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ABSTRACT Internet of Things (IoT) supports high flexibility and convenience in several applications
because the IoT devices continuously transfer, share, and exchange data without human intervention. During
shared or exchanged progress of data, security and privacy threats result because the published or shared
data mainly corresponds to a raw dataset, and an attacker can easily obtain details on the shared data in
an IoT environment. In the paper, we present a sanitization approach by adopting the hierarchical-cluster
method to hide confidential information while still discovering useful and meaningful information in the
sanitized dataset. The multi-objective particle swarm optimization framework and an algorithm termed as
HCMPSO are utilized to balance four side effects, namely, hiding failure, missing cost, artificial cost, and
database dissimilarity (Dis), and thereby provide optimized solutions for data sanitization. The experiments
are performed to compare the performance of the designed HCMPSO with that of the single-objective
cpGA2DT and multi-objective NSGA-II-based approaches. As shown in the results, the designed HCMPSO
exhibits good performance in terms of hiding failure, and thus the most confidential information is hidden
after the sanitization process. The shared or published data in IoT is secured. Furthermore, the designed
sanitization algorithm achieves reasonable results in terms of missing cost, artificial cost, and Dis.

INDEX TERMS IoT security, PPDM, hierarchical cluster, data sanitization, multi-objective PSO.

I. INTRODUCTION
The Internet of Things (IoT) [7], [41] refers to devices/nodes
that are physically connected and used to transfer, exchange,
or share published information. Thus, IoT provides high
flexibility as information can be easily obtained and shared
among devices without human intervention. This results in
convenience in decision-making. However, it can also cause
security threats [8] especially when shared or published
data is not sanitized. Several works [33], [47], [48], [51]
regarding to the privacy-preserving and security issues of
IoT devices and environment have discussed in recent
decades and it has become a critical topic in recent
years. To prevent security risks while still obtaining use-
ful information for decision-making, privacy-preserving data
mining (PPDM) [4], [6], [45], [49] is an option to sani-
tize confidential information while providing useful and
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meaningful information after the sanitization process. Thus,
the published or shared data is secured and security risks are
significantly reduced.

Data sanitization is a method of PPDM and is used to
hide confidential information via perturbation technology.
However, the process leads to side effects including hiding
failure, missing cost, and artificial cost during the saniti-
zation process. The hiding failure indicates that the con-
fidential information is supposed to be hidden although it
still exists after the sanitization process and is discovered
during the mining process. Missing cost indicates that it is
possible to miss the already discovered information after the
sanitization process, and the artificial cost states that mean-
ingless or unnecessary information is not discovered but is
mined after the sanitization process. The side effect problem
also corresponds to an NP-hard problem [4], [49] because
more confidential information is hidden, and thus more loss
occurs or new information appears. Several algorithms have
been presented to minimize the three side effects during the
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sanitization process including straightforward (conventional)
or optimization processes. Lindell and Pinkas presented an
ID3 algorithm [37] to solve the problem of PPDM based
on a decision-tree. Clifton et al. [13] designed a software
to solve the problem of PPDM. Dwork et al. [17] presented
several approaches that are used to handle the published noisy
statistics to the vertically partitioned databases. Wu et al. [50]
designed several algorithms to reduce support/confidence,
thereby hiding the sensitive information by decreasing the
support/confidence values. Hong et al. [28] utilized the
TF-IDF method and presented a SIF-IDF algorithm to evalu-
ate the score of each transaction for data sanitization. Sev-
eral studies related to PPDM were examined, and most of
them are based on a deletion procedure to hide sensitive
information [15], [18], [28], [38].

The PPDM is non-trivial and is considered an NP-hard
problem. Thus, it is difficult to determine the optimized solu-
tions between the side effects. Several algorithms based on
the evolutionary computation have been designed to obtain
optimal solutions. For example, Lin et al. [39], [40] utilized
genetic algorithms (GAs) to sanitize the database and pre-
sented the cpGA2DT and pGA2DT algorithms. It exhibited
good results with respect to three side effects when compared
to a greedy algorithm. Although the aforementioned algo-
rithms achieve lower side effects when compared to the tradi-
tional algorithms, they rely on the pre-defined weight values
of three side effects in the pre-defined fitness function. Thus,
the results of side effects are significantly affected by the
weighted values, the results are occasionally not optimized,
and a-priori knowledge or expert is required to set up the
weighted values. To handle the problem, Cheng et al. [14]
developed an EMO-based algorithm to consider ‘‘data distor-
tion’’ and ‘‘knowledge distortion’’ in the sanitization process
via item deletion. Although the approach involves multi-
objective functions, it can lead to incomplete knowledge
for decision-making because it directly deletes the attributes
from the databases. This is not applicable in the sequential
dataset.

Specifically, NSGA-II [16] is a method that involves
multi-objective functions rather than a single-objective func-
tion. Lin et al. [42] developed an algorithm by adapting
the NSGA-II model for data sanitization in PPDM. The
multi-objective particle swarm optimization (MOPSO) algo-
rithm [12] is extended from the conventional particle swarm
optimization (PSO) algorithm [34] although it handles the
multi-objective problems to determine a set of Pareto solu-
tions. However, the MOPSO framework cannot be utilized
in a straightforward manner to handle the PPDM problem
because dominant relationships should be utilized to obtain
optimized transactions for deletion. In the study, we utilized
the MOPSO framework and presented a hierarchical-cluster
algorithm termed as HCMPSO. The major contributions of
the study are summarized below.
• The study involves designing the MOPSO-based frame-
work in PPDM by adopting the hierarchical-cluster
method, and this exhibits better performance in terms of

side effects when compared to the conventional single-
objective approach and the NSGA-II-based model.

• Two updating strategies of the gbest (also termed as
global best) and pbest (also termed as personal best)
solutions in the updating process of MOPSO framework
are utilized to obtain higher diversity of the solutions
when compared to the NSGA-II-based model.

• To accelerate the evolutionary process the pre-large con-
cept is utilized to accelerate the progress of the evaluated
solution, and thus this significantly avoids a multiple
database scan.

• The experiments demonstrated the performance of time
cost and four side effects of the designed HCMPSO
when compared to that of the traditional single-objective
algorithm and NSGA-II-based approach.

Based on the aforementioned contributions, we believe that
the designedHCMPSO can secure data in an IoT environment
and prevent security threats especially in terms of shared
and published data. The rest of the study is structured as
follows. The literature review is presented in Section II. The
preliminary problem statement is examined in Section III.
The developed HCMPSO with two updating strategies is
developed in Section IV. Several experiments are performed
for various datasets in Section V. The conclusions and future
work are discussed in Section VI.

II. LITERATURE REVIEW
Extant studies involving evolutionary computation, PPDM,
and pre-large concepts are described as follows.

A. EVOLUTIONARY COMPUTATION
Evolutionary computation is used to solve the NP-hard prob-
lem by providing the optimal solutions in different appli-
cations and domains, and this was originally inspired by
biological evolution. Holland applied Darwin’s theory of nat-
ural selection and survival of the fittest to develop genetic
algorithms (GAs) [26] that are widely used in computational
intelligence to solve the NP-hard problem. Specifically, a GA
consists of several operations including selection, crossover,
and mutation to iteratively evaluate the solutions in the evo-
lutionary process. Kennedy and Eberhart [34] presented par-
ticle swarm optimization (PSO), which is inspired by bird
flocking activities, to search for optimal solutions. Thus,
each particle in the PSO corresponds to a potential solution.
In PSO, each bird exhibits its own velocity, and this is used to
represent the direction for the other solutions. Furthermore,
each particle is iteratively updated with its own pbest and
gbest based on the pre-defined fitness function. Each particle
is updated by the gbest, pbest, and its own velocity at each
iteration. The processes are as follows [34]:

vi(t + 1) = w× vi(t)+ c1 × r1 × (pbesti − xi(t))

+ c2 × r2 × (gbest − xi(t)) (1)

xi(t + 1) = xi(t)+ vi(t + 1) (2)

As shown in the aforementioned equations,w is considered
a factor and is utilized to balance between the global and
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the local search. Specifically, vi denotes the velocity of the
i-th particle in a population where t denotes the t-th iteration.
Furthermore, c1 and c2 denote constant values, and r1 and r2
are both represented as random numbers using a uniform
distribution to retrieve values between 0 and 1 ([0, 1]). The
velocity of the particle is updated by eq. (1), and its position
is updated by eq. (2). Several meta-heuristic algorithms were
presented and applied in several realistic problems and situ-
ations to determine optimal solutions such as the ant colony
optimization (ACO) [9] or artificial bee colony (ABC) [36].

The aforementioned algorithms mainly deal with single-
objective optimization in a fitness function, and thus
the derived solutions cannot be optimized because more
than two objectives can be combined in real-world
applications to obtain solutions. Multi-objective genetic algo-
rithms (MOGAs) [19], non-dominated sorting genetic algo-
rithm (NSGA) [46], and NSGA-II model [32] were designed
to merge more objectives to obtain Pareto solutions. Each
solution in the Pareto solutions exhibits a non-dominated
relation with each other. Extensions of the multi-objective
algorithms were examined, such as the strength Pareto evo-
lutionary algorithm (SPEA) [52] and the Pareto archived
evolution strategy (PAES) [35]. Coello and Lechuga [12]
introduced the multi-objective particle swarm optimiza-
tion (MOPSO) framework that applies the adaptive grid
method to maintain an external archive, change the direction
of particles when they flow out of the search space, and
maintain particles within a boundary.

B. PRIVACY-PRESERVING DATA MINING
As the rapid growth of IoT devices and environment, the secu-
rity and privacy issues in IoT have discussed in recent
decades. Song et al. [47] discussed the smart home sys-
tems and presented an energy-efficient, secure, and privacy-
preserving communication protocol for it. From the results,
it showed that the designed system achieves good per-
formance in terms of computational complexity, memory
cost, and communication overhead compared to the previous
works. Togan et al. [48] applies authentication service for
smart-home devices using a smart-phone as security anchor,
QR codes and attribute based cryptography for the security
of IOT devices. In recent years, cloud environment is used to
keep the large scale data, thus the privacy issue in cloud has
become a critical issue. Jayaraman et al. [33] mentioned the
IoT privacy preservation problem and presented innovative
techniques for privacy preservation of IoT data by introducing
a privacy preserving IoT architecture. The designed archi-
tecture utilizes multiple IoT cloud data stores to protect the
privacy of data collected from IoT. Yang et al. [51] presented
the e-health system in IOT environment. The system con-
sists of the non-interactive and authenticated key distribution
procedure to enable flexible access policy updating without
privacy leakage.

In the past two decades, data mining [2], [3], [10], [11],
[21], [23]–[25], [29], [44] has been an efficient method
to discover potential/useful information from an extremely

large database. Specifically, relationships between prod-
ucts cannot be easily discovered and visualized. Given
that information can be revealed from the databases, con-
fidential/secure information is also discovered during the
mining procedure, thereby leading to privacy and secu-
rity threats to users. Currently, PPDM is a critical issue
because it exhibits the ability to determine useful infor-
mation for decision-making and also hide confidential/
secured data using a sanitization procedure. Following the
sanitization pf PPDM, confidential information is hidden to
maintain data security. Agrawal and Srikant [5] presented
a new reconstruction algorithm that accurately estimated
the distribution of original data. The classifiers were also
constructed to compare the accuracy between original data
and sanitized data. Verykios et al. [49] developed hierar-
chical classification techniques that are utilized in PPDM.
Dasseni et al. [15] designed an approach that was based on
the hamming-distance mechanism to decrease the support
or confidence of the sensitive information (i.e., association
rules) for sanitization. Oliveira and Zaïane [45] developed
several sanitization approaches that were utilized to hide
frequent itemsets by the developed heuristic method. The
developed algorithms used the item-restriction approach to
avoid noise addition and limited the removal of real dataset.
Islam and Brankovic [31] presented a framework via the
noise addition method to protect and hide individual privacy
while maintaining high data quality. Hong et al. developed
the SIF-IDF method [28] that utilized the TF-IDF concepts
to assign the weight of each transaction. Subsequently, the
developed sanitization algorithm was implemented to itera-
tively sort transactions from the transaction with the highest
score to that with the lowest score.

The aforementioned algorithms mainly focus on hiding
the sensitive or confidential information in a straightforward
manner by their developed approaches, and thus it is not
possible to optimize the obtained results. The progress of
the PPDM also involves an NP-hard problem [4], [49], and
thus it is better to provide the meta-heuristic approaches to
determine the optimal solutions. Han and Ng [30] designed
a secure protocol that was used to discover a better set of
rules without disclosing own private data via genetic algo-
rithms (GAs) [22], [26], and the result of true positive rate
times true negative rate was calculated to evaluate each deci-
sion rule. Lin et al. developed several GA-based algorithms
including sGA2DT, pGA2DT [40], and cpGA2DT [39] to
hide confidential information via transaction deletion for data
sanitization. The encoded chromosome was considered as a
set of solutions, and the transaction of the gene within chro-
mosome corresponded to the victim for subsequent deletion.
A fitness function was also developed to consider three side
effects for evaluation with pre-defined weights to demon-
strate the goodness of the chromosome. Although the afore-
mentioned algorithms are efficient in terms of determining
the optimal transactions for deletion, they still require the
pre-defined weights of side effects. The mechanism signif-
icantly affects the final results of the designed approaches.
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Cheng et al. [14] designed an EMO-RH approach by adopting
the EMO for data sanitization. Although the method is based
on the multi-objective framework, it produces incomplete
transactions; and this can lead to misleading decisions espe-
cially in the treatment of hospital diagnoses. Lin et al. [42]
presented a meat-heuristic approach that was based on the
NSGA-II framework for data sanitization, and this exhibited
better side effects when compared to the single-objective
algorithms.

III. PRELIMINARY AND PROBLEM STATEMENT
Let I = {i1, i2, . . . , im} be a finite set of r distinct items
that appear in database D. Additionally, D denotes a set of
transactions such as D= {T1, T2, . . . , Tn}, and Tq ∈ D. Each
Tq denotes a subset of I and corresponds to a unique identifier
q and is termed as TID. If a support of the itemset exceeds
the minimum support count (minsup × |D|, then minsup is
defined as minimum support threshold), and it is considered
as a frequent itemset and is put into the set of FI. The set of
confidential information is denoted as CI = {c1, c2, . . . , ck},
and this is defined by user experience or preferences. Further-
more, each confidential information is also a subset of FI, and
this corresponds to ci ∈ FI .
Definition 1: For each ci ∈ CI , the size of Deleted Trans-

actions for hiding ci is denoted as DT (ci), and this is defined
as:

DT (ci) =
sup(ci)− minsup× |D|

1− minsup
, (3)

where sup(ci) is defined as the support count of ci in the
database.
Definition 2: The maximal number of deleted transactions

of all confidential information in CI is denoted as MDT, and
this is defined as:

MDT = max{DT (c1),DT (c2), . . . ,DT (ck )}. (4)

In the designed HCMPSO algorithm, MDT is considered
as the size of a particle in the MOPSO model. To completely
hide the confidential information in the database, the set ofCI
corresponds to null after the sanitization process. However,
this process can lead to significant side effects in terms of
missing and artificial costs because the three side effects
exhibit a trade-off relationship. Therefore, an optimization
process is required to determine the balance between the three
side effects. The details of the three side effects are described
below.
Definition 3: The hiding failure denotes the number of

confidential information that is not hidden after the sanitiza-
tion process, and this is denoted as α and defined as:

α = |CI ∪ FI ′|, (5)

where FI ′ is defined as the set of FIs (frequent itemsets) after
data sanitization.
Definition 4: The missing cost denotes the number of

itemsets that are discovered as large itemsets before saniti-
zation but are hidden after data sanitization. This is denoted

as β and defined as:

β = |FI − CI − FI ′|, (6)

where FI is used to maintain the FIs in the original database
before sanitization.
Definition 5: The artificial cost denotes the number of

itemsets that arise and are not discovered as the large itemset
before sanitization but appear as the frequent itemset after the
sanitization process. This is denoted as γ and defined as:

γ = |FI ′ − FI |. (7)

The relationships between α, β, and γ are shown in Fig. 1.

FIGURE 1. Three side effects of the sanitization process.

To determine more optimized solutions related to consid-
ering more objectives, the similarity between the original
database and sanitized database (Dis) [40] is explored as a
side effect of the optimization and is discussed as follows.
Definition 6: Database dissimilarity is used to measure

the number of deleted transactions between the original
database and sanitized database, and this is denoted as Dis
and defined as:

Dis = |D− D′|, (8)

whereD denotes the original database before sanitization and
D’ denotes the database after sanitization process.

From the perspective of PPDM optimization, this corre-
sponds to an NP-hard problem, and thus it is critical to deter-
mine the trade-off relationships among the four side effects.
In the study, we utilize the MOPSO-based framework in the
developed HCMPSO algorithm. We consider the hierarchical
clustering method to determine the groups of the particles
and assign the probability of the solutions for subsequent
selection. The approach provides a higher diversity of derived
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solutions when compared to the NSGA-II-based model.
Based on the approach, the designed HCMPSO significantly
hides confidential information when compared to the tra-
ditional single-objective approach and the NSGA-II-based
model. The problem statement of the study is defined below.
Problem Statement: The designed sanitization algorithm

involves deleting the most relevant transactions to hide
confidential information based on the multi-objective parti-
cle swarm optimization (MOPSO) framework. Furthermore,
the designedmodel should consider four side effects andmin-
imize them to the maximum possible extent. This especially
holds for the hiding failure because the aim of PPDM involves
hiding the confidential information as the first priority. Thus,
the problem statement of the study is defined as:

minf (p) = [f1(p), f2(p), f3(p), f4(p)], (9)

where f1 corresponds to α, f2 corresponds to β, f3 corresponds
to γ , and f4 corresponds to Dis. Furthermore, p denotes a
solution or a particle in the designed HCMPSO algorithm.

IV. PROPOSED SANITIZATION FRAMEWORK
In this section, a sanitization framework based on the multi-
objective particle swarm optimization in PPDM is presented.
It exhibits two main phases. With respect to the first phase,
the frequent itemsets are discovered and placed into the set of
FIs for later progress. Furthermore, the transactions with any
confidential information are subsequently projected in a new
database for later progress. With respect to the second phase,
two updating strategies of gbest and pbest and a designed
algorithm are developed to iteratively update the particles in
the evolutionary process. The details are described below.

A. PRE-PROCESSING
Before the sanitization process, a user has to set the con-
fidential information that is required to be hidden, and the
itemsets are placed in the set of CI. The frequent itemsets are
discovered relative to the minimum support count and placed
into the set of FIs. To obtain better transactions for deletion in
PPDM, the database is first processed to project the transac-
tions with any of the confidential information appearing in the
set ofCI. The projected database is set asD∗. Each transaction
in D∗ consists of at least one itemset within the set of CI,
and this is also considered as a candidate of the particles for
subsequent deletion in the evolutionary process. The detailed
algorithm is given in Algorithm 1.

In the pre-processing phase, D denotes the original
database, and CI denotes the set of confidential itemsets,
respectively. The outputs D∗ and FIs denotes the projected
database and set of frequent itemsets, respectively. First,
the original database is scanned to obtain the FIs by the
minsup (Line 1). Subsequently, if a transaction consists of
any of the itemset within CI, then the transaction is projected
as D∗ (Lines 2 to 4). The size of each particle is calculated
(Line 5) for later evolutionary process. Finally, the projected
database (D∗), and the frequent itemsets (FIs) are returned as
the outputs (Line 6) for the next phase.

Algorithm 1 Pre-Processing Phase
Input: D, the original database; CI, the set of

confidential information; minsup, the minimum
support threshold.

Output: D∗, the projected database; FIs, the set of
frequent itemsets.

1 find FIs by minsup;
2 for q:= 1, n; i:= 1, k do
3 if ci ⊆ Tq then
4 D∗ = D∗ ∪ Tq;

5 calculate the size of particle by eq. (3) and (4);
6 return D∗, FIs;

B. EVOLUTION PROGRESS
In the second phase, the particles are evaluated to obtain better
solutions for next iteration. In the developed sanitization
framework, each particle exhibits a possible solution and the
size of the particle is defined as MDT vectors. Each vector
in a particle is defined as the TID (transaction ID), and this
indicates that the transactions should be potentially deleted
for data sanitization. The formulas to update the velocity and
its position in the designed model are defined as follows:

vi(t + 1) = (pbest − xi(t)) ∪ (gbest − xi(t)) (10)

xi(t + 1) = rand(xi(t), null)+ vi(t + 1) (11)

With respect to the updating progress, the TIDs within the
elder particle or null value are randomly selected for next
iteration if the size of the particle does not achieveMDT. The
position of the updated particle of next iteration is summed up
with the updated velocity of the particle. The aforementioned
equations exhibit high randomization and exploration in the
evolutionary process.

Given that the designed HCMPSO is based on the
multi-objective PSO framework for utilizing the sanitization
progress, it is not possible to directly apply traditional updat-
ing strategies of pbest and gbest in PSO to the developed
approach. Thus, the un-dominated relation is utilized for the
updating progress. The LUS is utilized here to update the
pbest value as follows:
Pruning Strategy 1 (Local Updating Strategy, LUS):

pbest ←

{
x(t + 1) if f(x(t+1)) � f (pbest)
rand(x(t + 1), pbest) otherwise.

(12)

Thus, if the current particle dominates its last pbest, then
the pbest is replaced by the current particle; otherwise, a ran-
dom selection is performed to select a particle as the pbest for
next iteration.

To update the gbest, the GUS is utilized to obtain a bet-
ter solution in the evolutionary progress. In the designed
HCMPSO, a hierarchical clustering method is used to group
the solutions. Each particle is assigned its own probability
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Algorithm 2 Proposed HCMPSO Sanitization Algorithm
Input: D∗, the projected database; CI, the confidential

information; FIs, the set of frequent itemsets;
N, the size of populations;
minf (x) = [f1(p), f2(p), f3(p), f4(p)],
the multi-objective fitness function.

Output: PS∗, a set of Pareto solutions.
1 set t:= 0;
2 initial N populations with MDT ;
3 put generated particle p into the set of POPt ;
4 set Pool ← null;
5 while termination criteria is not achieved (t < N) do
6 for each p ∈ POPt do
7 evaluate minf (p) = [f1(p), f2(p), f3(p), f4(p)];
8 if Pool 6= null then
9 for each c ∈ Pool do
10 if p � c then
11 remove c from Pool;
12 Pool ← ∪p;

13 else
14 Pool ← ∪p;

15 if t:= 0 then
16 set nc:= |Pool|+12 ;

17 initialize |Pool|-clusters;
18 HCProb(Pool, nc);
19 update pbest and gbest;
20 generate POPt+1;
21 t++;

22 return PF∗;

based on the number of clusters and the number of the par-
ticles within a cluster. A random selection is performed to
select a candidate particle as the gbest based on their assigned
probability. The GUS is expressed as follows.
Pruning Strategy 2 (Global Updating Strategy, GUS):

gbest ← rand(pprob), (13)

With respect to the designed sanitization HCMPSO algo-
rithm, the details are described in Algorithm 2.

The D∗, CI, FIs, and N correspond to the projected
database, set of confidential information, set of large itemsets,
and number of populations, respectively. The f1, f2, f3, and f4
represent four fitness functions corresponding to the number
of hiding failure, number ofmissing cost, number of artificial
cost, and number of dissimilar databases (Dis), respectively.
First, N particles are randomly initialized based on the size
of each particle as MDT (Line 2). The generated particles
are placed into the set of POP0 as the initial populations.
The candidate set of the Pareto front is set as null (Line 4).
Subsequently, the iteratively progress is performed until the
termination criteria is achieved such as the size of iteration
(t < N , Lines 5 to 21). Each particle in the candidate set of

Algorithm 3 HCProb (Pool, nc)
Input: Pool, the set of particles.
Output: prob(p), the probability of each particle in PF.

1 set iter := |Pool|;
2 while iter > nc do
3 merge nearest two clusters cn and cm ;
4 iter:= iter - 1;

5 for each cluster c do
6 for each particle p ∈ c do
7 prob(p) := 1

nc ×
1
|c| ;

8 return prob(p);

TABLE 1. Parameters of the used datasets.

Pareto front is evaluated by four fitness functions (Line 7) to
determine the non-dominated solutions (Lines 8 to 14). The
satisfied solutions are performed by the HCProb function to
assign the probability of each particle based on the hierar-
chical clustering method. The pseudo-code of the HCProb
function is illustrated in Algorithm 3.

In Algorithm 3, the size of the Pool is used to set the
k-clusters for the particles, and the nearest to clusters are
merged together (Lines 2 to 4). Subsequently, the particles
within a cluster are assigned with a probability (Lines 5 to 7),
and this is used to select the gbest with high diversity of the
solutions.

V. EXPERIMENTAL RESULTS
Several experiments are conducted to demonstrate the effec-
tiveness and efficiency of the designed HCMPSO when
compared to the single-objective cpGA2DT [39] and multi-
objective NSGA-II-based approach [42]. All the compared
algorithms are implemented in Java language and are acces-
sed from PPSF website [43]. Experiments are performed
on a personal computer (PC) with an Intel Core i7-6700
Quad-Core Processor and 8GB main memory that is run on a
64-bit Microsoft Windows 10 operating system. Three real-
world datasets [20], namely chess, mushroom, and foodmat,
and a synthetic dataset of T10I4D100K [1] are used in the
experiments. The corresponding minimum support thresh-
olds for four datasets are set as 90%, 45%, 0.32%, and 2.5%
and are adjusted based on user preferences. Parameters and
characteristics of the datasets used in the experiments are
shown in Tables 1 and 2. The results in terms of runtime and
four side effects are discussed and analyzed as follows.

A. RUNTIME
In the experiments, the execution time under varying sensi-
tive percentages with a fixed minimum support threshold is
conducted in the four datasets. We also applies the pre-large
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TABLE 2. Characteristics of used datasets.

FIGURE 2. Runtime under varying sensitive percentages of frequent
itemsets. (a) Chess (minsup: 90%). (b) Mushroom (minsup: 45%).
(c) Foodmart (minsup: 0.32%). (d) T10I4D100K(minsup: 2.5%).

concept [27] to speed up computation in the evolutionary
progress. The pre-large concepts also help to reduce the mul-
tiple database scans since the artificial cost can be easily eval-
uated and updated. In this section, only the NSGA-II-based
model [42] is compared to the designed HCMPSO because
it is not reasonable to compare the single-objective algo-
rithm with the multi-objective algorithms. Two compared
algorithms are also utilized by the pre-large concepts to
speed up computations. The results of the twomulti-objective
algorithms are shown in Fig. 2.

It is observed that the developed HCMPSO consumes
significantly less runtime than the NSGA-II-based model
under varying sensitive percentages of frequent itemsets. This
is because the NSGA-II-based model consumes significant
time in terms of generating new populations via crossover
and mutation operations. The sorting strategy of the Pareto
solutions inNSGA-II-basedmodel also involves considerable
computational time. However, the presented HCMPSO is not
required to perform the crossover and mutation operations to
generate next populations. Thus, the HCMPSO requires less
runtime than that of the NSGA-II-based model. The results
in terms of four side effects are discussed next.

B. SIDE EFFECTS
In this section, the state-of-the-art single-objective
cpGA2DT [39] and multi-objective NSGA-II-based
model [42] are compared with the designed HCMPSO in
terms of hiding failure (α), missing cost (β), artificial
cost (γ ), and database dissimilarity (Dis). The population
for all evolutionary algorithms is set as 50. Given that both
the designed HCMPSO and the NSGA-II-based approach
generate a set of Pareto solutions, we evaluate the side effects
as an average of the generated solutions. The results are
discussed and described as follows.

1) HIDING FAILURE
The results of hiding failure for the four datasets are shown
in Fig. 3.

FIGURE 3. Hiding failure under varied sensitive percentages of frequent
itemsets. (a) Chess (minsup: 90%). (b) Mushroom (minsup: 45%).
(c) Foodmart (minsup: 0.32%). (d) T10I4D100K(minsup: 2.5%).

As shown in Fig. 3, the designed HCMPSO evidently
reaches the lowest hiding failure in most cases. The results
indicate that confidential information is mainly hidden after
the sanitization process when compared to the other two
approaches. For example, when the sensitive percentage of
the frequent itemsets is set as 4%, 5%, 6%, 7%, and 8%
for the chess dataset, the hiding failures of the designed
HCMPSO under varied sensitive percentages of frequent
itemsets are lower than 30%, whereas those of the other
two approaches exceed 30%, and the NSGA-II-based model
exhibits more than 50% hiding failure when the sensitive
percentage of frequent itemsets is set as 4% for the chess
dataset. Furthermore, it is also observed that the hiding failure
of the developed HCMPSO is almost zero when the sensitive
percentage of frequent itemset is set as 2% for the mush-
room dataset. With respect to the foodmart and T10I4D100K
datasets, the developed HCMPSO still exhibits good perfor-
mance when compared to the other two approaches. Gen-
erally, we conclude that the designed HCMPSO exhibits
good results in terms of hiding failure when compared to the
cpGA2DT or NSGA-II-based model.

2) MISSING COST
We discuss the results of missing cost as shown in Fig.4.

As shown in Fig. 4, the HCMPSO occasionally obtains
highermissing cost under chess and mushroom datasets. This
is because the two datasets belong to the dense dataset, and
thus the contents of most transactions exhibit high overlap-
ping. Thus, when more confidential information is deleted
from the dataset, more discovered information is deleted
together. As shown in Figs. 3(a) and 3(b), the HCMPSO
achieves lowest hiding failure than the other algorithms.
Thus, the HCMPSO occasionally produces higher missing
cost in extremely dense datasets, and this is reasonable. How-
ever, for spare datasets, such as foodmart and T10I4D100K
that are shown in Figs. 4(c) and 4(d), respectively,
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FIGURE 4. Missing cost under varied sensitive percentages of frequent
itemsets. (a) Chess (minsup: 90%). (b) Mushroom (minsup: 45%).
(c) Foodmart (minsup: 0.32%). (d) T10I4D100K(minsup: 2.5%).

FIGURE 5. Artificial cost under varied sensitive percentages of frequent
itemsets. (a) Chess (minsup: 90%). (b) Mushroom (minsup: 45%).
(c) Foodmart (minsup: 0.32%). (d) T10I4D100K(minsup: 2.5%).

the designed HCMPSO occasionally does not produce miss-
ing cost under varied sensitive percentages of frequent item-
sets. For example, all the compared algorithms exhibit no side
effect of missing cost when the sensitive percentage of fre-
quent itemsets is set as 8% for the foodmart dataset and when
the sensitive percentages of frequent itemsets are respectively
set as 5%, 7%, and 8% for the T10I4T100K dataset. Gener-
ally, themissing cost of the developedHCMPSO is acceptable
and especially most confidential information is hidden by the
designed HCMPSO.

3) ARTIFICIAL COST
Results of artificial cost are shown in Fig. 5.
As shown in Fig. 5, the HCMPSO generates higher

artificial cost when compared to the cpGA2DT and
NSGA-II-based models for extremely dense datasets such as
the mushroom shown in Fig. 5(b). This is because the size of
the database is subsequently reduced when more hiding fail-
ure is prohibited (for example, the results shown in Fig. 3(b)).
Thus, more unexpected rules subsequently arise as new
information after the sanitization process because the mini-
mum support count is changed. This is reasonable because
it exhibits a trade-off relationship between hiding failure

FIGURE 6. Database dissimilarity under varied sensitive percentages of
frequent itemsets. (a) Chess (minsup: 90%). (b) Mushroom (minsup: 45%).
(c) Foodmart (minsup: 0.32%). (d) T10I4D100K(minsup: 2.5%).

and artificial cost. When compared to the NSGA-II-based
model shown in 5(a), the designed HCMPSO still exhibits
lower artificial cost than that of the NSGA-II-based model.
With respect to sparse datasets (such as foodmart and
T10I4D100K), all the algorithms do not generate any of the
artificial cost, and the developed HCMPSO as well as the
three compared algorithms obtain the optimized results of
artificial cost for the sparse datasets.

4) DATABASE DISSIMILARITY
Results of the database similarity (Dis) are discussed and
shown in Fig. 6.

As shown in Fig. 6, the NSGA-II-based model mainly
exhibits the optimal Dis for the dense datasets such as
chess and mushroom when compared to the other two algo-
rithms. This is because as shown in Figs. 3(a) and 3(b),
the NSGA-II-based model exhibits worse results in terms
of hiding failure, less information is deleted, and thus the
side effect of Dis is not high. As observed, the proposed
HCMPSO exhibits good performance in terms of hiding
failure shown in Figs. 3(a) and 3(b); and thus more confi-
dential information is deleted and the Dis value increases.
With respect to the sparse datasets (such as foodmart and
T10I4D100K shown in Figs. 6(c) and 6(d)), the Dis for
cpGA2DT, NSGA-II-based model, and the HCMPSO are
not higher, and this corresponds to less than 1% differ-
ence. Therefore, the HCMPSO exhibits good Dis when
compared with that of the other two approaches. In sum-
mary, the designed HCMPSO exhibits a good performance
in terms of four side effects and obtains optimized solutions
when compared to the other two approaches. Furthermore,
the designed HCMPSO exhibits higher flexibility when com-
pared with that of the single-objective cpGA2DT algorithm
because the transactions for deletion are selected by user
preferences.

VI. CONCLUSION AND FUTURE WORK
In this paper, we presented a hierarchical clustering method
to find better particles as the Pareto solutions based on the
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multi-objective particle swarm optimization framework. The
HCMPSO algorithm is designed here as the sanitization
approach to hide the confidential information. Two updating
strategies are also utilized here to find the better diversity
of the obtained solutions. From the results, we can observe
that the designed HCMPSO has good hiding failure com-
pared to the other two approaches. Moreover, in terms of
missing cost, artificial cost, and database dissimilarity (Dis),
the designed HCMPSO still obtain good performance com-
pared to the other approaches, and in some cases, it can reach
the optimized results. Thus, we then can conclude that the
designed HCMPSO can secure the confidential information
of the shared or published data, which is quiet suitable for the
IoT environment. Since each item/product may have its own
specific threshold to identify whether it is a frequent or useful
item, it would be an interesting topic to consider more spe-
cific thresholds of different items in privacy-preserving data
mining. Moreover, the utility factor can be also considered to
handle the issues of privacy-preserving utility mining as our
future work.
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