

We are going to use the development method Scrum which is an agile approach. It is flexible

and allows us to handle problems that might occur at the early stage of the application

development. It also allows us to add new parts and features to our running project code in

iterations. It helps maintain oversight of the progress and project code, and decreases the

chance it gets bloated and riddled with errors. Thus we think this is the ideal development

method for us.[4]

It also allows us to split the project into small tasks, which are easy to assign to each

member. Since we are 4 in our team, this will prevent us from working on the same parts

and getting in the way of each other. It also tracks our progress precisely.[5]

We generally work together in the same room, on different parts of the project. Since we

always are in proximity it is easy to ask each other for help and keep team members up to

date on how far along we are with our individual work. We can then easily see how far

behind or ahead we are of the schedule. This allows us to possibly change the next iteration

based upon the current condition. This is the incremental aspect of Scrum which we view as

vital to our project’s success.

Using such a method we avoid the pitfalls of the waterfall model. In the waterfall model a

working system is not implemented until the end of a project. This creates a situation where

the system cannot be tested until it is completed. The system is also only functional late in

the project’s life cycle and any problem is therefore detected very late. Due to our

timeframe we want to encounter and tackle our problems early in the life cycle.

18

https://git-scm.com/
https://vue-chartjs.org/guide/#introduction

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

3.4.2 Project Plan

In order to get a general idea of what needs to be done, we start with conversations with

Kyma, which will give us a clearer picture of what our project goals are going to be as well as

Kyma’s goals and specifications. In addition to this, we created a Gantt diagram (See

Appendix A) to stay on track with our deadlines at HVL and to make sure we keep our own

deadlines regarding the project.

To make it clear what the current focus is and to measure our progress, our project is split up

into 4 phases:

1. Pre-planning

2. Pre-project and prototype

3. Development

4. Handover and report

During pre-planning phase we choose which project to work on, do some administrative

work concerning the bachelor report and establish contact with our employer.

In the phase of the pre-project and prototype, we explore different solutions and

technologies, as well as work methodology. We also make a prototype that we can build

upon during the development phase.

In the development phase we decided to work iteratively, where each iteration is 2 weeks

long and after each iteration, we develop the application further. After each iteration we

want to have a fully functional version of the application.

In the phase of handover and report we focus on correcting bugs in the application to

produce the final version, and we focus on finishing the report regardless of the level of

completeness of the application.

3.4.3 Risk Management

A risk is an uncertain event that can have a negative effect on the project’s goals. The risks

need to be identified and classified, and we started this work in the pre-project phase, but

continued it into later project phases.

To make sure the risks are properly handled, we attempt to create a basic, functional and

working prototype the first week and ensure that we always have a working application at all

stages of development. Because of our limited experience working with larger projects we’ll

be taking use of Scrum as a development framework in accordance to the agile framework.

19

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Furthermore, when it comes to version controlling we will also be using git-flow as our work

method. It may slow us down slightly due to not having used it before, but that won’t be

significant since we’re new to working as a group together. We will save time over the

course of the project as our project has a strong development branch to work in and each

pull request being checked over before merged. Since we are working with iterations and

incrementally developing the application as a functioning product after all iterations, well

know if a risk is handled. Below is a table that shows the risks with the probability it will

happen, the impact it has on the project and a description of each risk.

Risk Probability Impact Mitigation

Sickness 0.2 0.3 Impact will depend on
severity of sickness
Other project members can
do the work the sick person
should do.
Scope of project can be
reduced by choosing to not
implement some features.

Complications of
setting up the
different
components and
developer tools

0.8 0.7 Get this done as soon as
possible, so we will
encounters possible errors in
the early stage. Ask Kyma
affiliates for advice.

Architectural
problems

0.3 0.4 Get a demo environment
running quickly.
Test rigorously.
Adapt.

Insufficient
knowledge

0.7 0.6 Consistently reading and
acquiring knowledge about
the different technologies.
Iterative development cycle.
Focus on having running
code, minimizing chance of
errors we have trouble
resolving.

Tiredness, poor
group moral

0.2 0.9 Help one another to stay
focused, and maintain the
energy. Meet often and
work together.

Table 3.1: Showing risks with probability and impact and how to tackle it

20

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

3.5 Evaluation Method

Having Kyma test our application would be a great way to get very useful feedback on our

project. Getting feedback from the vessel owners will also be a good way to evaluate our

project. The vessel owners have a lot of knowledge about what data is the most useful and

interesting.

From the initial requirements specification (2.4) we have a metric to show the correctness of

our project, that ranges from 1-3:

1. No features are implemented.

2. Some features are implemented, those that are implemented work.

3. All features are implemented and working.

The amount of evaluations we can perform are limited because of our time constraint of

three months. This means we will perform these evaluations during the end of the project.

We will make up for the lack of evaluations by having Kyma help us evaluate our project

continuously by receiving feedback on our work.

21

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

4. Detailed Design
4.1 Use-Cases

After our initial requirements we decided to have a use-case diagram like shown in Figure

4.1. The ​system​ is the application called “Kyma API App” and it involves 2 main actors,

primary actor: ​User​, and support actor: ​Kyma API​. The primary actor is the one that interacts

with the system and the support actor only takes a responsive part in the system and thus

cannot directly influence the ​system​.

Figure 4.1: Use-case diagram of system Kyma API App

The main entry point of our ​system​ is through ​login​ ​use-case. The ​Login​ requires another

use-case ​Verification​ that will get in touch with the data center through the ​Kyma API​. If

however the ​login​ ​fails the ​Verification,​ a ​Login Feedback,​ extends ​Login​ and prints out a

suitable message for the user.

22

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

After a ​successful​ ​login​ two other use-cases extends ​login​ to provide a ​Print CSV​ ​and​ Look at

Graphs​ use-cases. Through the ​inclusion​ of ​Get Vessel Data From Store​ the ​User​ ​is able to

look at the ​graphs​ displaying data fetched from the ​Kyma API.​ The data store includes a

predefined subset amount of data that are specified for the application. This showcases the

application as a tool to demonstrate the value of data that the API provides.

Unlike the graph use-case, the ​Print CSV​ ​use-case functions differently. Rather than getting

the data from our store of data we directly fetch it from the Kyma API. There are two

reasons for this: first is that ​Kyma API​ provides a already built in csv data format, but it

requires a new fetch of data. Secondly the data that is already fetched is only a small subset

of what Kyma stores, and if one wants a specific data type then one has to fetch it from the

Kyma API.

23

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

4.3.1 Login Sequence Diagram

Figure 4.2 shows the sequence diagram of the login use-case and provides a more detailed

view of how this process takes place. As with all systems they must be acted upon by an

actor and in our case it is the ​user​ that starts with the ​input​ of the user’s email and

password. The input is then ​validated​ with a function checking for valid inputs, checking

whether the email is the correct format, and if each input field is provided. If this is not the

case then an error message will be displayed as feedback to the user.

If all inputs are valid the input will go through an authentication process where the data will

be passed to the ​Kyma data center ​requiring a ​200 OK​ return message. If the input is not

valid then a ​401 error​ message will be returned instead. Then this will show another error

message as feedback for the user. Lastly if all parts are returned with the accepted values the

Login.vue will switch the main window to the ​Home Dashboard​ and we have a successful

login.

Figure 4.2:Sequence Diagram of Login

24

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

4.3.2 Navigation Vessels to Graph Sequence Diagram

Figure 4.3 provides a detailed picture of a user viewing a graph in our application. It shows

the use-cases from starting up the application until a ​Graph​ is shown on the screen. The

Login​ as it was shown earlier is now simplified to only show what happens after a successful

login.​ The view is passed to the ​Router​ and routed to the ​Vessel.vue​ component. This

component allows a ​User​ to click on a list of ​vessels.

When the user clicks on a vessel the corresponding vessel id is passed to the ​Router, ​the

Router​ creates a path with the id and routes to it. The ​User​ is then presented with the

Vessel.Vue​ component which the ​Router​ has routed to. This is accompanied with the id as an

URL parameter so that it can be applied to receive the corresponding correct data for that

vessel earlier referenced as dynamic routing. The vessel view will show the correct data for

the vessel the ​user​ has selected.

Figure 4.3: Sequence Diagram of Navigation through the Application to viewing a graph

25

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

4.3.3 Create CSV file Sequence Diagram

The final use-case of our application, seen in Figure 4.4, will allow the ​user​ to create a

customised CSV file through the use of our ​system​. This will take place in the Csv.vue

component where the ​User​ can specify a vessel from the current vessels that are in our data

store called Vuex state. The specified vessels will be returned and represented in a ​drop

down menu​ for the ​user​ to select.

When a ​user​ has selected a vessel a new get request will be passed onto the data store and

will return the ​log variables​ for this vessel. The user can pick and choose from this list of log

variables. After log variables are selected the user can press a button to confirm their

choices. The ​User​ must also pick a granularity. Then the Csv.vue component will send a

batch(many variables in one) get request to the ​Kyma data center​ with a specifier of CSV

return and get a reply with the data ready for file output.

The file output needs to be handled on the back-end ​main thread​ in Node.js because we are

working with JavaScript and it can not talk to hardware or file systems without using Node.js.

After the file has been created a feedback is returned to the ​User. ​This is to confirm that a

file has been created and to provides the path to where it is located in the filesystem.

Figure 4.4: Sequence Diagram of creating CSV file

26

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

4.2 Architecture

4.2.1 External Architecture

"​REST stands for Representational State Transfer. It’s an architectural pattern for creating

web services. A RESTful service is one that implements that pattern.​"[6] The Kyma API follows

the REST pattern. This architectural pattern is described by Roy Fielding[7] as built on the

HTTPS following a number of constraints: Client-Server, Stateless, Cacheable, Uniform

Interface, and Layered System. The external architecture of our application consists of a

RESTful Server run by Kyma at their data center that takes in data from all the vessels

containing their sensors and makes them available to us through their API.[8]

4.1.2 Data Elements

The data format that the API returns is in the form of JSON (JavaScript Object Notation). The

actions that are available to us are HTTPS GET requests in the form of three main queries as

seen in figure 4.5:

● “/getVessels” provides all vessels with their id and names.

● “/getLogVariables” requires a vessel id and returns the sensor variables for that

vessel id.

● “/getLogData” requires a sensor id, granularity and time span as parameters and

returns all the data from that sensor in the given time span.

Figure 4.5: Visual Client Kyma communication with HTTPS GET requests. Flow is from bottom

to top.

27

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

4.2.3 Internal Architecture

The design of our application is composed of the “Model View View Model” (MVVM) design

pattern used in each Vue component (see Figure 4.6). This pattern is composed of three

parts: a View, a Model, and a View Model communicating in between. This pattern came

naturally to our application because we chose the framework Vue.js.

Figure 4.6: MVVM

As seen in the Figure 4.5 we can see our View is composed of DOM elements just like regular

websites. Our View Model, as seen in the figure, is the components that we will use for each

specific part of our application that will be handling data to be viewed on screen, such as

generating graphs. They will be altering the DOM elements in the index.html file.

Our data part or Model, shown in Figure 4.6, of our application consists of a store of data

represented using Vuex state management pattern. This will be explained more in depth in

chapter 4.3.2. Vuex consists of having data stored as a global state that is available for all

components to use. There are layers of watchers both when putting data into state and

retrieving them from state so that every part of our application that will use these data will

be reactive to changes.

28

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

4.3 Modules

4.3.1 Authentication

The authentication part is handled by Kyma’s data center. As seen in Figure 4.7 the

application sends a regular HTTPS request for JSON data with the email and password the

user has typed in, and checks whether a status code 200 is returned. If status code 200 is

returned as a response, the user’s credentials are valid and the application redirects the user

to the home screen of the application.

Figure 4.7: Login Authentication returns either 200 OK or 401 Unauthorized

4.3.2 Vuex

Vuex serves as a centralized store for data that components throughout the whole

application has access to [9]. It is a source of the ​current​ ‘truth’ for the application. Each

component in the application has access to this data store. This is why graphs can be located

anywhere within the internal structure of the app. All graphs has this store of data available

and this data will be up-to-date. Vuex comprises of actions, mutations, state, and getters.

Actions and mutations ​updates​ state. State contains the data that all components in the

application can access. Getters provide components with functions to easily retrieve data

from state.

29

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Figure 4.8 below shows an overview of the Vuex cycle. Each part is explained more in depth

below:

Figure 4.8: How the View uses Actions and States from Vuex store

4.2.3 Actions

Actions contain functions that return data that state should store (see Figure 4.8). This

involves updating current state data or fetching new data from an API. Different events

within the application will trigger an action, and an action may trigger another action. Upon

login, an action is dispatched to fetch data about all vessels associated with the current user

credentials. Nested actions are dispatched subsequently to gather all relevant data for the

vessels.

Fetching data from the Kyma API is done through custom functions in Actions. These

functions take arguments that are concatenated into complete URLs which are then used as

API calls (see Figure 4.9).

30

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Figure 4.9: Fetch function (Actions)

These API calls return a payload of JSON data. Instead of storing it directly to state the data is

committed and sent as a payload to Mutations (see Figure above).

Figure 4.10: Update state variable with payload (Mutations)

Mutations contain functions that take data as arguments (see Figure 4.10), and store them in

state. Mutations serve as an interface between Actions and state to update state in a

predictable manner.

4.3.4 State

The application stores vessel data in a global state (see Figure 4.8) after an initial fetching

process upon login. This makes it easier to populate graphs in different vessel dashboards

with data. Instead of passing data downward into nested child components we have a global

singleton, a shared global state of data. This structure is less complex and easier to maintain.

No matter how nested a component might be it doesn’t rely on the parent component

passing the correct data to it, and the parent component doesn’t need to manage a lot of

data to supply to its child components.

31

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

4.3.5 Views

Views are the pages the user can see (see Figure 4.8). Under the hood it’s all just one page

that can change drastically based on the user’s interaction. Views are composed of

components. A vessel dashboard (view) consists of multiple graphs (components). Every

component is reusable for different vessel dashboards. The only difference is that the data

changes to match the current vessel.

4.3.6 Dynamic Routing

All pages, or views, in the application correspond to a path, much like a regular web page

URL. The first page upon login is an example of this, which shows a selection of available

vessels. This part of the application corresponds to the path ‘/vessels’. Dynamic routing

allows different paths to point to the same route, and object attributes to be part of a path

[10]. After clicking on one of the available vessels the new path will look like this ‘vessels/1’.

The last parameter in the path corresponds to the vessel’s id attribute. This makes for a

generic vessel dashboard where the current vessel can be identified using the path. No

matter which vessel you click on you end up at the same route. However, by reading the

route parameter we find which vessel we are currently viewing. This is important, because

the id of the vessel can be used to retrieve the correct data and display it in graph

components. The vessel dashboards are in actuality just one dashboard component that

knows how to retrieve the correct data for each vessel.

Figure 4.11 illustrates how each path routes to the same vessel dashboard component (this

is a route), and how the vessel id determines which data will be displayed in that

component.

32

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Figure 4.11: Dynamic Routing

4.3.7 Graphs

This chapter will explain in more detail how the graphs get the data it needs from the JSON

objects in state and renders the graphs. For reference some additional example graphs can

be viewed in the section 4.5 figures 4.21 and 4.22.

Graphs are individual components consisting of different types including line charts, bar

charts and pie charts. To get the information needed to make the graphs, the components

uses methods from the getters component to gain access to the JSON formatted data that is

stored in Vuex state. Graphs iterate through the JSON objects and pushes the necessary data

into arrays. It does this for all the data values that are going to be drawn, creating several

different arrays.

Figure 4.12: Iterates through a fuel object in a nested for-loop and creates arrays of data

points to be plotted.

These arrays now contain the data points for our graphs. The arrays are processed

differently for each graph. In the line chart each value in the array are simply plotted and a

line is drawn between the value points. For bar and pie charts the arrays are summed up,

and the sum of each array is then displayed as a total value. This sum can be the total fuel

consumption in a given time. Each bar on a bar chart can represent different fuel types or

fuel burners, such as generators or boilers (see Figure 4.13).

33

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Figure 4.13: Bar chart showing total fuel over a month with variable names on top.

The graphs also contain names of the variables. The names are stored in JSON objects and

are retrieved via a getter and pushed into an array. The same way as the data points, only

difference being that all the different names are pushed into the same array. The names are

displayed on top of the graphs (see Figure 4.13).

Figure 4.14: Fills an array with variable names

Some of the graphs do not need multiple labels along the x-axis since they only show a sum

of data points in a given time frame. However, some of the graphs has time labels along the

x-axis. For instance, the line chart shows the speed by time.

34

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Figure 4.15: Line chart showing the speed of a vessel with dates along the x-axis.

This function iterates through a gps JSON object. Each data point is stored in the gpsSpeed

array, and each time stamp, which is the key of each data point, is stored in the labels

array.The array containing the time labels will be the x-axis.

Figure 4.16: Function for getting gps data and labels.

The renderChart (see Figure 4.17) function which render the graphs takes an object as an

argument. This object should contain all the necessary variables for the chart to render

properly. This includes the data array, label array, and the names of the variables. The data

array is plotted on the y-axis. The label array labels the x-axis with the data points’

corresponding time stamps. Lastly, the array of names shows which variables the chart is

currently displaying. The object contains other options such as coloring for each variable.

35

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Figure 4.17: Showing renderChart object, including options for coloring

36

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

4.4 User Interface Design

Creating a brand new and intuitive UI and UX takes time and knowledge about the subject,

and these types of resources are lacking in the project group, as stated before in Chapter 1.3.

Therefore, we require an easy and fast method of implementing a good UI and UX. To do

this, we looked at Google’s material design.

Material design contains a set of principles, guidelines and tools for creating good design.

These principles and guidelines are implemented in many applications and devices that

everyone uses daily, such as Google’s mobile applications and websites like YouTube and

Slack. Utilizing material design will create an intuitive user experience for our application

thus ensuring a good UX. For instance, the icon at the top of our navigation drawer is called a

hamburger icon (see Figure 4.18), which can be seen in almost any application today. This

icon is used to indicate that this is a menu and the user can click on it to reveal the menu or

minimize it. We also made all the clickable components highlighted when a user hovers the

mouse over them, indicating that these components can be interacted with.

We have chosen to implement material design in our application, by using the Vuetify

material design component framework for our UI design. Vuetify provides us with all the

graphical components we need to make our design and it is made with Vue so it fits our

application well[12]. The Vuetify graphical components are also visually pretty in our

opinion, thus very little modifications on these components are needed. This means we can

implement a good UI in a time efficient manner. It also helps us in regards to paging and

scalability [11].

Figure 4.18: Showing the navigation drawer minimized on the left and the navigation drawer

extended on the right.

37

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

4.5 The Application Workflow

Here we show how the application works, including what the user can do, and the features

that the user can interact with.

4.5.1 Login

When the user opens up the application, he/she is greeted by the login screen. The user

must be authenticated with a user id and a password. These user credentials are provided by

Kyma, where the user id is the username (email account) for the Kyma Online portal. Login

happens when the login button is clicked or the enter key is pressed (see Figure 4.19).

 ​Figure 4.19: The login page

38

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

4.5.2 The Home Screen

When the user has logged in successfully they get shown the home screen (figure 4.20)

which contains a grid-list of their vessels. From here he/she can navigate to a specific vessel

or see current speed about his/her vessels within the vessel cards. The navigation drawer is

on the left side of the screen, with three buttons: one to go back to the list of all vessels, one

to a page where the user can print out a CSV file of the data, and one to log out of the

application. The navigation drawer is visible anywhere on the application, except the login

screen, and can be resized by clicking the top icon in the navigation drawer.

Figure 4.20: The home screen

39

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

4.5.3 Inside the Vessel

When the user navigates to a specific vessel, they get the page for that specific vessel and a

default graph is shown. From here he/she can choose a graph with a drop down menu. The

time frame is chosen via the date picker and it specifies the date for all graphs (See Figure

4.23). The graph will then be visible with the specified time frame. If the user wants to hide a

variable from the graph, they can click the name of that variable at the top of the graph. By

clicking on the ​Vessels​ button in the navigation drawer the user can go back to the home

screen, or do so by clicking the ​kymaAPI​ logo on the top left corner (See Figure 4.21 and

Figure 4.22).

Figure 4.21: Inside a vessel, line chart that shows the speed of the vessel.

Figure 4.22: Inside a vessel, bar chart that shows fuel consumption.

40

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Figure 4.23: The Date picker. When the input field is clicked on the left picture the calendar

on the right picture is shown.

4.5.4 Print CSV

If the user clicks on ​Print CSV Log​ he/she is presented with a page where he/she can

download a CSV file of the data. The user can choose for which vessel they would like to

download data, the granularity and timeframe. The user chooses what log variables he/she

wants by clicking the checkboxes to the left, and by clicking the top checkbox they can select

all log variables. On the bottom right there are three buttons: the leftmost one enables the

user to choose the amount of log variables to show on the page, and the two arrow buttons

to the right allows the user to go to the next page or previous page of log variables (see

Figure 4.24).

Figure 4.24: The download CSV page

41

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

5. Evaluation

5.1 Evaluation Method

Our intended method of evaluation is an approach where we receive continuous feedback

from our project employer and the vessel owners. We wanted to receive the comments after

each development sprint and after project completion. The feedback we received would be

valuable evaluation data we could use to implement continuous changes. The goal of the

evaluation is to use the evaluation data to add improvements and fix issues during the

development lifecycle. This would help us develop the right product for Kyma.

We evaluated the product less thoroughly than initially intended. Our method included

continuous feedback from our project employer. We had a formal evaluation near the

completion of the project where we had an application showcase for Kyma. This is where we

got our evaluation data.

On the Github repository, where we store all our project code, we utilized sprints so that our

project employer could follow along with our development and give us feedback when we

updated the project. Our project employer also provided github issues with features they

wished to have implemented in the application. In addition, we had good communication

with our project employer in our office space at Kyma, where we could show our application

during development when our project employer had time to see it.

42

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

5.2 Evaluation Results

Below are the requirement scores we have given the application adhering to the initial

requirements in Chapter 3.5.

Figure 5.1: Results from our initial specification and evaluation score for the application

43

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

6. Results

6.1 Results According to the Project Owners

The project employer, is our main source for evaluating this project. During a showcase in

the later stages of the project the product was shown and was well received. We received

some feedback for initial requirements that were not met and possible improvements to

implemented features.

The positive feedback the product received was praise for us being able to get a working

product in a short time. We were able to achieve this because of our choice of frameworks.

The frameworks were specifically chosen, despite the lack of experience in it, for the purpose

of getting a working product quicker.

Furthermore we received compliments on colorscheme and general design, though that had

room for improvements. Specifically on the homescreen we had cards of each vessel with

information of current time specific data such as speed, but this currently only works for the

demo environment. Also some of their customers had up to 70-140 vessels, with that layout

it would not be a good design for the user. It was suggested that a list could be chosen when

a user had a lot of vessels. Another improvement would be to sort vessels into categories

based different values.

Our application only works for the demo environment. Initially Kyma would have liked the

application to work for several environments. A user should have been able to login with a

specified API-key and view their vessels and data from the Kyma data center, but we did not

succeed in this because we developed it specifically for the demo environment. Why we

developed it specifically for the demo environment will be discussed more in depth in

Chapter 7.

6.2 Results According to the Project Group

Considering the main goal for the project and the requirements for the application, we feel

that we have created a solution that is partially successful. Our solution is a dashboard

application designed to work with Kyma’s demo environment. We feel this is a good enough

solution for Kyma to show the value of their API and data it provides to the vessel owners.

The dashboard does not work with other API keys than the demo environment. However,

some parts of the application are more dynamic than others. The Print CSV component can

work with other API keys with little change to the code. However, the core application will

need a lot of rewriting to work with other environments.

44

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

The application contains components to visualize the incoming vessel data from the API. The

user can select which vessel to view data for, and specify data in between two dates. The

application fetches a subset of the available data from the Kyma data center. This is ideal for

the application to run on a Microsoft Surface because of a small amount of RAM in

comparison to more powerful laptops. However, the fetched variables are restricted to a

predefined default set of variables picked by the project group instead of the user being able

to pick themselves. Through discussions with Kyma we found that this was a good solution,

because it does not prevent them from showing the owners or clients the value of the API

and the data it gives access to. This makes the application less flexible, but makes it run

smoother.

45

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

7. Discussion

7.1 Hybrid

Our reason for going with a hybrid approach, instead of a native or web approach, was

rooted in the fact that the development process was limited by time constraints. Hybrid

applications run inside a native container, and uses a browser engine to render HTML and

process JavaScript. Hybrid applications are generally faster to develop than their native

counterparts. A fast and very efficient application wasn’t part of the core requirements

which also strengthened the choice of a hybrid application. Speed and efficiency of the

application is often the tradeoff one has to pay for choosing a hybrid approach.

The team didn’t have any experience in developing hybrid applications prior to this project.

This led to the initial phase consisting of a lot of reading and doing research. We managed to

develop and add all the minimum features (login, graphs to visualize json data, csv download

option) in the time frame we were given, and felt we spent a good amount of time producing

meaningful code. In conclusion, we agree that this approach was the best approach

considering the alternatives and the requirements for the application.

7.2 JavaScript

The project group picked JavaScript as the best choice for developing this dashboard

application. This went well with the data that is fetched from a REST-API. The data is in JSON

format which is a language-independent data format, but derived from JavaScript. JavaScript

therefore has a ton of support for working with and manipulating JSON data. C++, C#, and

Python were also discussed considering no one in the project group had any experience with

JavaScript. However, JavaScript has a lot of frameworks that we took advantage of to launch

the development process and propel the project forward quickly.

7.3 Vue.js

Vue is a framework that makes the code more structured and maintainable. It divides pieces

of the program into logical reusable components. This leads to a more organized coding

environment that is easier to conceptualize and work with. The use of frameworks like these

is the reason JavaScript is a good choice even without a lot of experience in the language.

46

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

The Vue philosophy is to contain lean and reusable components. We started out following

this development philosophy, but as time constraints grew our focus shifted from following

this philosophy to just making features work. As a consequence of this our code got bloated.

This caused our code to become harder to maintain, have lower reusability, and scale poorly.

If we had more time we would refactor large parts of our code and rewrite functions to have

one purpose and one purpose only.

7.4 Electron.js

Electron was the first framework we decided to use. It allowed us to transform the

application from a page hosted in the browser to its own desktop application . It took a good

amount of time in the starting phase of the project to learn this framework, even though we

did not use a lot of its functionality.

7.5 Scrum

We chose an agile development method that is iterative and incremental. The two

methodologies we considered were Rational Unified Process (RUP) and Scrum. We ended up

with Scrum because of its flexibility and its short sprints. Scrum allowed us to narrow the

planning down to a week by week basis. With the team’s lack of experience we found it hard

to establish a detailed long term plan, and with Scrum’s short sprints we had more

opportunities to readjust the course of the project.

Scrum gave us the flexibility we needed, but over time things weren’t planned ahead as

much. The team would have benefited more from a stricter plan, or with a planning strategy

with less improvisation involved. The sprints weren’t followed as rigorously as they could’ve

been. This could have been fixed by appointing a project leader. The project leader should

have delegated tasks and held other members accountable for the task and deadlines they

received. This could have lead to the development methodology being enforced more

directly and we could have planned ahead more and managed our time more efficiently.

47

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

7.6 Data Visualization

From the beginning we were really impressed with the D3.js library and its data visualization

capabilities. It seemed to be able to provide all the functionality we wanted to visualize data

and a lot more. After sticking to it for a while we noticed how little we accomplished over a

fair amount of time. The learning curve was a bit steeper than we expected. To further

complicate things, D3 bind data to the Document Object Model (DOM), while at the same

time Vue.js uses its own virtual DOM. This complicated things to a point where we agreed

we had to look for options.

Chart.js became our data visualization library of choice. It does provide less visualization

capabilities, but still way more than we needed. The effects were immediate and suddenly

we had some graphs that we were happy with.

7.7 Hard-coding and Dynamic Coding

As programmers we always like to develop code that is dynamic. Dynamic solutions can

adapt to changing input without the need for a developer to step in. Kyma wanted a demo

application for their demo environment, but was also interested in a solution which could be

deployed outside of the demo environment. To achieve this one would have to keep

hard-coding to a bare minimum. We started off the project with the intention of producing a

dynamic solution that could adapt to and load data from any API key. By developing dynamic

interfaces the developer doesn’t have to change the code when the input or “environment”

changes.

Throughout the development process the ideas and solutions we came up with were all

rooted in a dynamic dashboard application. However, as time went on we had to

compromise between developing a dashboard that works for other environments outside

Kyma’s demo environment, or create a better application for the demo environment only.

Considering a demo application for the demo environment was the main task, we went

ahead and made that our main focus.

To make the dashboard application more dynamic we would have to spend more time in

developing dynamic interfaces within the application to handle the different amounts and

types of log-variables, and a changing number of vessels. This involves staying within the

limit of acceptable RAM use, and having graphs respond correctly to missing variables, as

well as extra variables. This is something we could have spent more time hashing out next

time early in the project.

48

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

7.8 MVVM Design Pattern

There were struggles in getting used to the framework and ways of working with it that we

had decided. At first the group had little idea of how the language worked and how things

would come together, thus it took a while to get a understanding of the architecture that we

would choose. We decided on MVVM because of its easy integration with our chosen

framework, Vue. This in general worked well to serve our purpose.

7.8.1 Model

We had a bit of trial and error with how we came to the final iteration of how the model was

applied. First we tried to keep separate JavaScript classes being our model. One JavaScript

class had control of retrieving the data from the data center, while another JavaScript class

had the role of being our data structure in the form of JSON.

We implemented this partially where we had a separate file for storing the API-keys in JSON

temporarily to avoid sharing it online during our development. The file getData.js, had

responsibility of all our API-fetches. Before we got to the point of creating a fully fletched

data structure for the input data, we looked into a more formal data structure framework.

We had two possibilities in mind, SQL or a Vuex state store. We looked into SQL with sqlite,

but decided against it because of having to perform another step of converting the data from

JSON to sqlite. So finally our choice of model fell on Vuex.

7.8.2 View Model

Our view model was made up of Vue components. The components are made up of 3 parts:

a template of html for the static elements, a script part of JavaScript for the dynamic

elements and data handling, and a style for the css styling of the components. We used

mainly the template and script part of the vue components and let Vuetify take care of the

styling for us. To create a component went generally very well for the whole team, however

to use them correctly to their real purpose was harder to implement. A Vue component are

made to be small and to perform well on one task and that task only. If a task is repeated

that part is supposed to be refactored out to create more specialised components. After

development had been going for a while the project started to have a lot of duplicate code

and got bloated. As such it became hard to maintain. In generality we kept the overall arch

of the architecture.

49

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

8. Conclusion

The goal of this project was to make an application that will demonstrate how one can use

the Kyma API so that everyone involved in the industry can understand the value of it and

the data it provides, even if they have no computer background.

8.1 Judgement

We feel this goal has been achieved even though the application does not fulfill all the initial

requirements completely. We think a person with no computer background will through the

use of this application be able to see the value of the Kyma API and the data it gives access

to. Therefore we have concluded that we have successfully made a tool that Kyma can use.

8.2 Further use

Kyma stated that they could potentially use parts of the application or code in another

solution they’re developing. Kyma can also use this application to show to clients or vessel

owners.

8.3 Further development

If this project were to be developed further the main focus should be making the application

more reactive and dynamic. Kyma wanted the application to work for environments other

than the demo environment. This would require an overhaul to some of the core aspects of

the code. The code would need to be refactored to make it more scalable and maintainable.

50

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

References
[1]Marshipengineering. (2019). [online] Available at:

https://www.marshipengineering.com/products/ship-performance-monitoring/kyma-as/ky

ma-ship-performance-monitoring-and-tools/ [Accessed 08 Apr. 2019]

[2]Kyma.blob.core.windows.net. (2019). [online] Available at:

https://kyma.blob.core.windows.net/public/downloads/Kyma%20Online%20%20API%20-%2

0brochure.pdf [Accessed 30 May 2019].

[3]Zhang, L. (2017). ​The image that gave us the idea for our solution​. [image] Available at:

https://github.com/njleonzhang/element-ui-pro [Accessed 18 Mar. 2019].

[4]Scrum.org. (2019). What is Scrum?. [online] Available at:

https://www.scrum.org/resources/what-is-scrum [Accessed 30 May 2019].

[5]Scrumstudy.com. (2019). Phases and processes in Scrum project| SCRUMstudy. [online]

Available at: https://www.scrumstudy.com/whyscrum/scrum-phases-and-processes

[Accessed 30 May 2019].

[6]Goebelbecker, E. (2019). REST vs RESTful: The Difference - NDepend Blog. [online]

NDepend. Available at: https://blog.ndepend.com/rest-vs-restful/ [Accessed 30 May 2019].

[7]Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software

Architectures. Doctoral dissertation, University of California, Irvine, 2000.

[8]Anon, (2019). [online] Available at:

https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest [Accessed 30 May

2019].

[9]Vuex.vuejs.org. (2019). What is Vuex? | Vuex. [online] Available at:

https://vuex.vuejs.org/ [Accessed 30 May 2019].

[10]Dynamic Routing (2019). Dynamic Route Matching [online] Available at:

https://router.vuejs.org/guide/essentials/dynamic-matching.html[Accessed 30 May 2019]

[11]UX Planet. (2019). Designing for PC Apps. [online] Available at:

https://uxplanet.org/designing-for-pc-apps-4554d8a0aa85 [Accessed 30 May 2019].

[12]Vuetifyjs. (2019). Vue.js Material Component Framework — Vuetify.js. [online] Available

at: https://vuetifyjs.com/en/ [Accessed 30 May 2019].

51

Faculty of Engineering and Science

 Department of Computing, Mathematics and Physics

Appendix
A: Gantt Diagram

52

