

BACHELOR THESIS:

H.264 VIDEO COMPRESSING ON FPGA

Ngoc Khiem Doan

Department of Electrical Engineering

 31. May. 2019

Document Control

Report title

H.264 Video Compressing on FPGA
Date/Version

31. May. 2019/0.16
Report number:

BO19E-11
Author(s):

Ngoc Khiem Doan

Course:

HEEL16
Number of pages including
appendixes

27
Supervisor at Western Norway University of Applied Sciences

Eivind Vågslid Skjæveland
Security classification:
Open

Comments:

We, the authors, allow publishing of the report.

Contracting entity:
Archer BTC

Contracting entity’s reference:

-

Contact(s) at contracting entity, including contact information:
Tarjei Rommetveit
Tarjei.rommetveit@archerwell.com

Revision Date Status Performed by

0.11 02.05.2019 First issue Ngoc Khiem Doan

0.12 25.05.2019 Revised issue Ngoc Khiem Doan

0.13 30.05.2019 Corrected index and numbering Ngoc Khiem Doan

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 3 of 27 31.05.2019

Preface

Many years ago, there was a stream of refugees from Vietnam to every country all over the world.

Norway, a far north, cold and peace kingdom opened its arms to my people, including my aunt’s little

family. After arriving here, my uncle and aunt have worked very hard for their living, and in some way

to repay this beloved country for helping them when they were most desperate. Four years ago, they

used most of the money they had saved up helping me and my cousins take our bachelor’s degree

here. Just before we started our first school days, my uncle said to us: “Study good, do your best and

help me repay Norwegians for what they have done to us.”. So now I am here, finishing my bachelor’s

degree and fulfilling my uncle’s dream.

Firstly, I would like to express my honor to be able to work in this project. As an engineering student, I

understand how a good system is designed. It’s a long progress of designing, testing and upgrading. I

hope my little work could be a part of big improvements, which is the goal of engineering: Always

improve and never settle.

I would like to thank my tutors: Eivind and Øyvind. I know that it takes a lot of patience to work with

me – a foreign student who can barely speak Norwegian. Thank you very much for your help, your

advices and all.

To mom and dad. Thank you for everything. To have a son who takes two bachelor’s degrees in a row

is surely not something you had ever thought about, but I have finished anyway.

To Phuong, my beloved soulmate, my best friend, my supporter. Thank you for standing me all the

time, your support whenever I failed, your love and your delicious dishes.

To uncle Cuong, aunt Tuyet and my cousins, Huy Anh and Huy Em. Thank you for having me here.

Thank you for treating me like your son and brother. I myself always think of you as my second family

here in Norway.

Khiem Doan

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 4 of 27 31.05.2019

Summary
At the beginning of this project, the goals were set quite ambitious. The currently model of SPACE

system from Archer BTC had already been a very high performance one. But realizing the amount of

received data and the speed information being transferred are not match to each other, Archer

decided to study on a new data compressing algorithm that can utilize so much data from the sensor

that possible.

The project is divided into three main stages:

1. Finding good algorithm.

2. Realizing the algorithm into real system.

3. Testing the new system under both normal and extreme conditions.

This project was supposed to be done by a group of 3-4 people, but since there was only one person

that is interested in, the progression became much slower than expected.

To find a good algorithm for data compressing, we have considered many alternatives from very simple

to top complicated. These algorithms highly focus on image and video processing since the data from

SPACE sensors will lately be read under visual form. This will be discussed further under Chapter 4 –

Realization of selected solution.

After that we discussed and chose a good hardware solution for the chosen algorithm. That hardware

solution must justify many constrains that were set: physical size, hardware performance and memory

size for the solution. It is quite clear that the algorithm needs to be “programmed” on a DSP,

microcontroller or FPGA, which takes much effort and time in the project’s schedule.

The finished system is then simulated on simulating application, and thereafter tested under real life’s

conditions. Any effect from change in conditions (pressure, humidity, temperature…) on system is

recorded so we can determine if the hardware can bear extreme conditions where SPACE usually works

in.

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 5 of 27 31.05.2019

1 Index
Document Control ... 2

Preface ... 3

Summary ... 4

2 Table of figures .. 6

1 Introduction ... 7

1.1 About Archer BTC and SPACE system .. 7

1.1.1 Archer BTC ... 7

1.1.2 SPACE system .. 7

1.2 Problem description .. 8

1.3 Solution discussion .. 8

2 Specification of requirements ... 10

2.1.1 Data transferring ... 10

2.1.2 Extreme conditions .. 10

2.1.3 Size of the package .. 10

3 Problem analysis .. 11

3.1 Description of possible solutions .. 11

3.1.1 Edge detection ... 11

3.1.2 Video processing ... 12

3.1.3 Issues regarding tools and HW/SW components .. 12

3.2 Problem analysis conclusion ... 13

4 Realization of selected solution .. 14

4.1 Theory .. 14

4.1.1 Video processing fundamentals .. 14

4.1.2 H.264 encoding algorithm ... 16

4.2 Program implementation .. 16

4.2.1 Hardh264 IP ... 16

4.2.2 Adapting to Smartfusion2 on Libero ... 17

4.2.3 Video exporting ... 19

5 Testing ... 22

6 Discussion .. 24

7 Conclusion ... 25

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 6 of 27 31.05.2019

2 Table of figures
Figure 1. SPACE Panorama .. 7

Figure 2. SPACE Focus.. 7

Figure 3. Space Vernier.. 8

Figure 4. Looking into a sample picture from dataset we get from SPACE ... 8

Figure 5. Result from Edge Detection method .. 11

Figure 6. Smartfusion2 System-on-chip Starter Kit ... 13

Figure 7. Video processing scheme ... 14

Figure 8. Principal components in H.264 encoder .. 17

Figure 9. HardH264 IP's top level .. 18

Figure 10. Comparing between YUV and RGB color space ... 18

Figure 11. From Raw data matrices to visualized data ... 19

Figure 12. Some parameters that can be adjusted ... 19

Figure 13. Screen cut from akiyo.yuv .. 22

Figure 14. Screen cut from stefan.yuv .. 22

Figure 15. Comparing size between compressed videos .. 22

Figure 16. Image quality of compressed video under different QP (in order 15 - 28 - 35 - 45 - 51) 23

Figure 17. Compressed videos' size comparison ... 23

file:///D:/%5bBachelor%20thesis%5d%20Video%20compressing%20H264%20on%20FPGA.docx%23_Toc10198451
file:///D:/%5bBachelor%20thesis%5d%20Video%20compressing%20H264%20on%20FPGA.docx%23_Toc10198461

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 7 of 27 31.05.2019

1 Introduction

1.1 About Archer BTC and SPACE system

1.1.1 Archer BTC

Archer BTC (Bergen Technology Center) has more than 15 years of experience in developing,

manufacturing and supporting ultrasonic logging tools for integrity diagnostics. The company’s

projects highly focus on SPACE systems – tools that scan the internal surfaces of the well and give

engineer 2D and 3D pictures to check if there is a fixing or maintenance must be done.

1.1.2 SPACE system

According to Archer’s website, SPACE systems are divided into 3 main models (1):

+ Panorama:

Figure 1. SPACE Panorama

Panorama is used to investigate the condition

of the assembly and establish status of the

flapper valve. Engineers can detect damages

inside the flow tube or confirm flapper position

from its results.

+ Focus:

Figure 2. SPACE Focus

Focus is used to detect collapsed tubing/casing,

obstructing fish or parted tubing etc. It has a

different viewing methodology from

Panorama.

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 8 of 27 31.05.2019

+ Vernier:

Figure 3. Space Vernier

Vernier looks sideways of the tube, gives

another view than Focus and Panorama. Main

applications of them is: ID evaluation/Caliper,

Pipe thickness evaluation, Corrosion logging

and Metal loss evaluation.

1.2 Problem description
Nowadays, the transferring capacity and long distance between SPACE systems in operation inside oil

wells and surface makes it difficult to send raw data to engineers. Therefor ultrasonic pictures are

compressed with JPEG before being sent with JPEG-algorithm is realized by using 6 FPGAs. However,

many FPGA has been introduced newly that have higher potential, which allows us to simplify the

system in physical mean and improve its performance. So other image compressing algorithm or new

alternatives could be considered so that we can catch up with technology improvement.

While trying to improve data compressing performance, there will always be two more importance

goals for the new system: Working performance in extreme conditions and optimal physical size.

1.3 Solution discussion
The main goal is to transfer as much usable data as possible. Therefor our number one priority is to

find out how to compress data better. By figuring out a better way to compress data, and implement

it into the existing system, we can spare time and resource to design another data transferring protocol

and upgrade bandwidth.

Figure 4. Looking into a sample picture from dataset we get from SPACE

We can see that the main data (light points) takes a very small part of the image, and the rest is

duplicated/neutral. That means there is big potential that raw data can be compressed in a very high

rate. By reducing each pixel color depth (grayscale depth) and compress duplicated data, we can surely

reduce the size of each frame, hence increase transferring speed.

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 9 of 27 31.05.2019

To solve the high temperature problem, we have thought about combining two solution: choosing the

components that have highest tolerance with high temperature and use active and passive cooling

method. This and the size of new system will be at higher concerning in the later part of project.

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 10 of 27 31.05.2019

2 Specification of requirements

2.1.1 Data transferring

Nowadays, the bandwidth from SPACE systems to surface’s node is 219kbps. For JPEG compressed

pictures with 288x128 resolution, the bandwidth offers nearly 5 frames per second. However, the

ultrasonic sensors on SPACE can record up to 15 frames per second. So, the data compressing

technology (JPEG to be specific) is somehow the cause of bottleneck phenomenon for the system. To

get a better frame rate, we need to either enlarge the bandwidth or reduce size of each sent frame.

We realized that by adding some “tweaks” on the system, with some minor changes in the hardware,

we can apply new compressing methods which can make enormous effect om data transferring.

2.1.2 Extreme conditions

To be working down in the oil wells needs some resistance. The temperature here can range from

around the freezing point at the surface to 130 Celsius degree deep down. High temperature can

reduce circuit speed and degrade transistors inside components. Therefor we need to decide the

working temperature range to the system and choose components wisely so that our system can work

as stable as possible.

2.1.3 Size of the package

One oil well size can vary from 12,5cm to 90cm wide (3), which leads to another constrains: size. The

SPACE systems have already been designed so that they can fit in oil wells from surface to deep down,

in another word to be quite small. Since there are many other components inside one SPACE, we need

to optimize the size of new data-compressor so that it can fit into SPACE systems.

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 11 of 27 31.05.2019

3 Problem analysis

3.1 Description of possible solutions
Setting aside JPEG image processing, which is now being used on SPACEs, we came up with many

solutions: GIF or PNG image processing, Edge detection and video processing. Since GIF and PNG image

processing methods do not give a big advantage comparing with JPEG, we decide to consider two best

and most possible solutions: Edge detection and video processing.

3.1.1 Edge detection

Realizing that in most cases, the usable data (inside edge of oil wells) is one line across the image, we

tried to apply a classical edge detecting method on images: Choose the brightest points as the edge.

The result can be seen:

Data compressing rate here is very high, as we need very little data to express position of edge points

across the frames. That means the data is now converted:

Original: Brightness of each pixel across the whole frame with resolution 288x128

Converted: Position of each edge point (vertical) across the whole frame (horizontal).

Despite of the high compressing rate and ease of implementation, this method meets one critical

problem: precision. Normally there is no problem to look at the shape of inner oil wells, until some

defects/ fails take place. Experiences is that defects could not be read easily from an simple picture,

and need more spectating/considering from engineers. Then we need as much visual data as possible.

By ignoring so much raw data, we risk the chance to detect sudden defects inside oil wells.

Figure 5. Result from Edge Detection method

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 12 of 27 31.05.2019

3.1.2 Video processing

There is a better method to compress unimportant visual data without losing much raw data: Video

compressing. Basically, the goal of one video processing method is to consider, choose and send one

frame in a series of picture as main-frame. Afterward it compares other frames with the main-frame

to find out differences between them and send information about differences as data for other frames.

This method will in theory reduce data load dramatically, which leads to higher “frame rate” as the

same bandwidth.

The real problem here is to develop and program a video processing algorithm on FPGA system to

compress raw input at one side (encoder), and a protocol to receive and read out videos at the other

side (decoder). This leads us to 2 choices:

1. To use an existing encoding method (H.264, Xvid, MPEG-1, etc. This leads us to a standardized

method with many documents to read. The downside is that since the method is finished built,

there will be a small room to modify/adapt to optimize to the system.

2. To develop a new method based on the existing methods we listed over: This takes much

longer time to research, study, develop and test the new algorithm. Obviously, there will be

nearly no documentation to read except the basics of data, image and video processing.

Advantage is that we get to control over everything (algorithm, data load, framerate, pixels

depth etc.)

3.1.3 Issues regarding tools and HW/SW components

This project is driven mainly on simulation and developing board testing, therefor choosing a good

hardware based on requirement specifications is the biggest problem. As stated, we will choose an

FPGA family to program on. There are two FPGA families we are considering between:

1. Intel MAX 10: single-chip, non-volatile low-cost programmable logic devices (PLDs) which offer

these highlights:

+ Internally stored dual configuration flash.

+ User flash memory.

+ Instant on support.

+ Integrated analog-to-digital converters (ADCs).

+ Single-chip Nios II softcore processor support.

According to Intel’s documentation, these are low cost with small form factor packages and

much programming possibility offered by up to 50K logic elements. They also have 3 different

operating temperature rates depend on which model we choose: Commercial (0 to 85 degree

Celsius), Industrial (-40 to 100 degree Celsius) and Automotive (-40 to 125 degree Celsius). (4)

2. Microsemi Smartfusion2: industry’s lowest-power, most reliable, and highest-security

programmable logic solution. These SoC FPGAs offer up to 3.6x the gate density and up to 2x

the performance of previous flash-based FPGA families. They also include:

+ Multiple memory blocks.

+ Multiply-accumulate blocks for digital signal processing.

+ Enhanced 166MHz ARM Cortex-M3 processor.

+ Additional peripherals: Controller area network (CAN), gigabit Ethernet and high-speed USB.

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 13 of 27 31.05.2019

This FPGA family is very powerful with multiple highspeed clock sources and high number of

logic elements (up to nearly 150K logic elements). Comparing with Intel MAX 10, Smartfusion2

steps up to military operating temperature range (-55 to 125 degree Celsius). (5)

3.2 Problem analysis conclusion
After consideration, we decided to focus on video processing, with H.264 algorithm. The reason is that

it is a good combination between compressing performance, ease of implementation and project’s

length. Statistically video encoding has much more advance performance in compressing visual data.

It will surely be a hard job because of the complexity of algorithm, but since we chose an existing

method (H.264 algorithm), there will not be a big problem to find documentations about it.

For hardware solution, we chose Microsemi’s Smartfusion2 SoC FPGA family. The main reason is that

Smartfusion2s have passed many tests and have quite good high temperature tolerating rate. Archer

BTC’s seniors is also very familiar with Microsemi’s FPGAs and their programming IDE, Libero. Therefor

it would be a good move to choose Smartfusion2 for this project.

Figure 6. Smartfusion2 System-on-chip Starter Kit

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 14 of 27 31.05.2019

4 Realization of selected solution
Data compression in general is complex and video compression is one of the most difficult things.

Therefor we spent a long period of our project to study and research on video processing methods and

the theories behind them. By understanding how it works inside one encoder, we can try our best to

optimize the solution.

4.1 Theory

4.1.1 Video processing fundamentals

In this chapter, a wider and more detailed oversight of video processing is studied. Most of the

information here is very basis and fundamentally and can be get anywhere. We had found one

document from ICDST (6) which is very useful and precise while still giving all information we need.

Definition

One video is described as a sequence of images varying by time. In this document, images in a video

sequence is sometimes called frames. Number of frames in one second is called frame rate. Normal

human eyes consider videos with about 24-25 frame per second (fps) frame rate as comfortable and

continuous.

Throughout this study we make an agreement that there is a compromise in frame rate: Higher frame

rate gives better resolution for defect-searching activity but takes more bandwidth.

One video processing procedure can be briefly explained using this block diagram:

Figure 7. Video processing scheme

(http://dl.icdst.org/pdfs/files/da090a75f2b3c3179de82d428b33ef4d.pdf)

http://dl.icdst.org/pdfs/files/da090a75f2b3c3179de82d428b33ef4d.pdf

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 15 of 27 31.05.2019

Frame Type

When we talk deeper into video processing methods, there will be three types of video frames: I-frame,

P-frame and B-frame.

I-frame: Intra coded frame. These frames contain most of visual data and are used as reference for

other types of frame.

P-frame: Predicted frame. These frames contain information from motion compensated prediction

from previous I-frame or another P-frame.

B-frame: Bidirectional predictive frame. These frames require lowest number of bits and are encoded

using motion compensated prediction from both previous and following frames.

Subsampling

Basically, subsampling reduces the computing work for video processing by reduce the dimension of

input. This reduction is applied for often 3 components (Red, Green, Blue colors in RGB or Y –

luminance and U,V – chrominance in YUV color space). Depending on the goal, these components are

subsampled uneven to give the best processing result.

Example: 4:2:1 YUV means that for every 4 Y samples, there with be 2 U and 1 V samples.

Video compression

Nowadays, with the high amount of video streaming services and increment of videos’ resolution over

time, it becomes impossible to transmit video sequences without a good video compression. The main

ideal of data compression, or video compression in this specific case is to reduce and minimize all

redundancies that exist. This is similar to the way we write Sinusoidal functions instead of giving all

value over time, it is a waste of time and storing space because a large amount data is duplicated.

The redundancy exists in different levels: Temporal redundancy (in frame level) and spatial redundancy

(in pixel level). Removing temporal redundancy is called Interframe coding, while removing spatial

redundancy is called Intraframe coding.

Motion estimation and compensation

By estimate the motion of one part of a frame over time, we can predict and reconstruct one frame

using a reference frame and the motion parameters. Motion estimation and compensation can also

happen in many levels: pixel, small block or large block.

There are two main properties that make a good block matching in motion estimation: Block size and

search algorithm.

A large size block gives better computation performance but may contains many motion vectors in one

approximation. In contrary a smaller size block requires more computation resource and is more

sensible to random noise but offers better approximation.

There are many search algorithms that exist so that man can choose the best one depending on project

requirements, or combine between many algorithms together:

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 16 of 27 31.05.2019

+ Full-search

+ Three Step Search

+ New Three Step Search

+ Four Step Search

+ Diamond Search

There are two main classes of block matching algorithms (BMA): Fixed block size and Hierarchical.

Beside these main definitions and steps, one video coding scheme contains of many other blocks:

Transform coding, predicting coding, etc.

4.1.2 H.264 encoding algorithm

Nowadays, there are many video compression standards differentiated by the bitstream syntax. Those

standards were named H.12x, H.26x by VCEG video coding standards or MPEG-x following naming

convention in ISO/IEC MPEG. Over many versions and improvements, H.264 is now one of the most

popular video formats with a wide range of applications from low quality and massive internet

streaming services to high definition (HD) broadcasting and cinema applications.

H.264 encoding standard sports large number of features that make it much more advanced in

comparing with older, outdated video compression standards (7):

+ Multi-picture inter-picture prediction.

+ Spatial prediction.

+ Lossless macroblock coding.

+ Flexible interlaced-scan video coding features.

+ New transform design.

+ Quantization design.

+ In-loop deblocking filter.

Etc. (8)

4.2 Program implementation

4.2.1 Hardh264 IP

There is a finished project named Hardh264, which is a hardware H264 video encoder written in VHDL.

We decided to adapt this IP (Intellectual Property) to our Smartfusion2 FPGA, since this IP was first

meant to be used on Xilinx tools and FPGAs. A diagram of the principle components is given by designer

(9):

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 17 of 27 31.05.2019

Figure 8. Principal components in H.264 encoder

(Cre: Andy Henson)

This IP is designed to have small and low power components which is very suitable for our project’s

specifications (low resolution video frames with limited physical size). The IP’s flexibility also let us

replace components inside the encoder to different applications or customize compressing rate and

frames’ resolution if necessary.

4.2.2 Adapting to Smartfusion2 on Libero

Despite of being designed for Xilinx FPGAs, we found it not so difficult to adapt HardH264 to our

Smartfusion2 on Libero thanks to the skeleton top level which is provided. This skeleton top combined

HardH264 components by designer’s default specification and made it simple for us to implement it

on Microsemi Libero SoC Design Software:

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 18 of 27 31.05.2019

Figure 9. HardH264 IP's top level

When it comes to simulation on ModelSIM, it appeared to be some minor errors because of console

code lines. These code lines help us as programmer/designer checking which state our encoder has

been executed inside a process loop and can be deleted without affecting encoder’s usability. After

deleting all code lines that caused errors during compiling, we can get the encoder run as desired.

HardH264 takes files in YUV format as input. YUV is a convention and can be understood as kind of

files that contain a series of images in YUV color space. So YUV files are taken as “raw” videos.

YUV (Y- luminance and U, V – chrominance) color space is more effective than RGB (R – Red, G – Green,

B – Blue) in term of coding efficiency and bandwidth reduction. Since our raw images are in grayscale,

it’s very comfortable to use YUV color space since we just need Y – value to draw our images (10):

Figure 10. Comparing between YUV and RGB color space

To be able to get to this image, we have written a small MatLAB program that allows us to convert

grayscale value 128x288x(frame number) matrices into YUV files. Those files are now used as input for

HardH264 simulation:

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 19 of 27 31.05.2019

Figure 11. From Raw data matrices to visualized data

As stated, HardH264 allows us to adjust quality of videos to reduce amount of data transferred. This

actually is changing quantization parameter (QP). QP is an index used to derive a matrix, so the higher

QP is (range from 0 to 51), the lower quality our videos become (and higher compression rate as result).

Besides, there are other customizable parameters which help us to control the compressing process:

frame width, frame height, number of frames to process, etc.

Figure 12. Some parameters that can be adjusted

4.2.3 Video exporting

There is one important operation at the end of video compressing process: Exporting compressed

videos. In this case, HardH264 compresses and then converts *.yuv files into *.264 files. *.264 file type

is a common and easy to read type which is supported by many applications and decoders, so it makes

the process of reading received data become much simpler.

Video exporting happens at the end of hierarchy: On the receiver side. That means after receiving

compressed data from SPACE systems, the surface system needs to rewrite it into readable files, in this

case is in *.264 data type. The only problem we got when trying to adapt HardH264 into our system so

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 20 of 27 31.05.2019

far is the difference in video resolution: the sample is 352x288 while our images is 288x128. A header

at the beginning of the *.264 files decides many specifications of the video frames it’s carrying, which

we need to pay attention on to get the desired resolution.

There are two important parameters in the header that decide the video and its frames properties:

+ SPS (Sequence Parameter Set): Data that is applied for all the frames in one sequence of pictures.

+ PPS (Picture Parameter Set): Data that is the characteristics for one frame (width, height, cropping

flag, etc.)

As above, we can see that it’s SPS that decide resolution of all frames. Therefor we will go deeper into

SPS’s specification. H.264’s header information like PPS and SPS is complicated to understand, and

there is many concepts of parameter set that can be used, and we found this concept is applicable for

our project (11):

Parameter Type

Forbidden_zero_bit U(1)

Nal_ref_idc U(2)

Nal_unit_type U(5)

Profile_idc U(8)

Constraint_set0_flag U(1)

Constraint_set1_flag U(1)

Constraint_set2_flag U(1)

Constraint_set3_flag U(1)

Reserved_zero_4bits U(4)

Level_idc U(8)

Seq_parameter_set_id Ue(v)

Log2_max_frame_num_minus4 Ue(v)

Pic_order_cnt_type Ue(v)

Log2_max_pic_order_cnt_lsb_minus4 Ue(v)

Num_ref_frames Ue(v)

Gaps_in_frame_num_value_allowed_flag U(1)

Pic_width_in_mbs_minus_1 Ue(v)

Pic_heigh_in_mbs_minus_1 Ue(v)

Frame_mbs_only_flag U(1)

Direct_8x8_inference_flag U(1)

Frame_cropping_flag U(1)

Vui_parameters_present_flag U(1)

Rbsp_stop_one_bit U(1)

Concentrating on changing resolution of frames, we pay attention on pic_width_in_mbs_minus_1 and

pic_heigh_in_mbs_minus_1 in datatype ue(v):

ue(v) means that the value is unsigned exponential-golomb coded of variable number of bits.

Mbs means that the resolution is calculated in “macroblock” unit, one macroblock width or height is

16 pixels. For 288x128 resolution, pic_width_in_mbs_minus_1 = 17 and pic_height_in_mbs_minus_1

= 7. By applying those values into our PPS, we can make our video decoder read video files in the

desired resolution.

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 21 of 27 31.05.2019

Unsigned exponential-golomb coded

To encode a nonnegative integer using exponential-golomb code, first we write value of that number

plus 1 in binary. Then we count the bits written, subtract one to get the result n. Then we write n zeros

at the beginning of our binary number.

Example: We want to write the integer number 7 into exp-golomb coded form:

7 + 1 = 8.

8 (dec) ➔ 1000 (bin)

1000 (bin) ➔ 0001000 (exp-golomb)

By using this method, we can help the system control the number of bits used for one value by reading

the number of zeros before the first “1” bit. This is very important and helpful since PPS and SPS

parameters is placed serial.

In the sample for resolution 352x288, the author used the hex sequence 0x67420028da058259. After

having read this sequence into integer values, and placed them into the table, we changed value of

pic_width_in_mbs_minus_1 and pic_height_in_mbs_minus_1 and then rewrite the whole table into

hex sequence. The new SPS hex sequence is now 0x67420028da048464.

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 22 of 27 31.05.2019

5 Testing
Firstly, we decided to test HardH264 with some normal, common open source videos at resolution

352x288 to see how much variation of motion in videos can affect compressing rate.

First video is Akiyo.yuv (12) which shows one reporter sitting in front of a screen with minimal

movement:

Figure 13. Screen cut from akiyo.yuv

The second is Stefan.yuv (13) which shows one tennis player in his game, contains of course many

movements:

Figure 14. Screen cut from stefan.yuv

We used ModelSIM to compress the first 10 frames of each video, then compared the output files’ size

(test_rec.yuv is raw data, and test.264 is compressed file):

According to output data, we get an oversight of how number of motions would affect compressing

rate. Output file from Stefan.yuv (lots of motion) is more than two times larger than one from akiyo.yuv

(nearly zero motion).

We also did 10-frames-tests on real raw data under different quantization parameter (the higher QP

is, the worse quality images become):

Figure 15. Comparing size between compressed videos

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 23 of 27 31.05.2019

Figure 16. Image quality of compressed video under different QP (in order 15 - 28 - 35 - 45 - 51)

Along with image quality, the file size is also dramatically affected by QP (the last two digits indicate

value of QP):

File name Quantization
parameter

File size Frame per second

Test_10frames_15.264 15 116KB 1,89

Test_10frames_28.264 28 47KB 4,66

Test_10frames_35.264 35 22KB 9,95

Test_10frames_45.264 45 12KB 18,25

Test_10frames_51.264 51 12KB 18,25

Figure 17. Compressed videos' size comparison

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 24 of 27 31.05.2019

6 Discussion
Throughout the testing procedure, the video compressing solution appeared to be very effective in

compressing raw data file size and boosting data transferring speed. A small compare has been done

between the existing JPEG image processing and simulated results we got from HardH264:

 JPEG H.264

Frame size 5,5KB/frame 1,2 – 11KB/frame

Frames per second 5 fps 2,5 – 22,8 fps

Processing time (fast enough for 5fps) 4ms/frame

From around 5,5kB per frame in JPEG, we now get averaging size of 1,2kB to 11kB per frame in H.264

videos (file size of H.264 videos depends on selected visual quality and complexity of movements).

That leads to the fact that the framerate is boosted from 5fps to max 22,8fps (at the same 219kbps

bandwidth).

However, there is still room for much improvement:

1. Reduce number of color spaces: HardH264 is designed for color videos, meanwhile our data

is just in grayscale (or Y-value – luminance). If we can optimize the encoder to work with only

Y-value, we can save approximately 1/3 unused data in U- and V-values.

2. Vary quantization parameter: As said, we can used QP to control visual quality of the videos.

The idea is that at some points, there is less need to take high quality frames, and at some

other specific points, we need to take a more carefully look. Finding a way to make QP varies

over time as desired, we can make sure that there is no wasted time and resource looking for

defects where there is less likely to happen.

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 25 of 27 31.05.2019

7 Conclusion
This project is very interesting and have big affection on how data is processed inside SPACE systems.

At beginning we expected that we could do much more than what we have achieved so far. The goal

was divided into 3 smaller ones:

1. Designing and simulating the FPGA system on Microsemi Libero and ModelSIM.

2. Realizing the system onto real FPGA (in this case Microsemi Smartfusion2).

3. Testing the system under extreme conditions (high temperature, high pressure, etc.)

Unfortunately, due to the lack of human resource, we could not go as far as planned. The project was

run by one student while it was meant for a group of 3-4 students. Therefor we have done around 50%

of the expectation:

1. Designing and simulating the FPGA system on Microsemi Libero and ModelSIM.

2. Programming the system and write it onto Smartfusion2 and making sure that there is enough

memory space for the system.

A large amount of studying has been done before the HardH264 adaptation could be finished, and we

could come to the conclusion that the solution of replacing JPEG image processing by H.264 video

encoding is possible. This solution gives us better compressing rate, which means better data

transferring, and a flexibility of compromising between video quality and transferred frame rate.

Therefor this can be considered as a good improvement from the existing system.

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 26 of 27 31.05.2019

Appendix A. Literature

A.1 VHDL Intellectual Property
H.264 Hardware Encoder in VHDL. © 2008 Zexia Access Ltd. All rights reserved.

http://hardh264.sourceforge.net/

A.2 Reference
(1) Archer [Online]. Archer BTC; 2018. Available on: https://www.archerwell.com/products-

services/wireline/cased-hole-logging-services/space/

(2)

(3) J.M.K.C. Donev et al. Energy Education - Oil well [Online]. 2017 [Accessed: May 01, 2019].

Available: https://energyeducation.ca/encyclopedia/Oil_well

(4) Intel Max 10 FPGA Device Overview. 2017 [Accessed: May 03, 2019]. Available:

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/max-

10/m10_overview.pdf

(5) Product Brief – Smartfusion2 SoC FPGA. 2018 [Accessed: May 03, 2019]. Available:

https://www.microsemi.com/document-portal/doc_download/132721-pb0115-

smartfusion2-soc-fpga-product-brief

(6) Introduction to Video Processing. [Accessed: May 05, 2019]. Available:

http://dl.icdst.org/pdfs/files/da090a75f2b3c3179de82d428b33ef4d.pdf

(7) Thomas Wiegand, Gary J. Sullivan, Gisle Bjørntegaard and Ajay Luthra. Overview of the

H.264/AVC Video Coding Standard. 2003 July [Accessed May 05, 2019]. Available:

http://ip.hhi.de/imagecom_G1/assets/pdfs/csvt_overview_0305.pdf

(8) H.264/MPEG-4 AVC – Wikipedia [Online]. [Accessed May 27, 2019]. Available:

https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC

(9) Andy Henson. H.264 Hardware Encoder in VHDL – notes and usage information. 2008

[Accessed March 01, 2019]. Available: http://hardh264.sourceforge.net/H264-encoder-

manual.html

(10) Ronald S. Bultje. Displaying video colors correctly. November 2016 [Accessed May 27, 2019].

Available: https://blogs.gnome.org/rbultje/2016/11/02/displaying-video-colors-correctly/

(11) Ben Mesander. The H.264 Sequence Parameter Set. April 2011 [Accessed April 2019].

Available: https://cardinalpeak.com/blog/the-h-264-sequence-parameter-set/

A.3 Books
“The Digital Signal Processing Handbook, Second Edition”. Vijay K. Madisetti, 2010. ISBN:

9781420046083.

A.4 Medias
(12) Akiyo.yuv. http://trace.eas.asu.edu/yuv/akiyo/akiyo_cif.7z

(13) Stefan.yuv http://trace.eas.asu.edu/yuv/stefan/stefan_cif.7z

http://hardh264.sourceforge.net/
https://www.archerwell.com/products-services/wireline/cased-hole-logging-services/space/
https://www.archerwell.com/products-services/wireline/cased-hole-logging-services/space/
https://energyeducation.ca/encyclopedia/Oil_well
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/max-10/m10_overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/max-10/m10_overview.pdf
https://www.microsemi.com/document-portal/doc_download/132721-pb0115-smartfusion2-soc-fpga-product-brief
https://www.microsemi.com/document-portal/doc_download/132721-pb0115-smartfusion2-soc-fpga-product-brief
http://dl.icdst.org/pdfs/files/da090a75f2b3c3179de82d428b33ef4d.pdf
http://ip.hhi.de/imagecom_G1/assets/pdfs/csvt_overview_0305.pdf
https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
http://hardh264.sourceforge.net/H264-encoder-manual.html
http://hardh264.sourceforge.net/H264-encoder-manual.html
https://blogs.gnome.org/rbultje/2016/11/02/displaying-video-colors-correctly/
https://cardinalpeak.com/blog/the-h-264-sequence-parameter-set/
http://trace.eas.asu.edu/yuv/akiyo/akiyo_cif.7z
http://trace.eas.asu.edu/yuv/stefan/stefan_cif.7z

 BO19E-11 Video compressing H264 on FPGA

Rev: 0.13 Page 27 of 27 31.05.2019

Appendix B. Abbreviations and dictionary explanations

DSP Digital Signal Processor

FPGA Field Programmable Gate Arrays

JPEG Joint Photographic Experts Group

Fps Frame per second

SoC System on Chip

ADC Analog-to-Digital Converter

RGB Red-Green-Blue

IP Intellectual Property

IDE Integrated Development Environment

