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Abstract: This paper presents a novel method for online power quality data analysis in transmission
networks using a machine learning-based classifier. The proposed classifier has a bundle structure
based on the enhanced version of the Extreme Learning Machine (ELM). Due to its fast response
and easy-to-build architecture, the ELM is an appropriate machine learning model for power quality
analysis. The sparse Bayesian ELM and weighted ELM have been embedded into the proposed
bundle learning machine. The case study includes real field signals obtained from the Turkish
electricity transmission system. Most actual events like voltage sag, voltage swell, interruption,
and harmonics have been detected using the proposed algorithm. For validation purposes, the ELM
algorithm is compared with state-of-the-art methods such as artificial neural network and least
squares support vector machine.

Keywords: power quality; event detection; permutation entropy; machine learning; extreme learning
machine

1. Introduction

Modern industry is entwined with technology and advanced measurement devices in the
production line, industrialparks, and system management units. Technological developments also
cover the communication capabilities of industrial components. The Industrial Internet of Things (IIoT)
is a challenging topic of smart production through Industry 4.0. According to all these challenges and
improvements in both industry and human life, every player in the system moves toward being smart
such as the electrical grid transforming into the smart grid. The Smart Grid (SG) context has some
solutions to the problems of conventional grids such as sustainability, reliability, and energy efficiency.
Governments also have development plans to complete the transformation of their cities to “smart
cities” [1]. Energy and power management systems have an important place in this transformation,
and power quality monitoring is one of the essential steps. A properly-managed grid operation with
power quality monitoring brings sustainability. System operators drive the switching in a rational way,
and grid operation can prevent large-scale blackouts and other malfunctions [2–4].
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Recent works have shown the advantages of using big data and machine learning applications
in power quality analysis [5]. There are several intelligent methods presented such as shape-based
data analytics of event signals [6,7], non-parametric and partial-knowledge detection [8–10], and also
preliminary studies including intelligent classifiers [11–14].

To detect power quality events, existing studies in the literature have mostly used
transform-based methods like Wavelet Transform (WT), Fast Fourier Transform (FFT), S-Transform
(ST), and so on [15–17]. Transform-based methods bring coefficients from a processed signal and need
a second-level step to compose the last feature set. Our method in this study is less computationally
expensive with its preferred feature set. There are also model-based data-driven methods in the
literature, which need an amount of data during the training period [18]. We use less data to perform
the classification process. In [19], the authors proposed a version of the Gabor transform method
with a type 2 fuzzy kernel-based Support Vector Machine (SVM). With this method, they had to
use additional math to construct the final feature set, and the dataset used was synthetic. In [20],
the authors presented a basic Extreme Learning Machine (ELM) classifier with S-transform-based
features. In [21], the authors used Weighted (W)-ELM for classification of power quality events with a
conventional WT method. Synthetic data were used to validate the proposed system. In our study,
the dataset consists of real field signals including the most commonly-confronted issues, and we
built an effective feature set with respect to the importance of processing time. When considering
the methods, it is very important to recognize the computational cost. Embedded technology is a
superhero of today’s industrial field to uncover on-site and mobile service options. From the previous
discussion, it can be observed that a strong feature set with its lesser computational cost and machine
learning-based classifier bridges the gap in the power quality event classification field. In the proposed
power quality-analyzing system, we present a new bundle model, including a robust feature set
and ELM variations, which have improved the performance compared to conventional methods.
The feature set consists of histogram, Permutation Entropy (PE), the number of Local Peaks (LP),
and instant time domain features [22–26]. Besides, the widely-preferred Discrete Wavelet Transform
(DWT) supports the feature extraction. All components in the feature set are preferred due to their low
computational costs and complement each other in extracting distinctive features of raw signals. Here,
the proposed feature set can be associated with online embedded systems.

The bundle classifier in this study includes enhanced versions of ELM, which is a kind of learning
algorithm for the traditional Single-Layer Feedforward Neural Network (SLFN) architecture. ELM has
an extremely fast operation technique [27]. There have been many types of ELM that have improved
the performance values both in classification and regression applications. Different types of ELM
structures have been implemented in various fields like biomedical signal processing, power quality
signals, economic analyses, and many more [28,29]. In this study, we use two different ELM models.
One is the Weighted ELM (W-ELM) classifier; it is one of the improved versions of the basic ELM
algorithm to increase the generalization and to reduce computational costs. W-ELM has serious
advantages over basic ELM such as having a simple setup in theory and functional implementation,
multi-class classification ability, and also using an additional feature mapping process. The nature of
adjustable weights not only makes W-ELM acceptable for a wide range of application areas, but also
brings a cost-sensitive learning [30–32]. In many real-world applications, researchers have commonly
experienced imbalanced datasets. Processing such datasets is a hard task because of the minority
and majority classes and their effect on the accuracy [33]. Aiming to cope with an imbalanced data
problem, W-ELM was proposed by Zong et al. [30]. The basic point of W-ELM is assigning an extra
weight matrix for each training sample considering the minority and majority classes. The impact of
the minority class is strengthened with an extra weighting process and vice versa for the impact of the
majority class [33]. The other preferred ELM model is the Sparse Bayesian ELM (SB-ELM), which also
has highlighted features on top of basic ELM. SB-ELM uses the Bayesian optimization approach in the
learning process, and it includes fewer neurons in the hidden layer because of its sparsity [34].

In this study, we can list our contributions as:
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1. We propose a novel algorithm with a bundle structure based on enhanced versions of
the extreme learning machine algorithms for power quality event classification. Unlike
conventional backpropagation and other state-of-the-art learning algorithms, the proposed
algorithm completely skips the iterative process, decreasing the decision phase computational
cost significantly. The bundle structure allows our algorithm to select the most accurate machine
learning method by analyzing different feature selection and decision-making techniques
depending on the application needed. In that sense, the selection is performed according
to the implementation of the training and testing time, as well as the accuracy in the
classification process.

2. We propose a feature selection stage for our classifier’s bundle structure by integrating a Bayesian
optimization (SB-ELM) that decreases the number of hidden nodes used in the ELM decision
process significantly. Additionally, we propose a feature mapping process (W-ELM) that optimizes
the weight matrix of the input layer in the ELM-based algorithm.

3. We validate our proposed methodology by performing online classification based on real field
Phasor Measurement Unit (PMU) measurements in transmission networks in Turkey. We utilize
a segmentation process for event detection, which decreases the computational cost of the
classification process significantly.

To the best of the authors knowledge, this study performs a deep analysis of ELM in the Power
Quality (PQ) signal processing field for the first time. We use conventional classifiers, which are
Artificial Neural Network (ANN) and Least Squares-Support Vector Machine (LS–SVM), besides the
basic ELM structure, to compose an effective evaluation of the proposed system.

The rest of this paper is presented as follows: Section 2 describes the real-world dataset; Section 3
summarizes feature extraction methods and presents the decision stage with the bundle ELM classifier;
Section 4 gives the experimental results of the proposed system; and Section 5 encapsulates the paper
with a brief conclusion.

2. Use Case

The dataset used in this study was obtained from Anatolia, selecting troubled sub-stations.
In collaboration with the Turkish Energy Transmission Company (TEIAS), we collected real field
data from all over the country. The dataset was obtained from the National PQ monitoring system
server, which was pre-established within the scope of the National Power Quality Project. The data
were collected during the year 2015. All the events in the dataset have been measured and collected
with a sampling frequency of 25.6 kHz. The measurement window was three seconds long. In the
circumstances of a 50-Hz grid, a period included 512 samples per event; at the end, the whole
event window included 76,800 samples. Readers may refer to the detailed technical specifications of
measurement devices and the monitoring system in [35]. Considering the TEIAS statistics, the most
common event types were selected from the sub-stations as seen in Figure 1.
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Figure 1. Preferred substation centers for collecting the data.

We used MATLAB to perform triggering, segmentation, and pre-processing of the data and
pattern recognition system. Table 1 shows the collected data, which included PQ events of the year
2015. Due to the high resolution of the dataset, the segmentation process played a key role in decreasing
the computational time cost by processing only the event windows.
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The real dataset design consisted of three-phase voltage and currents, the neutral line current,
and time stamp information. Thus, we should locate the abnormal phase while running the
segmentation process. After the segmentation, we would have a reduced version of the data rows for
the classification process. Using the raw signal as the input to the classifier is not a proper method based
on its large size. In the preliminary studies, research conducted by the authors proved that the time cost
of the segmented signal in feature extraction was 25-times less than any unprocessed signal (while the
time cost of the segmented data was 0.0685 s, the raw data had a time cost of 1.6489 s). The proposed
study ran the segmentation steps in terms of the definition in the IEEE 1159-2009 standard and used the
same rms boundaries for event zones. To compute the rms values, we determined a floating window
with half-cycle sampling. An original query code design was composed in the detection of the start of
the events using the specified thresholds as in the related standard. Figure 2 summarizes the whole
process as a flowchart.

Table 1. Some qualities and quantities of downloaded events.

Number of Event Data For 2015

Transformer Substations Voltage
Event Types

Sag Swell Interruption

1 <154 kV 1101 668 145
2 <154 kV 483 6 487
2 154 kV 465 12 62
3 154 kV 1100 489 7
4 380 kV 378 - 51
5 380 kV 340 73 28
6 154 kV - 148 97
7 <154 kV 6450 5455 304
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Figure 2. Segmentation flowchart.
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After segmentation, an event window included eight cycles also with the starting point of the
disturbance. As a result, the input signal to be classified had 4097 samples (see Figure 3). As can be
seen in Figure 3, we used a per-unit transformation in the magnitude value to make the normalization
process better before the classification. In the voltage sag example shown, we can point out the end of
the event within the specified window, but most of the events did not end within this window length.

0 500 1000 1500 2000 2500 3000 3500 4000
Samples

-1

-0.5

0

0.5

1
V

ol
ta

ge
 M

ag
ni

tu
de

 (
p.

u)

Figure 3. Voltage sag sample of the last dataset used as the inputs of the classifier.

Figure 4 depicts the three samples of events in the preferred real dataset as swell, interruption,
and harmonics signals.
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Figure 4. Some selected events in the actual dataset.

Additionally, we picked up the normal operation grid voltage signal to compose reference signals,
i.e., normal conditions. Within the dataset, the harmonics occurred rarely due to our application
area of signal processing of a transmission system. For a harmonic measurement, Total Harmonic
Distortion (THD) analysis was conducted giving approximately 2%–3% in all events, except harmonics.
THD values for harmonics ranged between 20% and 25%. To realize an additional analysis of noisy
conditions, we computed the Signal-to-Noise Ratio (SNR). The results showed that the SNR value was
between the range of 47 and 55 decibels (dB).

3. Methodology

The foundation of an intelligent pattern recognition system is the dataset. The two methodological
processes built on this foundation are (1) the process of the feature extracting in which meaningful
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and distinctive emphasis is obtained from the raw data and (2) the decision process in which these
features are classified using an intelligent classifier. In this section, the methodology of the proposed
power quality diagnostics and classification intelligent pattern recognition system is explained under
the feature extraction stage and extreme learning machine classifier titles. The purpose of the
proposed intelligent pattern recognition system here is to perform machine learning-based classification
using a proper feature set of particular data, which includes real power quality events in Turkish
transmission lines.

In the feature extraction process, the distinctive features generated by the traditional Discrete
Wavelet Transform (DWT) and basic statistical methods, as well as histogram, instant time-domain
characteristics, Permutation Entropy (PE), and local peaks that form the contribution to the literature;
then, the feature set has been classified by ELM-based intelligent methods. Here, the feature extraction
stage also included the Fisher vector encoding process to gather a more linear mapping of features.
An effective process has been achieved with weighted ELM and sparse-Bayesian ELM structures,
which eliminate the disadvantages of the basic ELM structure. All the methodology outline will be
explained in detail under the following topics of feature extraction and intelligent classifier stages.
The overall algorithm is shown in Figure 5.

Decision
Making

—–
ELM

W–ELM
SB–ELM

Dataset

Feature
Extraction

Data Process

Intelligent Pattern Recognition System

Sag

Swell

Interruption

Harmonics

Normal Conditions

Figure 5. Outline of the proposed bundle Extreme Learning Machine for power quality data analysis.

3.1. Feature Extraction Stage

In this section, six feature extraction methods utilized in our bundle structure are described briefly.
The aim is to reach a feature set that will characterize power quality event data in the best way and
distinguish different classes from each other. This process, which is also called feature mapping,
is defined roughly in the distribution of the selected components as the wide average distance between
the classes and the narrow average distance inside the classes [2].

In addition, the features are coded by the Fisher Vector (FV) method. This transformation aims to
achieve a more uniform distribution to increase the performance of the classifier structure. Although
the preferred FV coding method is generally used in image processing applications, it increases the
size according to the parameter values, and it has a positive effect on the classifier performance due to
achieving a more uniform distribution.

3.1.1. Permutation Entropy

Permutation Entropy (PE) calculation, which is commonly used in biomedical signal processing
applications, shows the complexity of the time series signal according to the neighborhood values of
the samples [23,36]. The feature set obtained by the PE method was proposed firstly with this study in
the power quality signal processing field. As an initial step in the calculation of the PE method, a given
x(t), t = 1, 2, . . . , T time series signal is converted to a symbolic sequence. Thus, the relationship is
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acquired between the existing values, and the previous values are based on a constant equal distance.
The expression of the embedded procedure of the transformation method is shown by (1) as follows:

x(t) = [x(t), x(t + l) . . . x(t + ml)] (1)

where m is for the embedded size parameter and l is for the time lag parameter. By a given m value,
we may have π possible permutations up to m! long. Thus, the relative frequency value can be shown
by (2) in the following way:

p(π) =
f (π)

T − (m− 1)l (2)

where f (π) represents the value of the symbolized frequency π in x(t). The PE value can be calculated
using (3) as follows:

PE(m) = −
m!

∑
m=1

p(π) ln p(π) (3)

Given the normalization factor (1/ ln m(!)), the normalized PE formula is expressed lastly in (4):

PE =
PE(m)

ln(m!)
(4)

Choosing the parameter m is crucial in PE calculation [24]. If m is too small, the process may not
work properly. Furthermore, a very large value of m may cause memory restrictions and malfunctions
when capturing the dynamic changes in the signal [23,24]. The work in [36] recommended this value
to be within the interval of [3, 7]. In this study, we chose the embedding parameter m = 3 and time lag
l = 1.

3.1.2. Local Peaks

The Local Peaks (LP) feature set consists of determining the number of local maximums for the
time series signal. The detection of local peak points, which is another proposed method for power
quality events, is preferred because the event signals are non-stationary and have fast amplitude
variation. A local peak can be defined as a point that is larger than the neighboring values [26].
To perform peak detection, MATLAB offers the command function findpeaks, which scans through
the signal samples, finding the local maxima point. For more detailed information, please see [26].
Detecting peaks in the data array is an important step for many signal processing applications.
In biomedical signal processing applications, receiving local peak information from signals that
indicate heart rhythm or that are related to brain function may have a vital role in the functioning
of the system. In the same way, peak points’ detection can also bring important information to
light for traffic intensity detection applications and signal processing applications related to solar
and wind energy fluctuations. There are a number of studies that have been proposed in a wide
range from conversion-based methods to peak detection to filter-centered or intelligent system-based
applications [37].

Based on all the discussion above, the number of local peaks belonging to each of the event data
was determined. A single feature was obtained for each signal in the dataset. The obtained sub-set of
LP features was created with these values.

3.1.3. Histogram

One of the subsets that makes up the feature vector used in this paper is the subset of “histogram
attributes”, which contains the histogram values of raw event signals. It is a group of operations that
is used to show the cluster of columns in which the data distribution is formed according to certain
criteria. Since power quality event data also refer to a numerical distribution, the number of samples
in certain step values of this data distribution is obtained by the histogram process, and it is used
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to obtain the attributes of these numbers, which are highly discriminative. This method, which is
analyzed for the first time for use in power quality event data with this study, has formed highly
distinguishable attributes between the analyzed event signals.

The steps of grouping the samples within the data were done according to the voltage amplitude
values, which was in the range of [−1, 1] as the unit value conversion was performed. In the current
study, the selection of histogram grouping steps/bars was made according to Sturge’s rule, given in
detail in [38]. Hence, according to the calculation, the histogram attribute number was 13 per event.
Prior to this article, preliminary experiments with synthetic data related to histogram attributes were
published in [39].

3.1.4. Instantaneous Time Domain Methods

For a more effective classification of power quality event data with a machine learning-based
decision process, the attribute set must have a rich discriminant capability. For this purpose, various
instant time domain parameters have been added to the set of features, which was created step-by-step.
The preferred features were derived from a number of parameters used in the field of digital
modulation, especially in the field of communication [25].

Instant Time Domain (ITD) attributes were determined based on the instantaneous amplitude,
phase, and frequency changes of the signal. Similar to the variable characteristics of power quality
disturbance signals, processing the modulating signals such as carrier frequency, phase, and amplitude,
the ITD parameters provided significant discrimination over power quality disturbance signals.
The first two of the preferred attributes for this purpose were Hilbert Transform (HT)-based parameters.
The HT method, based on the generation of a complex set of data from a time series signal, is a method
using instant frequency determination, commonly used in the analysis of non-linear and non-stationary
signals [25].

• The first HT-based attribute (HB1) was determined as the standard deviation of the normalized and
centered absolute amplitude expression of the signal and as the parameter calculated by (5) [25]:

HB1 = σaa =

√√√√ 1
Ns

[
Ns

∑
k=1

x2
cn(k)

]
−
[

1
Ns

Ns

∑
k=1
|xcn(k)|

]2

(5)

wherein xcn(k) is expressed as xcn(k) = (x [k] /ma) and ma represents the mean value of the x [k]
signal. Ns refers to the number of samples.

• The second attribute obtained from the ITD data (HB2) was the spectrum symmetry parameter
given by a P ratio, and the mathematical equation is indicated by (6) [25]:

HB2 = P =
PL − PU
PL + PU

(6)

The terms PL and PU are defined as follows in (7):

PL =
fcn

∑
k=1

∣∣R(k)∣∣2
PU =

fcn

∑
k=1

∣∣R(k + fcn + 1)
∣∣2 (7)

where “fcn” refers to the sampling frequency ( fs) normalized with an fc parameter according
to the number of samples (Ns), and the mathematical expression is represented by (8). In this
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study, the empirically-obtained fc value was defined as 10.000. R(k) expresses the Fast Fourier
Transform (FFT) output of the x [k] signal [25]:

fcn =
fc Ns

fs
− 1 (8)

• The last component (HB3) of the time domain attribute set was obtained by calculating
the maximum value of the Power Spectrum Density (PSD) of the normalized and centered
instantaneous amplitude expression. In particular, the PSD used in the detailed examination
of non-stationary signals may contain significant distinctive highlights of the processed signal.
For PSD calculation, Discrete Fourier Transform (DFT) was applied to the signal. The mathematical
equation of this definition is given by (9) [25]:

HB3 = γmax =
max

∣∣DFT
(

xcn(k)
)∣∣2

Ns
(9)

where γmax represents the change of the amplitude values of the signals, which is an important
feature in performing the distinction between classes. The change in amplitude between the
disturbance events is a strong determinant of the differentiation of classes.

3.1.5. Basic Statistical Features

The process of extracting distinctive features from power quality event signals was continued by
giving definitions of the attribute set based on the basic statistical data presented under this subsection.
Without relying on any conversion method, the statistical value definitions were applied to the raw
event data to create a subset with a total of 9 attributes.

Among the basic statistical definitions such as the minimum value, the maximum value, the mean,
standard deviation, and median values of the data series, as well as the root mean square (rms) value,
the mode value of the data array, skewness, and kurtosis parameters were also obtained. The rms
value used in this subset was the statistical rms value defined independently of the electrical point of
view. In the Xrms formulation to be calculated for any X event, the result of (10) consisted of a single
value because the calculation window contained the entire data length (n samples).

Xrms =

√
1
n

n

∑
i=1

x2
i (10)

3.1.6. Discrete Wavelet Transform

The DWT, based on the use of filter banks, was proposed in 1988 by the French mathematician
Stephane Mallat. With this process, the signal is divided into detail and approximate components [2].
The most distinctive difference of the DWT, which is similar to the continuous wavelets, is that the
scale “a” and shifting “b” components have a discrete spaced structure. The most important element
here is that the selected wavelet functions must be within their own structure and within the extension
of the orthogonal transformation. The basic expression of the DWT method is defined by (11):

ψm,n(t) =
1√
am

0
ψ

(
t− nb0am

0
am

0

)
(11)

where n shows the shift in time and m shows the expansion.
In this study, the Multi-Resolution Analysis (MRA) form of the DWT process (DWT-MRA) was

designed as an 8-level decomposition by using the “daubechies4” wavelet function. These parameters
were determined as a result of the literature research [40].
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3.1.7. Fisher Vector Encoding

In this paper, the Fisher Vector (FV) coding method was used to classify the feature set more
effectively at the decision stage. By mapping the features with the FV kernel function structure,
a high-dimensional distribution was obtained with a larger number of elements. The FV coding
structure is generally used as an alternative to the visual mapping method of Bag of Words (BoW) in
image processing applications that contain a large number of attributes. The FV coding method is
also defined as an improved version of the BoW mapping method [41]. In the literature, it has been
observed that it supports successful classification results in time series signal analysis applications
as well [29,41]. For this reason, it is suggested in the study that the method be adapted to the set of
characteristics obtained from the power quality disturbance events as a contribution to the literature.

The basis of the FV coding method is the Gaussian Mixture Model (GMM) adaptation, which
is a parametric model for the attribute set. In FV coding, the log-likelihood derivative is calculated
using the parameters of the GMM model. Thus, a representation of the average of the first and
second-degree difference values between the element distribution and each element of the centers in
the GMM distribution is revealed. As its most basic and brief explanation, the FV coding is to perform
the clustering of the differences with certain parameters [41,42].

Figure 6 shows the general block diagram of the above explanation. When the steps in the block
diagram were analyzed, we see that the features obtained from the dataset were divided into training
and testing. GMM parameters were obtained using only training data, and a codebook was created.
As a result of this process, the FVtrain feature set was obtained. While obtaining the feature set to
build the test data, GMM parameter values obtained from the training data distribution were used.
This was not calculated again for the test data. Thus, the FVtrain and FVtest feature vectors were given
as input to the classifier after FV encoding. In this study, because of the parameter selection of the FV
method, FV encoded feature set doubled in size, i.e., the FV encoded feature set had twice the number
of elements.

Train 

Features

Event 

Signals

Feature 

Extraction

Test 

Features

GMM

Code Book

Design

FV

Encoding
Normalization Classifier

Feature Space FV Encoding Decision Space

Figure 6. Block diagram of the proposed Fisher Vector (FV) encoding method.

3.2. Extreme Learning Machine Classifier

ELM, as recommended by Huang et al., was the learning algorithm used for the Single Hidden
Layer Feed-Forward Neural Network (SLFN) [27]. In contrast to gradient-based feed-forward nets, in
the ELM method, input weights and bias values are generated randomly, while analytical methods
are used to calculate the output weights. With this method, the learning process becomes extremely
fast. In addition to its fast learning ability, ELM has better generalization performance compared to
feed-forward networks with the traditional back-propagation learning algorithm [28]. In ELM method,
input and hidden layer connections are fixed. The links that connect the hidden layer to the output are
adjustable [43].

In this respect, the basic mathematical properties of the ELM method, which can be accessed
with all the mathematical details with [27], will be discussed, briefly. Before the definition of the
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improved variations used in this article, the explanations will be started by touching on the most basic
ELM structure.

For N samples to be used in the training process, consider a training dataset in the form of
D = (xi, ti), i = 1 · · ·N. Here, the input vector is xi, and the output values are ti in d-dimensions.
The output function of an ELM structure with L neurons in the hidden layer can be expressed
as (12) [34]:

f (x) =
L

∑
k=1

βkhk(θk; x) = h(Θ; x)β (12)

where h(Θ; x) = [1, h1(θ1; x), . . . hL(θL; x)] is the component that performs the hidden layer feature
mapping based on the x.Θ = [θ1, . . . θL] input vector and the β output weight vector. Bias values were
added to each x.Θ inner product. The hidden layer activation function is hk(·). Equation (12) is more
simply indicated by (13):

Hβ = T (13)

where H is the feature mapping matrix with N × L dimension and can be presented in detail as:

H =

1 h1(θ1; x1) · · · hL(θL; x1)
...

...
...

...
1 h1(θ1; xN) · · · hL(θL; xN)

 (14)

Here, the ith row of the H matrix defines the output vector of the hidden layer for a sample x.
Calling back to Equation (13), it has a linear system solved as:

β = H∠T, H∠ = (
I
C
+ HTH)−1HT (15)

where H∠ states the Moore–Penrose inverse [44] of H. Here, C is used as the regularization parameter
for ELM, being more effective in multi-class classification [28].

Equation (15) expresses the simple form to be solved when defining output values [27].
In traditional algorithms, iteration steps are needed to get desired outputs, but ELM tries a one-time
solution to deal with the same situation without any iterative actions. As an additional explanation
in the optimization perspective, the ELM process tries to obtain ‖Hβ− T‖2 and ‖β‖minimizations.
Therefore, we can describe the solution of (13) as [33]:

Minimize LPELM =
1
2
‖β‖2 + C

1
2

N

∑
i=1
‖ξ‖2

Subject to h (xi) β = tT
i − ξT

i , i = 1 . . . , N

(16)

where the ξ i = [ξi,1, . . . , ξi,m] vector is for the training error of the m output nodes for each training
sample xi. We can reach the same solution as in (15) via the Karush–Kuhn–Tucker (KKT) theorem [33].

ELM also responds to the multi-class classification process. Assuming N training sample inputs
and outputs (xi, ti) for m number of classes, we can state a ti vector with a length of m for each
sample as:

ti[j] =

{
1 if xi ∈ class j

−1 if xi /∈ class j
(17)

Here, the ELM output function can be derived for a given sample x as [27,33]:

f(x) = h(x) (
I
C
+ HTH)−1HTT when N ≥ L (18)
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where f(x) = [ f1(x), . . . , fm(x)] is the vector of the output function. Readers may choose (19) for the
test progress of the classifier according to the prediction label of x [33].

label(x) = arg max
i

fi(x), i ∈ [1, . . . , m] (19)

3.2.1. Sparse Bayesian Extreme Learning Machine

The basic ELM method is influenced by the following two adverse events: (1) The ELM structure
solves the Hβ = T equation, which calculates the output weights, by using the Moore-Penrose
generalized matrix inverse. This point can easily be influenced by the problem of over fitting since it is
some kind of least squares minimization learning method. This can be worse if the training set does
not fully represent the characteristics of the data to be processed. (2) The classification accuracy of
the ELM is severely affected by the number of hidden layer neurons. An ELM model designed for
practical applications can often have a number of hundreds or thousands of hidden layer neurons [34].
The first issue that will be affected by this situation is, of course, the embedded systems that the real
applications work on and the memory values they have. In a low-cost application, a high-cost memory
structure is not required to run the large-scale ELM model. Therefore, the solution steps to be achieved
by reducing the size of the model without compromising the performance of the model output are
required [2,34].

In order to eliminate the initial negativity above, although methods such as the kernel ELM with
L2-type arrangement have been proposed, it is very difficult to use them in applications containing
large data due to their computational costs and workloads [34].

The present methods, which aim to find the most proper number of neurons by running an
optimization in the ELM hidden layer, utilize an incremental learning method, and many of them
fit only regression applications. Bayes ELM (BELM), which is based on the Bayesian approach,
has avoided over-fitting by estimating the probabilistic distribution of output values by providing
an advantage in machine learning methods to calculate output weights with high generalization
performance. This situation has not been able to provide a complete solution since it contains complex
calculations and cannot be adapted to the classification process. In this article, the Sparse Bayesian ELM
(SB-ELM), which is based on the sparse Bayesian learning approach proposed in [34], was adapted for
power quality event classification.

The SB-ELM structure is a method that finds the sparse representations of the output weights
and reaches the solution without adding or deleting the number of hidden layer neurons after the
coincidentally-produced hidden layer parameters as in the conventional ELM structure. It was aimed
at finding sparse estimates of the βk (k = 0, . . . , L and L number of hidden layer neurons) values
determined as output weights. In the SB-ELM, the sparse process is based on the Automatic Relevance
Determination (ARD) method used in the Bayesian statistical approach. Here, some βk values were
set to zero by scanning the Hyper-Prior (HP) αk distribution over the output weights βk. According
to the degree of relevance in the distribution of hyper-prior αk, most of the output weights were
sparse, and the hidden layer neurons were pruned and simplified. All these process steps show that
the SB-ELM collects positive aspects such as high generalization and sparsity as in the SB learning
approach and universal approximation and effective learning speed as in the basic ELM structure.

3.2.2. Weighted Extreme Learning Machine

W-ELM is an ELM development that is proposed as a solution to the problem, called unbalanced
learning. However, it is also used in the balanced learning context. In W-ELM, the valued feature
according to the basic ELM is to apply an additional weighting process to the classes in the learning
phase, i.e., an additional weight assignment is made to each training instance. Theoretically,
an N × N-sized diagonal W matrix is assigned to each training sample (xi). The weighting process
makes the effect of the minority class more strengthened by defining a larger weight value, and vice
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versa for the majority class. This approach is superior to the traditional architecture of the W-ELM
structure, as well as reducing the computational cost with adaptive weight characteristics. Although
W-ELM can be more easily adapted to multiple classification applications than the basic ELM structure,
it provides a more regular and convenient feature mapping. Here, we present a brief discussion of
W-ELM. For a detailed presentation of W-ELM, please refer to [30,33].

It was stated that the purpose of the basic ELM method was to minimize the components of (20):

Minimize
∥∥Hβ− T

∥∥2 and
∥∥β
∥∥ (20)

If the specified additional weighting matrix Wa is added to the expression by which this solution
is handled from the perspective of optimization, the expression given with (21) is obtained:

Minimize LPELM =
1
2
‖β‖2 + CWa

1
2

N

∑
i=1
‖ξ‖2

Subject to h (xi) β = tT
i − ξT

i , i = 1 . . . , N

(21)

where the ξ i = [ξi,1, . . . , ξi,m] vector is the error value of the m output nodes for each xi training data
instance. The expression h (xi) creates the feature mapping in the hidden layer based on the xi and β

parameters. The solution of (21) is expressed by (22) for a model with N training samples and L
neurons in the hidden layer using the KKT theorem [33]:

β = H∠T =


HT
( I

C
+ WaHH′

)−1
WaT N < L case( I

C
+ H′WaH

)−1
WaH′T N ≥ L case

(22)

For detailed information about how to determine the weights for minority and majority classes,
please refer to [30].

4. Results and Discussion

In this section, experimental results of proposed models are presented. First, the evaluation
process is explained briefly, then some findings of the feature extraction stage are presented. Finally,
the findings from ELM, SB-ELM, and W-ELM are given. In the evaluation process, specific to this
article, an additional test procedure was considered for the k-fold cross-validation method.

The main dataset consists of 1500 samples obtained at the end of the feature extraction process;
the training set (1000 samples) and the test set (500 samples). Both sets consisted of five event classes
with an equal number of distributions. In the model determination method used in this study, the training
process of the proposed machine learning algorithms was performed with the 10-fold cross-validation
method. In other words, the training process, including a validation process in itself, as described above,
is the 10-fold cross-validation method’s result, and those models have ten performance values.

Among the 10 models, the model with the highest accuracy value was chosen, i.e., the “selected
model” was determined. Experimental results were gathered by applying the test dataset, which was
not used during the 10-fold cross-validation. Thus, all proposed algorithms were subjected to the
training and testing process by creating the most difficult conditions. In addition, a model proposal
and application of an integrated solution to the problem of the end-user were also determined. As a
result of the study, a model was saved for each individual scenario in which each algorithm was
evaluated, and a power quality event classifier product package had been obtained in such a way
as to appeal to the end user since these models were of a structure that can be used in embedded
devices. All analyses during this study were performed with original code files and directories
written in MATLAB environment. This includes the preparation of the dataset and the pre-processing.
The workstation on which the codes were run consisted of a hardware architecture with a 32-GB
memory (RAM) and a dual processor consisting of eight cores with a basic frequency of 2.1 GHz.
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The evaluation criteria used for the proposed model were determined based on the creation of
a table called the confusion matrix and selected from the most preferred criteria in the literature as
follows: accuracy, sensitivity, and specificity [45,46].

In this article, the normalization method preferred was the zero average and unit variance method
and commonly referred to as the z-score. The mathematical expression of this method is given by (23).

zi =
xi − X̄

s
(23)

In the z-score (zi) calculation here, the average value of the dataset consisting of xi elements is
represented by X̄, and s is the standard deviation of the data distribution.

4.1. Findings from Feature Extraction Methods

In the following, the findings of the FE methods are presented graphically, and also, tables of the
attribute lists are given.

In the PE method, there were seven attributes, as listed in Table 2. Besides the normalized PE
value as a feature, we took into account the histogram of the PE distribution. The number of the PEHist
features was six due to the selected value of m = 3. It had a permutation number of six, and the
histogram counted those six bins as additional features. Briefly, a single PE value and six histogram
values were collected as the PE feature set.

Table 2. Permutation entropy-based feature set. PE, Permutation Entropy.

PE Attributes

Label Definition # of Elements in the Set

PE Permutation Entropy 1
PEHist PE Histogram 6

Total 7

In Figure 7, one can see the local peaks for some selected event samples. Here, we used only a
single attribute value of LP for each event signal.
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Figure 7. Local peaks for selected samples.

Figure 8 shows the findings of the histogram method graphically for some selected events.
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Figure 8. Histogram bar graphs for event data.

Figure 9 shows the detail and approximate vectors obtained from the DWT-MRA of a sample
event signal. In the figure, d1, . . . , d8 represents the detail vectors, a8 is the approximate vector, and s
represents the original signal.
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Figure 9. DWT-Multi-Resolution Analysis (MRA) sag event details: eight-level decomposition.

As listed in Table 3, we applied some more math to the DWT-MRA coefficients. To reduce the
length of the detail vectors, the following operations were used: standard deviation, Shannon entropy,
the mean value of the signal energy data, and the energy of the approximate coefficient [39,47].
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Table 3. DWT-MRA-based feature set.

DWT-MRA Attributes

Label Definition # of Elements in the Set

D Standard Deviation 8
E Entropy 8

Energy Mean Energy 1
Engapp Energy of approximate coefficients 1

Total 18

The main feature set, the so-called Full feature Set (FS), used in experiments consisted of 51
elements. The FV encoded Full feature Set (FV-FS) included 102 elements. The sets of features derived
from the methods detailed in Section 3.1 are summarized in Table 4.

Table 4. Feature sets’ definition. LP, Local Peaks.

Full Feature Set Content

Definition
# of Elements in the Sets

without FV with FV

DWT 18 36
Basic Statistical 9 18

Histogram 13 26
PE 1 2

PEHist 6 12
LP 1 2

Instantaneous Time Domain 3 6

Total 51 102
Whole Processing Time (s) 66.61

Time for Each Event (s) 0.04

4.2. Findings from ELM

The number of parameters that need to be determined is very low in the design process of a
classifier using the ELM method. This can be defined as an advantage of the method used in the model.
The design parameters of the ELM classifier are given in Table 5.

Table 5. Parameters of the ELM classifier.

# of Neurons in The Hidden Layer 375 neurons

Activation Function Unipolar step (hardlim)

Figure 10 demonstrates the performance of an ELM structure using the unipolar step activation
function defined as hardlim in the MATLAB code design, corresponding to the number of hidden layer
neurons. It was observed that the ELM classifier structure with the 375 neuron determined as the
parameter produced the highest performance value, i.e., the mean accuracy value. Each experiment,
in order to determine the parameters, was repeated 100 times, and the performance evaluations were
sorted by the average accuracy data. In addition, in each experiment, training and testing procedures
were performed with a 10-fold cross-validation scheme. The differentiable functions such as tangent
sigmoid (tansig), radial basis (radbas), and sigmoid (sig) functions, which can be used in our algorithms,
were examined experimentally, and the best average accuracy value was observed with hardlim usage.
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Figure 10. ELM parameters: hidden layer neuron’s number design using the hardlim activation function.

Table 6 shows ELM’s overall performance details. In the Accuracy columns, 10-fold
cross-validated training accuracy and the standard deviation (±) and variance (var) values are given.
In the last two columns, Sensitivity (Sens.) and Specificity (Spec.) criteria are given, respectively.

Table 6. General performance values of the ELM classifier. Sens., Sensitivity; Spec., Specificity; FS, Full
feature Set.

Features # of Elements in the Sets
Accuracy (Acc) Time (s)

Sens. Spec.
Test Train ± Var Train Test

FS 51 0.984 0.975 0.02 0.0003 0.9516 0.2656 0.9933 0.9900

FV-FS 102 0.982 0.975 0.01 0.0001 0.9313 0.0000 0.9967 0.9800

When Table 6 is examined in detail, it is seen that the highest performance value in terms of test
accuracy belonged to FS with 51 elements. Training and test times were both acceptable. Considering
the set of training samples, especially the 1000 data, the average value of the training times was
0.9516 s for the FS, indicating that the ELM method can produce highly-effective results in terms of
computational speed.

In order to examine the general results of the ELM method in more detail, a table of performance
values according to the classes, which indicate the correct classification number of the classes in the
test data, was also formed. Here, because the test data contained 100 samples per class, the number of
correctly-categorized samples can be read as a percentage by this value. The results obtained in this
direction are presented in Table 7. From this point, it is seen that FS attributes correctly predicted all
samples in both the sag and interruption classes.

Table 7. Test results according to classes in the ELM method.

Features # of Elements in the Sets
Test Classification Rates (%)

Normal Conditions Sag Swell Interruption Harmonics

FS 51 98 100 97 100 97

FV-FS 102 97 100 99 99 96

The Confusion Matrix (CM) given in Figure 11 was obtained with the FS, which produced the
highest performance value among the ELM method’s general results. Here, the rows of the CM
represent the sample numbers of the predicted classes, while the columns represent the sample values
of the actual classes. Each row/column accuracy ratio is also summarized as the percentage value in
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the lower and most right cells in the matrix. Below this ratio, percentage error values are also included.
It is important to note that the accuracy rate of each column gives us the sensitivity value of the classes;
the accuracy rate for each row indicates the independent accuracy values of each class.

Actual

98

0

0

1

100

1

1

0

97
Pr

ed
ic

tio
n

0 0 0

0 0 0

0

0

2

100

3

0

0

0

0

97

%98

%2

%95

%98
%2

%100

%0

%97
%3

%100
%0

%97

%3

%98.4 
%1.6

E1

E2

E3

E4

E5

%100
%0
E1 E2

%99
%1
E3

%5
E4

%100

%0
E5

Figure 11. ELM Confusion Matrix (CM) for FS.

4.3. Findings from SB-ELM

The sigmoid function was used as a hidden layer activation function in the experiments of the
SB-ELM classifier structure and is expressed as g(a, b, x) = 1/(1 + exp(−(ax + b))). Here, a and
b refer to the weight (synapse) randomly determined at the beginning of the operation and bias
values added to each weight. These values are in a uniform distribution with a [−1,+1] range.
In practice, these random parameters can have an effect on performance. Therefore, in the SB-ELM
algorithm, an improvement on these values was carried out in each cycle processed during the
cross-validation, and a seed tracking interval was defined so that each cross-validation cycle was
repeatedly run in this range. If the hidden neuron number L and the seed tracking value s that
generates randomized weight and bias values are defined as [L, s], SB-ELM was performed with the
intervals of [20, 40, 60, . . . , 200]× [1, 2, . . . , 5] with a hidden layer neuron number increase of 20 in every
loop. Details on the SB-ELM parameters are summarized in Table 8.

Table 8. SB-ELM parameters.

# of Neurons in The Hidden Layer (L) [20 : 20 : 200] interval

Weight and Bias Tracking Interval [1 : 1 : 5]

Activation Function Sigmoid function

In the SB-ELM experiments, it was obvious that the training periods would be much longer than
the basic ELM method since the scanning algorithms were iterative (each experiment was 250 cycles).
Given that the model to be obtained as a result of the optimizations would gain the ability to produce
better generalization and accuracy than the basic ELM structure, this one-time delay in the model
determination phase is feasible. Table 9 shows the overall performance values of the SB-ELM method.

When the Table 9 is examined in detail, it is seen that the highest performance value in terms of
test accuracy was for FS with 51 elements. When the duration of training for all scenarios is examined,
it is observed that there was a significant increase compared to the basic ELM structure. One point
that needs to be emphasized here is that the standard deviation and variance values of the training
accuracy in the SB-ELM structure were very small. This situation shows us that the SB-ELM structure
is more stable and robust.
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Table 9. General performance values of the SB-ELM classifier.

Features # of Features
Accuracy (Acc) Time (s)

Sens. Spec.
Test Train ± Var Train Test

FS 51 0.986 0.986 0.01 0.0002 168.9844 0.0273 1.0000 0.9850

FV-FS 102 0.980 0.978 0.01 0.0000 203.8281 0.0242 0.9967 0.9750

Findings showing that SB-ELM method had a simpler model are presented in Table 10 where
the numbers of active neurons are given. As can be seen here, the number of hidden layer neurons,
which was set at 375 in the basic ELM method, was reduced to a very small number in the SB-ELM
method and was set to five and six. Therefore, the test times obtained in the SB-ELM method were
very low.

Table 10. SB-ELM: optimized active neuron numbers.

Features Testing Accuracy
Optimized Hidden Nodes

Test Train

FS 0.986 5 5

FV-FS 0.980 6 6

The results given in Table 11 show the test accuracy of the SB-ELM method on the basis of classes.
As can be seen in detail, the results obtained with almost half of the 28 experiments performed can be
interpreted as having a very good classification rate. Specifically, there was a large number of datasets
reaching the value of 100% in the sag and interruption events.

Table 11. Test results according to classes in the SB-ELM method.

Features # of Features
Test Classification Rates (%)

Normal Conditions Sag Swell Interruption Harmonics

FS 51 97 100 99 100 97

FV-FS 102 97 100 99 98 96

The CM shown in Figure 12 was obtained with FS. When the given CM was examined, almost all
of the samples of all classes were classified correctly. As can be seen, only a single interruption event
was confused with a harmonic. As a result, it is clear that only s even misclassifications occurred.
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4.4. Findings from W-ELM

Unlike the basic ELM method, the parameters determined for W-ELM, which is solved with an
additional weight matrix according to the density of the classes, are listed in Table 12.

Table 12. W-ELM parameters.

# of Neurons in the Hidden Layer 2500 neurons

Regularization Parameter (C) 100

Activation Function Unipolar step (hardlim)

W-ELM parameters given by Table 12 were empirically obtained by the application of a repetitive
series of experiments. For the empirically-defined regularization parameter (C), the values in [30]
were also referenced in the range. Among the different activation functions, the unipolar step function,
as in the ELM structure, produced the best accuracy value. In the analysis of the performance values
corresponding to the number of hidden layer neurons, it was found that the highest accuracy value
was achieved in the 2500 neuron value. The graphical representation of this situation is given in
Figure 13.

0 500 1000 1500 2000 2500 3000 3500

Hidden Layer Neuron Number

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

M
ea

n 
A

cc
ur

ac
y

Figure 13. WELM parameters: hidden layer neuron number design using the hardlim activation function.

When Table 13 is examined in detail, it is seen that the Fisher vector encoded full set (FV-FS) gave
the highest performance value in terms of test accuracy. This feature set, which was derived from all
feature extraction methods whose theoretical substructures were given, also showed high-performance
values at the point of sensitivity and specificity criteria. The sensitivity value generated by this set
appeared to be one, which is an indication that the model was accurately predicted with almost all
inter-class samples. In the findings of the W-ELM method, it was seen that there was a slight increase
in the duration of training for all scenarios compared to the basic ELM method. The reason for this
is the additional weighting process used to increase the generalization ability and the need for more
hidden layer neurons to achieve the result. In this method, the standard deviation and variance values
for the training results showed that the distribution of the accuracy sequence obtained from 10-fold
cross-validation was regular, and performance values showed a distribution close to the average value.
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Table 13. General performance values of the W-ELM classifier.

Features # of Features Accuracy (Acc) Time (s)
Sens. Spec.

Test Train ± Var Train Test

FS 51 0.984 0.976 0.01 0.0002 1.5719 0.5156 0.9867 0.9850

FV-FS 102 0.994 0.987 0.01 0.0001 1.5531 0.2656 1.0000 0.9950

The CM given in Figure 14 was obtained with the FV-FS set, which showed the highest
performance value in the W-ELM method overall result list. When this CM was examined, it was seen
that all of the sags, swells, and interruptions were correctly classified. Two of the normal conditions
events were misclassified with sag event. Similarly, the single harmonic class was confused with
the swell event, and the incorrect classification was performed. As a result, only three inaccurate
classifications were performed. As can be seen from the overall accuracy value, almost all test sets
were classified correctly.
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Figure 14. W-ELM CM for FV-FS.

Table 14 shows the test accuracy of the W-ELM method based on classes. As can be seen from this
table, the FV-FS, which produced the highest test accuracy value, had a highly accurate estimation
capacity between classes and correctly predicted all sags, swells, and interruptions in the test dataset.

Table 14. Test results according to classes in the W-ELM method.

Features # of Features
Test Classification Rates (%)

Normal Conditions Sag Swell Interruption Harmonics

FS 51 99 100 96 100 97

FV-FS 102 98 100 100 100 99

4.5. Model Performance Comparison

The highest performance values obtained from all of the analyses performed during the study
are summarized and listed in Table 15. Among the table rows, the best performance value and the
scenario are highlighted.

When Table 15 is examined, it was the W-ELM algorithm that provided the best performance in
the power quality event classification process with FV-FS in the test dataset. Although the performance
values of each of the three models proposed here were very close to each other, this is an advantage of
this method that the sensitivity value of the W-ELM was higher. The SB-ELM algorithm produced
nearly the same test accuracy as the W-ELM algorithm. However, the basic ELM structure also had the
lowest training and testing times. Considering all the results, the W-ELM method that produced the
best performance values came to the fore as the proposed model using the FV coded Full Set (FV-FS).
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Table 15. Overall performance table of experimental results.

Method and Features # of Features
Accuracy Time (s)

Sens. Spec.
Test Train Var Train Test

W-ELM and FV-FS 102 0.994 0.987 ± 0.01 0.0001 1.553 0.265 1.00 0.99

SB-ELM and FS 51 0.986 0.986 ± 0.01 0.01 168.984 0.027 1.00 0.99

ELM and FS 51 0.984 0.978 ± 0.02 0.0003 0.951 0.266 0.99 0.99

The proposed model was compared with the main two methods that have been used for a
long time in the literature, Artificial Neural Networks (ANN) and Least Squares Support Vector
Machine (LSSVM). Since the ELM method is the learning algorithm used for a single-layer feedforward
network architecture, the ANN structure is designed to contain a single hidden layer. The hidden layer
neuron number was 20, and the activation function was set to tangent sigmoid. The linear activation
function was used in the output layer. These values were determined empirically as a result of a
series of parameter determination experiments. In the code design used for the LSSVM method,
the parameters were determined in the experiment by self-adaptation. The theoretical infrastructure of
this methodology and the more detailed information can be consulted from the study [48]. The code
design used here was also performed with the MATLAB toolbox published by the authors of [48].

Figure 15 presents the comparison of the LSSVM and ANN performance of the proposed W-ELM
model with the box plot image. The benchmark was the average accuracy because each classifier was
evaluated using 10-fold cross-validation with 1000 sample training data to obtain accuracy distributions
for the methods. As can be seen from the graph, the average accuracies of the W-ELM and LSSVM
methods were very close to each other. However, the resultant distribution was more uniform in the
W-ELM method. In Figure 15, the given performance values were from the 10-fold cross-validated
training results. As one can see in Table 15, W-ELM had an accuracy value of 0.994 in the testing phase
using the un-shown test dataset. The mean accuracy values of the methods W-ELM and LSSVM were
obtained at similar values. Although this seems to be the case, it is clear that the LSSVM method fell
behind the proposed model when we consider the training times. Considering the amount of this
dataset, it can be judged that the LSSVM method was 120-times slower. This will be a significant
disadvantage for users in applications that contain “big data” and the online process. In a general
comparison, the W-ELM method was superior to other methods in terms of computational speed.
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Figure 15. LSSVM and ANN comparison for the proposed model.
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For a more detailed evaluation of the methods, Table 16 can be examined. Here, the mean values
for the performance distributions visualized in the box graph are given individually on the basis of
the methods. In all experiments, the FV-FS was used as the feature set. The table shows the standard
deviations (±) and the variance (Var) of the distributions, as well as the mean testing accuracy and
time values, obtained from 10-fold cross-validation.

Table 16. Comparative performance table.

Method Mean ± Var Mean Mean
Testing Accuracy Training Time (s) Testing Time (s)

W-ELM 0.987 0.01 0.0001 1.553 0.0156

LSSVM 0.990 0.09 0.0001 186.953 0.0498

ANN 0.920 0.0346 0.001 11.7337 0.1380

The ANN works iteratively because it uses a learning system based on the method of the
back-propagation of errors according to the basis of the method. Accuracy and generalization values
were also behind machine learning methods. In these results, it was seen that the ANN method’s
performance value was behind both classifiers. In terms of training time, it was seen that the W-ELM
model was about eight times faster. In addition, the design of the model presented in this study in
accordance with the online study was an important advantage, unlike other methods.

5. Conclusions

In this study, an intelligent pattern recognition model that determines the content of the events
in three-phase voltage signals is proposed to perform a machine learning-based power quality event
classification. The real field dataset was obtained from the nation-wide power quality monitoring
system and included the power quality events such as sag, swell, interruption, and harmonics.
Voltage signals for normal conditions measured from the grid were also designated as the reference
class. The dataset was obtained from geographically-spread substations in general and industrial
environments including residential areas to very intense energy centers. The measurements were
performed throughout the year 2015. During the feature extraction process, which is one of the
important building blocks of a pattern recognition system, a high-quality, but low-dimensional feature
set has been obtained, which was formed by methods not previously used in the power quality event
signal processing field such as histogram, permutation entropy, local peak points and determined
instant time methods. The attribute set has also been supported by the discrete wavelet transform
in order to produce high-performance results. The generated feature set was also developed by the
Fisher vector encoding to construct a linear feature mapping. In the classification process of the event
signals, the decision phase involved the extreme learning machine-based classifiers. A comprehensive
and high level analysis of the enhanced ELM methods, W-ELM and SB-ELM, was carried out with
the computational speed and generalization performance. The machine learning perspective was
supported by a bundle ELM model in the classification of power quality signals. Model performance
evaluation criteria included accuracy values and also sensitivity and specificity. Confusion matrix
representations generated in all experiments of each algorithm were also graphically shown. All the
highlights presented in the study open the possibility of using our proposed classifier for online
processing and embedded devices such as intelligent relays.

As future work, in addition to machine learning algorithms, it is also aimed to analyze the use of
deep learning structures used in big data processing and especially image processing applications. It is
planned to use deep learning for the time series signal in power quality disturbance signal processing.
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