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ABSTRACT Resilience is mostly considered as a single-dimension attribute of a system. Most of the recent
works on resilience treat it as a single-dimension attribute of a system or study the different dimensions
of the resilience separately without considering its multi-domain nature. In this paper, we propose an
advanced causal inference approach combined with machine learning to characterize the spatio-temporal
and multi-domain vulnerability of an urban infrastructure system against extreme weather events. With
the proposed causality approach, we perform vulnerability assessment for electricity outages and roadway
closures through considering the meteorological, topographic, and demographic attributes of urban areas in
the aftermath of the extreme weather events. This proposed holistic approach to multi-network vulnerability
assessment paves the ground for characterizing the resilience in a multi-network scheme, which is coined as
the concept of “‘co-resilience.” The proposed causal framework for multi-network vulnerability assessment
is validated using the actual data for the impacts of the Hurricane Hermine 2016 and the January Storm
2017 on the Tallahassee, FL,, USA. The results achieved from the proposed causality approach indicate a high
causal relationship among electricity outages, roadway closures, topographic aspects, and meteorological
variables in an urban area. Findings show that the proposed multi-network approach for vulnerability
assessment improves the performance of the estimation and prediction of the disaster outcomes and the
evaluation of the overall system resilience.

INDEX TERMS Causality, resilience vs. co-resilience, multi-network vulnerability, extreme events, power

outages, roadway closures.

I. INTRODUCTION

The urban infrastructure and communities relying on these
systems are highly vulnerable to extreme weather events such
as hurricanes. The need for a holistic assessment investigating
the infrastructure resilience has started to draw attention
recently due to the increasing frequency of catastrophic
hurricanes such as Katrina, Harvey, Hermine, Irma, Maria,
and Michael. Just in 2017, the North Atlantic region had
experienced 7 hurricanes and 14 tropical storms. These
numbers are substantially higher than the 1981-2010 aver-
age of 12.1 named storms, 6.4 hurricanes, and 2.7 major
hurricanes [1] due to climate change. One such destruc-
tive hurricane was Hurricane Michael (2018) with a death
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toll of 32 people, across the states of Florida, Georgia,
North Carolina, and Virginia [2]. Hurricane Michael
destroyed almost all communication and left 60 percent of
the population homeless in addition to a substantial amount
of power outages, roadway closures, and debris. As such,
the public frustration and the global impact of such natural
disasters call for new paradigms in characterizing, modeling,
and enhancing the infrastructure resilience.

There are several studies focusing on the damage of
extreme weather events and recovery plans for such
events [3]-[7]. Some of the recent studies have investi-
gated the impact of extreme weather conditions on vul-
nerable populations and searched for more efficient ways
for emergency evacuation [6], [8]. Others have specifi-
cally performed disasters risk assessment [9], [10]. Among
the works on emergency management field, resilience is
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a relatively recent concept compared to the risk assessment
and recovery planning. The resilience of infrastructure is
defined as the capability of a system to successfully oper-
ate during and after disturbances with quick adaptation to
perturbations [11], [12]. To be more specific, definition of the
resilience is the ability of a system to withstand disruptions
with an acceptable degree of performance degradation and
recovery with an acceptable amount of cost and time [13].
In the current literature, resilience is generally treated as a sin-
gle dimensional concept in a given system such as power net-
work. For instance, a recent study quantified the resilience of
the power system by coupling various probabilistic fragility
models, without considering the impacts of other systems
such as transportation/traffic flow on power systems [14].

Electric grids and roadway networks are highly vul-
nerable infrastructure components during natural disasters.
There are a variety of approaches that assess the reliabil-
ity, resilience, vulnerability and failure process of power
and transportation networks individually [15]-[19]. More
specifically, the studies on electric grid resilience are mainly
focused on the damage to electric grid components, grid
partitioning, management of network outages, and preven-
tion of blackouts [20]-[22]. Similarly, there are studies focus-
ing specifically on transportation network roadway closures
in the context of emergency resilience as well [23], [24].
However, resilience of a system, by nature, is not an isolated
and abstract concept. On the contrary, resilience is a mul-
tidimensional manifestation of different states (subsystems)
of a system. Therefore, resilience cannot be characterized
by a single unit metric. It is a holistic vector of system
state variables which are evolving in time, operation, and
function.

In the case of infrastructure networks, resilience expands to
a multi-domain and multi-network concept with the charac-
teristics of a ’system of systems’. Therefore, the assessment
of the risks imposed by disasters on different layers of infras-
tructure networks serves as the first step to conceptualize the
resilience within multi-network systems such as urban infras-
tructure. As such, a holistic characterization of resilience
by considering the interdependence and inter-connectivity
among different subsystems of urban infrastructure can lead
to better emergency response and preparedness. The multi-
network risk assessment metric that includes causal inter-
dependencies paves the ground for faster recovery with
lower costs to communities. Within the urban infrastruc-
ture, the reliable flow of energy and mobility through elec-
tricity and transportation networks ensure the sustainability,
security, economic growth, and well-being of communities
against disruptions. This paper fills the gap in the existing
literature on the infrastructure resilience, which either con-
sider the resilience as a single network problem or study the
resilience for different networks separately.

As such, this paper presents a novel multi-network frame-
work for risk assessment in infrastructure systems to achieve
the multi-network resilience through proposing a concept
named as co-resilience. To establish a better understanding of
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the co-resilience, this paper investigates the inter-operability
between electricity and transportation networks in emergency
conditions considering the topography and meteorological
conditions of the studied area. It is common knowledge that
extreme weather events such as hurricanes highly influence
human mobility patterns. For example, a fallen tree might
lead to both roadway closures and power outages. These
closed roadways would also lead to difficulty in accessing the
disrupted power lines by the utility crews, thereby increas-
ing the duration of outage recovery. There are some studies
that focus on the relationship between roadway closures and
weather conditions [20]. There have also been studies based
on the prediction of electrical outages on a spatial basis with
the use of weather information [25]. However, to the knowl-
edge of the authors, not much has been explored utilizing the
inter-connectivity of electricity and roadway networks along
with weather condition and topographic parameters during
extreme weather conditions. The closest studies to this paper
include [26], which suggests a multi-network approach to
combine weather data and demographic data with electricity
outages. However, [26] does not include the interdependency
between different networks such as roadway closures and
electric grid outages during extreme weather events, and it
does not provide an algorithmic approach to utilize the shared
information between different networks.

In this paper, we propose a novel graphical causal model
as a multi-domain metric to characterize the inter-operability
and interdependency between different layers of infrastruc-
ture systems such as electricity and transportation networks
combined with topography and weather data, under the
influence of extreme weather events such as hurricanes.
To the authors’ knowledge, causality has not been used as
a tool to study and characterize the impact of hurricanes
on infrastructure systems in this context. Causality is the
mathematical language to express cause and effect relation-
ships between different variables of different nature. There
have been few studies that have focused on causality-based
characterization of transportation including authors’ previous
works [27]-[31]. Introducing the concept of causality helps
selecting the most informative variables. The causal relation-
ship implies sharing of information between the respective
networks. Therefore, in this study, a causal methodology
helps us in identifying key variables that impacts electricity
outages and roadway closure under extreme weather events.
In this study, a novel Deep Neural Network-based causality
approach has been proposed to investigate the relationship
between power outages, roadway closures, topography, land
use, population, and weather-related factors such as wind
speed and precipitation. The proposed Deep Neural Net-
work Causality (DNNC) method has been analyzed in detail,
and compared with the other state-of-the-art causal methods.
A predictive modeling study is performed based on the out-
comes of the causal model, which results in the prediction of
outages as well as roadway closures using actual data from
Hurricane Hermine (2016) and 2017 January storm that have
impacted the City of Tallahassee, Florida, USA.
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The contributions and novelties of this paper are listed as
follows:

1) We propose a novel metric, named as the multi-network
vulnerability metric, to characterize the interdepen-
dency between electricity, weather, transportation, and
topographic systems during and in the aftermath of an
extreme weather event.

2) To quantify this multi-network vulnerability metric,
a graphical causal model has been proposed.

3) A new causality analysis approach called the
Deep Neural Network causality (DNNC) has been
developed for better and more accurate description of
interdependencies between the infrastructure networks.

4) The proposed multi-network vulnerability assessment
metric paves the way to the conceptualization of multi-
network multi-domain co-resilience” in infrastruc-
ture networks.

In the following sections of the paper, a comprehensive
explanation of the proposed causality theory and other estab-
lished methods is provided. This is followed by Section III,
which provides a detailed description of the proposed causal-
ity method, named as the Deep Neural Network Causality
(DNNC). This is followed by detailed information on the
case studies, namely the two major storms that have impacted
the City of Tallahassee, which are Hurricane Hermine (2016)
and January Storm (2017). Findings, conclusions and detailed
discussions are presented in Sections V and VI, respectively.

Il. MULTI-NETWORK VULNERABILITY &

CO-RESILIENCE CONCEPT

As described in the Introduction section, we introduce
the concept of multi-network resilience in this paper,
which is defined as the integrated resilience of electric-
ity and transportation networks. Urban infrastructures by
nature are tangled, interdependent, interconnected, and multi-
layered systems of systems. In the face of extreme weather
events such as hurricanes, cities experience disruptions and
many other adversary effects in different layers. The between
systems inter-connectivity and interdependency make the
vulnerability assessment and emergency response a very
complex task. Therefore, this paper takes the first step
towards studying, defining, and designing resilience in urban
environments in a multi-network fashion that is named as
“Co-Resilience.” From an information theory point of view,
this co-resilience concept integrates co-dependent networks
to take advantage of extra sources of information for out-
lining the behaviors of interdependent urban networks under
extreme weather events. Figure 1 illustrates various infras-
tructure and topographic layers of infrastructure in the City
of Tallahassee, Florida, affected by severe hurricanes in the
recent years.

Recently, different mathematical methods have been
introduced for modeling interdependencies among differ-
ent components of infrastructure networks such as sta-
tistical approaches [9] and probabilistic approaches [10].
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FIGURE 1. Multi-layer infrastructure map for the City of Tallahassee,
Florida. Layers from top to bottom are population density, all customers,
power lines, roadways and land cover respectively.

Graph-based models are among the most capable abstract
models of complex networks [32], [33]. In a graph repre-
sentation, network nodes are connected with edges based
on a relationship among those nodes. The causality infer-
ence is used graphical models to show the cause and effect
relationship between different components of a network’s
components. Accordingly, in this paper, we utilize a causal
graph as the mathematical framework for characterizing the
multi-network vulnerability of urban infrastructure under the
extreme weather events conditions such as hurricanes.

lll. METHODOLOGY
A synopsis of the methodology followed in this paper is
illustrated in Figure 2.

FIGURE 2. Overview of the co-resilience characterization methodology.

The input data consist of various temporal and spatial data
related to electricity outages, roadway closures, and weather
conditions induced by extreme weather conditions along with
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the topographic data of the affected area. These input data
are initially filtered through a first order conditional variance
test for causal inference. In order to find the most informa-
tive data sources related to the electricity outage, the causal
relationship between the input variables is then investigated
by a novel causality analysis methodology based on the
Deep Learning method. The resultant causal model, which is
termed as the multi-network vulnerability assessment metric,
is then utilized in a predictive modeling study for forecasting
power outages and roadway closures that occur under such
extreme weather events.

Following sub-sections explain each step of the pro-
posed methodology for multi-network vulnerability assess-
ment towards conceptualizing the co-resilience concept.

A. MULTI-NETWORK VULNERABILITY ASSESSMENT WITH
A CAUSAL GRAPHICAL METRIC

Causality analysis is a theory that describes the relationships
between different variables. In other words, causality is a
mechanism of quantifying the flow of information from one
variable to another. Directed acyclic graphs are formed as
a resultant of causal models, which indicate a direct causal
relationship regarding the information flow between the vari-
ables. A directed acyclic graph is composed of variables
(nodes) and arrows between nodes (directed edges) such that
the graph is acyclic (i.e., such that it is not possible to start at
any node, follow the directed edges in the arrowhead direction
and end up back at the same node).

In a general form, a causal model is a classical Bayesian
network, which is created by a DAG (directed acyclic graph),
where each vertex (node) is labeled by a random variable x;.
Letx = (x1, x2, ... xn). Arrows represent the causal direction
and they are also termed as directed edges. Each node x;
is assigned a transition probability matrix P(x;|pa(x;)) that
depends on the value x; and the values of pa(x;). Here, pa(x;)
is the direct causal node of x; and hence also known as the
parent node. The entire Bayesian network is assigned a total
probability given as below:

P(x) = Y| P(x;|pa(x;)) (1

For example, if a causal graph denotes A — B, it is inter-
preted as A is the direct cause of B.

Definition 1: Directed Acyclic Graph: DAG is a graph
with directed edges. A directed edge is an edge where the
endpoints are distinguished as arrow head and tail [33]. In par-
ticular, a directed edge is specified as an ordered pair of
vertices (u, v) and is denoted by u — v.

Again, by definition, a directed graph G = (V, E) consists
of a nonempty set of nodes V and a set of directed edges E.
Each edge e of E is specified by an ordered pair of vertices
u, veV.

In the case of causal directed acyclic graphs, the direct
dependence is observed by the d — separation [34]. For
example, this paper considers a causal chain of variables
A1 — Ay — Az — A4 and also by denoting correlation
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to measure dependence denoted by p:
p(Ai, Aj) # 054,

In this paper, causality analysis is applied as a data fusion
tool in outlining the most informative variables for the predic-
tion of roadway closures and power outages as interdependent
subsystems of urban infrastructure. In the following subsec-
tions, the recent state-of-the-art causality analysis models
are studied briefly, and then the proposed causal model is
presented.

j=123,4 @)

B. STATE-OF-THE-ART CAUSAL MODELS

Causality is one of the most well known approaches that is
used to characterize the dependency and relation between
different variables. The most commonly used causality analy-
sis methodologies (Peter Clark’s causal model [35], Granger
Causality [36], and Structural Equation Modeling [37]) are
described in Table 1.

TABLE 1. State-of-the-art causal methodologies.

Causality Method Reference

Peter Clark

Description

Causal graph formed
based on values from [35]
Conditional Independence test

P(X]Y, 2) = P(X|Z)

Causal relationship achieved

by Simple Linear regression

on bi-variate series [36]
y(t) =252, any(t — 1)

+ 32 Biylt — g) + e+ v(t)

SEM Categorizing variables and then

applying linear relationship test

yt = ft(PA¢,vt) [37]
Wheret =1,2,..n

PA; is parent & u; is error

Granger Causality

The methodologies discussed in Table 1 have some draw-
backs based on experiments and performed studies in the
literature. Granger Causality has a limitation while consid-
ering seasonalities and variations in time-series in the study.
Also, when seasonality is introduced, Granger causality is
more cryptic in comparison with other causality methodolo-
gies. Similarly, while specifying the latent class of structural
equation model, spurious results can be achieved if a category
is unspecified. In addition, SEM is originally designed for
the analysis of the relationships between latent variables.
However, diagnostic experts wish to know the values of
latent variables (i.e., the factor scores) for individual subjects,
which can be estimated in SEM. However, these estimations
bear severe problems as factor scores may be derived in
different ways yielding different results. In order to reduce
such uncertainties and weakness in causal relationship mod-
eling, a deep neural network based causal approach has been
proposed in this paper, which yields a more accurate direct
causal relationship due to different layers of training. There
have been very few works focusing on the use of neural
networks in understanding such causal relationships. Neural
Networks have the ability to learn and model non-linear and
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complex relationships, which enhances the information from
real world data sets.

C. DEEP NEURAL NETWORK CAUSALITY (DNNC) MODEL
Neural Networks are a critical component of Machine learn-
ing which, owing to their complex structures, serve as one
of the best structures in time series data analysis. Neural net-
works (NN) consist of a group of algorithms that are modeled
based on a human brain structure, which is capable of pattern
recognition. The NN recognize patterns that are contained
in vectors, into which all real-world data including images,
sound, text or time series can be translated. Deep neural
networks, on the other hand, are neural networks that consist
of more number of hidden layers for the processing of the
given input data. There have not been many studies consider-
ing neural networks in causal mechanisms [32]. The training
methodology used in neural networks along with forward
and backward propagation can help in the better prediction
of causal relationships. Therefore, in this paper, a causality
methodology is proposed which utilizes the concept of deep
neural networks in order to better characterize the interdepen-
dent variables.

FIGURE 3. Overall architecture of the proposed DNNC Model.

Suppose {R1, Ry, .R, },{ W1, Wa, .Wy,} {E1, Ea, ..Ey } are
different time series input data sets representing roadway
closures, weather and power outages, respectively. The inputs
are first filtered based on the conditional variance. The vari-
ables with high conditional variances, denoted by X =
X1, X2, X3, ..., Xy, are fed into the first set of hidden layers.
Similarly, Y = Yy, Y, Y3,...,Y, are inputs to the second
set of hidden layers consisting of low conditional variance.
Based on the conditional variance training, the outputs are
filtered and associated as shown in Figure 3. The outputs from

35348

these two respective hidden layer form causal graphs between
filtered variables based on the conditional variance. These
selected variables are again fed into the final deep neural
network output layer. The architecture of this deep neural
network causality is illustrated in Figure 3.

The Conditional variance shows the variance of a random
variable given the values of one or more other variables.
Consider two distinct variables X and Y. The conditional
mean of Y given X = x is defined as below:

pyx = E[Y[x] =) yh(y|x) 3)
)7
The conditional variance of Y given X = x is given as:

opx = EIY — pyp Pl = Y [Y — pyp PhOlx)  (4)
y
After categorizing the inputs based on the conditional vari-
ance, activation functions are applied to initiate the function-
ing of the hidden layers of the deep neural network causality.
The two most common activation functions are the logistic
sigmoid and hyperbolic functions.

1

8logistic(2) = 1 +ez ©)
eZ _ e—Z
8ranh(2) = m (6)

Since there are no inter-layer connections, the state of the
visible and hidden layer are conditionally independent to each
other. Then, the probability of a specific node to turn on is
given as:

plh = 1|v) = o (b +v' W) ™

where o (x) = H_% and W; represent the j-th column vector
of the matrix W. This performs the k-step Gibbs sampling
to generate a reconstructed form of the given training data.
As observed in Figure 3, a resultant causal graph is the output
of the final neural network structure. This causal graph yields
the interrelationships between different input variables.

Definition 2: Multi-Network Vulnerability Assessment
Metric: Multi-network vulnerability assessment metric is the
outcome of the proposed DNNC model. The inputs to the
DNNC causal model consist of roadway closures (R), power
outages (E) and weather variables (W). In other words,
the vulnerability assessment metric is represented as a graph
with vertices V C R, E, W.

IV. VALIDATION APPROACH FOR THE PROPOSED
MULTI-NETWORK VULNERABILITY METRIC

The ideology and contributions of this paper are not just
limited to characterizing the connection and dependency
between different infrastructure networks. This paper also
aims to quantify the underlying cause and effect relationships
between electricity networks, roadway systems, topography
of the region and meteorological variables to understand and
estimate the impact of hurricanes on the urban infrastructure.
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The first step in validation is testing causal models using
information theory indices, which is referred to as “self
validation” in subsection I'V. 1. The second stage of validation
is through performing electricity outage estimation using the
resultant causal model, where it is referred to as the “cross
validation™ in section IV.B.

Based on the resultant causal graphs, the variables that
have a direct cause on outages are considered as predictor
variables. Using actual data from the Hurricane Hermine that
impacted the City of Tallahassee, Florida in 2016, an electric-
ity outage and roadway closure estimation and prediction test
was then performed as a cross validation in order to show the
impact of resultant causal outcomes.

1) MULTI-NETWORK VULNERABILITY METRIC SELF
VALIDATION

Causality is a mechanism that implies the flow of information
from one series to another. The outcome of causality analysis
is a DAG graph as mentioned earlier. First step towards
validation of a causal graph is quantifying the amount of
information flow or similarity index between two nodes that
are conned with a edge. For this purpose, two information
theory based metrics have been used in this paper. These
metrics quantify the information shared between different
nodes and the direction of the flow of information as depicted
by the edges connecting the respective nodes.

1) Mutual Information: Mutual information (MI) is in
several ways a perfect statistic for measuring the degree
of relatedness between data sets. The MI between two
data sets X and Y can be estimated from the statistics
of the (x,y) pairs between the two data sets. The Mutual
Information I(X,Y) between the systems X and Y is
defined as shown in the equation below:

IX,Y)=HX)+HY)-HX,Y)=0 (8

2) Kullback-Leibler Divergence: Measuring the disparity
between two probability distributions over the same
variable x is called the Kullback-Leibler divergence
(KLD). The KLD is a measure of the difference
between the two probability distributions p(x) and g(x)
with a discrete random variable x. The KLD between
the two distributions is achieved as shown below:

KLD(p(0)llg(x)) = ZP(X)ln@ &)

xeX q(x)

2) MULTI-NETWORK VULNERABILITY METRIC

CROSS VALIDATION

The theory of causality suggests that any direct causal rela-
tionship between two variables signifies the flow of informa-
tion between them. In this paper, the objective is to estimate
the impact of a hurricane on electricity outages and roadway
closures occurring as a result of extreme weather events. The
crucial factors affecting electricity outages are wind speed,
roadway closure, soil moisture, land cover and drainage
system. The resultant causal model specifies the most
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informative direct causal variables which can be utilized
as predictors in predicting electricity outages occurring as a
result of extreme weather events. For example, wind speed,
rain rate, and vegetation are generally considered as the main
reasons for electricity outages, but utilizing causality also
helps us in examining the underlying causes such as roadway
closures, soil moisture and other topographic indices which
are latent variables. In other words, direct causal links and
the shared information between the infrastructure networks
(roadway network, the electric grid, and the city topography)
are utilized to predict the co-dependent vulnerability of each
network during extreme weather conditions. The apparent
and latent direct causal variables are then used as predictors
in the estimation of electricity outages as shown in Figure 2,
which are the inputs for the predictive modeling study. Three
state-of-the-art regression based data forecasting methods
have been used in this paper as follows:

1) Decision Tree Regression (DTR): It is a collec-
tion of logical “if-then” statements which are
termed as branches. This relates the explanatory
variables (precipitation, wind speed, temperature, etc.)
to a response variable (affected number of customers)
by recurrently separating the explanatory variables
onto bins termed as leaves which minimizes the sum
of square error [38].

2) Random Forest Regression (RFR): A decision tree
passes through the data once, a random forest regres-
sion bootstraps 50% of the data and develops sev-
eral trees. Instead of utilizing all explanatory variables,
a random group of the variables are chosen for
splitting [39].

3) Boosted Gradient Regression (BGR): A predictive
model is developed by a group small trees that are built
on remainders of the past trees. Addition of more layers
to the tree, the contribution from each small tree is
regulated by a learning rate. The sum of predictions
become more accurate along with the increasing depth
of the tree [40].

V. STUDY DATA

As a validation-based application for the proposed causal
model, a predictive analysis is performed on real-world data
sets. The co-resilience graphical metric is utilized to predict
real-world spatial power outages that occurred as a result
of the Hurricane Hermine (2016) and January 2017 storm
in the City of Tallahassee. Tallahassee is the most popu-
lated city in the Leon County, which houses 286,272 peo-
ple. The urbanized area of Tallahassee has a population
of 190,894 according to the U.S. Census estimates. Tallahas-
see is a municipality that provides gas, sewer, electricity and
other public community services to the region. Along with
the power outages data, roadway closure data was considered
to construct the Co-resilience graphical metric. In addition
to roadway closures and electric power outages, weather
parameters such as Wind speed, Precipitation, Temperature,
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TABLE 2. Input data description.

Variable Description
Electric Feeders Number of feeders affected
Affected (EF) by power outages
Road Closure (RC) Number of roadways closed
due to Hurricane impact
Wind Speed (WS) 1 minute wind gusts (ms™— Ly
Rain Rate (RR) Amount of rainfall (mm/hr)
Temperature (T) Temperature (°F’) during hurricane
Land Cover (LC) Barren, Urban, Herbaceous, shrub, forest

Soil Moisture (SM)
Soil Temperature (ST)
Drainage system (DS)

Soil Moisture in %
Soil Temperature (°F)
Classification into well and

poorly drained systems

FIGURE 4. Hurricane Hermine path, September 1, 2016 [1].

TABLE 3. Hurricane Hermine statistics and vital facts.

Variable Description
Landfall September 1, 2016
Highest sustained winds 80 mph

Central Pressure 981 mb

Resulting Power Outages 325,000 people
Damage Assessment $550 million

Humidity and pressure as well as several topographical fac-
tors were also taken into account.

A. HERMINE HURRICANE (2016)

Hurricane Hermine hit the Florida Panhandle Gulf Coast on
September 1st, 2016, and disrupted many key services in
Tallahassee such as power and transportation from 10:00 PM
of September 1st, 2016 to 4:00 AM of the next day Septem-
ber 2nd, affecting thousands of customers. 100,000 City
of Tallahassee and Talquin Electric Company customers
were without power the morning after the storm and many
roadways were disrupted. It was the first hurricane to
make landfall in Florida Panhandle region in 11 years. The
path of Hurricane Hermine is illustrated in Figure 4.
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FIGURE 5. January storm path, January 22, 2017 [1].

TABLE 4. January 2017 Storm statistics and vital facts.

Variable Description
Severe Storm January 21, 2017
Highest sustained winds 50 mph
Resulting Power Outages 50,000 people

B. JANUARY 2017 STORM

A severe weather event struck the southeast on Jan-
uary 21, 2017 with three rounds of severe weather moving
through the area, the first round starting during the mid-
morning hours on Saturday, January 21, 2017 as a squall
line pushed into southeast Alabama and the Florida pan-
handle [1]. Figure 5 illustrates the path and trajectory of
the January 2017 storm. As a result of this tropical storm
in January, approximately 50,000 customers were without
power and many roadways were closed in Tallahassee.

C. USING SYNTHETIC DATA SET FOR

CAUSAL MODEL VALIDATION

The proposed causal model is also applied on a synthetic
data set, which strengthens the proposed approach due to
prior knowledge of the expected ground truth of the causal
structure. We design two types of data sets, namely the data
sets with the normal distribution and the data sets with local-
distribution-shift samples. The algorithm defined below is
utilized to generate the synthetic data set:

VI. RESULTS AND DISCUSSIONS

This work is aimed at identifying interdependencies between
different variables in order to select the most informative
variables as predictors for an extreme event-based impact pre-
diction. Findings achieved from the proposed multi-network
vulnerability assessment metric are further classified into
three different subsections based on their applications and
case studies.
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Algorithm 1 Algorithm to Achieve Synthetic Data Set for
Causal Model Validation
Input : Set of 5 time series variables X1, ... X5
1 X)) =X1(t)+ 134« X1(t — 1) — 0.9025 % X1 (t —2)
2 Xo(t) = Xo(t) + 0.5« X1(r — 2)
3 X3(t) = X3(1) — 0.4« X1(t — 3)
4 X4(1) =
X4(t)—0.5%X1(t —2)+0.35%x X4 (r — 1)+ 0.35%X5(t — 1)
5 X5(t) = Xs5(1) —0.35X4(t — 1) + 0.35Xs5(r — 1)
Output: X, < X; — X3, X4 < X5

GO B @O

F@ ® -6

Q@@ ©-G

FIGURE 6. Causal models for synthetic data set from top to bottom: (a)
Ground truth causal model for the Synthetic Data set (b) Granger
causality (c) PC causal model (d) DNNC and (e) SEM.

A. DNNC CAUSAL MODEL VALIDATION

WITH SYNTHETIC DATASET

The proposed causal model was first applied on the syn-
thetic data set, which serves as a validation for the causal
approach since the ground truth for the synthetic data is
known. As seen in Figure 6, (a) is the ground truth causal
model for the synthetic data set. From figure 6 (b)-(e),
it is observed that DNNC results are in a similar causal
structure as the ground truth causal model. To validate
this further, two information theory-based metrics are cho-
sen, namely Mutual Information (MI) and Kullback Leibler
Divergence (KLD). While MI quantifies the amount of flow
of information between different variables, KLLD signifies the
divergent behaviors of the variables. A higher value of Mutual
Information signifies a better causal model consisting of more
information sharing between different variables. However,
a lower value of Kullback-Leibler Divergence signifies more
information sharing between two nodes of a causal graph.
Table 5 enumerates the values for different causal models
applied on the synthetic data set.

TABLE 5. MI and KLD values for different causal models.

Method Granger PC SEM DNNC
MI 0.62 0.65 0.61 0.93
KLD 0.48 032 0.55 0.29

As observed in Table 5, a higher value of MI was achieved
for the DNNC-based causal approach. This indicates more
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TABLE 6. Estimation error (MIAPE) for Synthetic Data set-based
comparison of various estimation methodologies.

Causal Approach DTR RFR BGR

DNNC 0.16 0.13 0.11
SEM 0.33 0.37 0.41
PC 0.26 0.22 0.19
MGC 0.48 0.42 0.33

FIGURE 7. Block diagram for the predictive analysis methodology based
on the multi-network vulnerability assessment metric.

FIGURE 8. Causal model outcomes for Hurricane Hermine from (a) DNNC,
(b) PC, (c) SEM and (d) Granger methodologies.

information sharing between the direct causal variables.
Also, a lower value of KLLD implies more information shar-
ing or lesser divergent behavior. DNNC achieves a lower
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(a)

(b)

FIGURE 9. Actual vs predicted power outages during Hurricane Hermine. (a) Actual power outages during Hurricane Hermine. (b) Predicted power

outages during Hurricane Hermine.

value of KLD thereby strengthening the causal relation-
ships detected. The synthetic data set was also utilized in
a predictive modeling study. Note that the different predictive
methodologies utilized were explained in the Methodology
section. The prediction error percentages for the synthetic
data are listed in Table 6.

From Table 6, it is observed that, Deep Neural Network
Causal method provides the most accurate results when
applied to the synthetic data set and combined with the
Boosted Gradient Regression-based forecasting technique.
The accuracy of 89% has been achieved in the case of syn-
thetic data set.

B. ESTIMATION OF ELECTRIC OUTAGES & ROADWAY
CLOSURES: HURRICANE HERMINE CASE

The main objective of this paper is to perform a multi-network
vulnerability assessment. For better validation, we use two
real world data sets as discussed in Section III. The validation
strategy is illustrated in Figure 7.

As seen in Figure 7, the first step is to create a causal model
which represents the multi-network vulnerability assessment
metric in order to select the most relevant and informative
variables among inputs that yield to a better outage predic-
tion. Based on the causal relationships achieved, a validation
is performed using the actual power outage and roadway
closure data during Hurricane Hermine. However, due to the
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lack of original roadway closure data for the January storm,
we use the Hurricane Hermine roadway closure data as train-
ing data along with weather and power outage data from the
January storm in order to predict roadway closures occurring
as a result of the January storm. The predicted roadway
closure data for the January storm is combined with other
weather variables pertaining to the storm in order to predict
the power outages occurred due to the January storm itself.
Using the proposed DNNC causal model and other afore-
mentioned causality methods, the causal graph for multi-
network vulnerability assessment is created as illustrated
in Figures 8a - 8d. These figures also provide a way to
compare the causal graphs obtained for the proposed multi-
network framework. Note that Figures 8(b), (c) and (d)
illustrate the outcomes of other state of the art causality
methodologies whereas 8(a) shows the results associated
with the proposed methodology. DNNC approach identified
both roadway closures, outage duration, number of affected
customers and population as variables that are interrelated
whereas other models generally did not have roadway clo-
sures as one of the important factors for outage prediction.
The DNNC causal graph as shown in Figure 8 (a) is thus
referred to as the multi network vulnerability model since it
directly relates power outages with roadway closures includ-
ing weather parameters. Granger model 8(d), however failed
to show the relation between land cover, power outages and
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TABLE 7. MI and KLD values for the causal models.

Method Granger PC SEM DNNC
MI 0.59 0.74  0.57 0.89
KLD 0.71 0.44  0.63 0.21

roadway closures. Moreover, both roadways and power lines
should be related due to the affect of fallen trees as observed
clearly during Hurricane Hermine.

From Table 7, it is observed that the highest values of MI
are achieved for the DNNC causal model in comparison to the
other state of the art causal methodologies. A higher number
of MI reveals more information flow between the variables.
Meanwhile, a lower number of KLD reveals more similarity
between the variables. It is observed from the Table 7 that
DNNC achieves lower values of KLD.

Based on the values enumerated in the Table 7, it is
observed that DNNC-based causal model has the least
amount of divergence. Also, the mutual information number
is higher in comparison to the other causal models. This
implies that significant amount of information is shared in
the direct causal variables as estimated by the DNNC causal
model.

The cross validation was then performed as a second
step validation of the causal models. As mentioned in
Section 2.3 B, different regression-based predictive model-
ing techniques were performed for the estimation of power
outages and feeder failures during Hurricane Hermine. There-
fore, based on the DNNC model, the inputs used as predictors
for the prediction of power outages in case of Hurricane Her-
mine includes roadway closure, soil moisture, wind speed,
land cover and drainage system data. Similarly, for the pre-
diction of roadway closures, power outage data was used
along with wind speed, land cover and soil moisture as
inputs. Figures 9 and 11 illustrate the spatial distribution
of the actual Hermine power outages and roadway closures
along with the respective predictions for the Hurricane Her-
mine impacts. The error in power outage prediction can
be observed in Figure 10. As observed from the Figure 10,
the error is significantly lower when DNNC-based causal
model was utilized to select the predictor variable. Figure 10
shows that the proposed method fails to predict outages
(shown in red in Figure 10) at certain locations clustered
around the Northwestern region of Tallahassee. This may be
attributed to the sparsity of weather-related data available at
these locations. This is also observed for the falsely predicted
power outages (shown in blue in Figure 10) in some of these
areas, similarly due to the sparsity of the available weather
data stations. Similarly, Figure 12 illustrates the error in
roadway closure predictions for the Hurricane Hermine. False
predicted as Closed, highlighted in blue color in Figure 12
implies a roadway falsely predicted as closed (a roadway that
was open). On the other hand, False predicted as not closed
shown in red in the Figure 12 implies predictions which failed
to recognize actual closures.
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FIGURE 10. Prediction error for power outages during Hurricane Hermine.

To evaluate the achieved prediction and compare it with the
actual values, different error indices were used. Mean Abso-
lute Percentage Error (MAPE) is a commonly used metric in
order to investigate the prediction accuracy of a forecasting
method. It usually expresses the accuracy as a percentage.
The MAPE values were calculated for all the aforementioned
prediction methodologies.

100 < y—y
MAPE = — )" 2= (10)
n t=1 y

In the above equation, y is the actual observation, y’ is the
predicted observation and n is the sample size of the data set.

TABLE 8. MAPE for feeder outage prediction during Hurricane Hermine.

METHOD Granger SEM PC DNNC  No Causal
DTR 15.93 9.72 733 693 25.33
RFR 15.11 9.65 7.05 6.86 21.76
BGR 12.32 7.71 693 6.17 21.14

Table 8 represents the accuracy of the three regression-
based methods along with the causal methodologies con-
sidered for the power outage estimation for the Hurricane
Hermine.

It is evident from the tables 8 that DNNC outperforms
other causal models. The least value of MAPE is achieved
when DNNC-based causal model is applied in combination
with the Boosted Gradient Tree Regression based prediction.
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(2)

(b)

FIGURE 11. Actual vs. predicted road closures during Hurricane Hermine. (a) Actual road closures during Hurricane Hermine. (b) Predicted

road closures during Hurricane Hermine.

TABLE 9. MAPE for roadway closure prediction during Hurricane
Hermine.

METHOD Granger SEM PC DNNC  No Causal
DTR 16.16 1588 13.13 11.54 31.76
RFR 16.21 14.66 1411 11.98 30.33
BGR 15.11 10.01 10.86  9.46 30.01

TABLE 10. MAPE for feeder outage prediction during the January Storm.

METHOD Granger SEM PC DNNC No Causal
DTR 26.86 2591 2243  21.62 37.32
RFR 26.24 2481 23.12 2094 34.41
BGR 26.11 20.66  18.53  19.87 29.49

Similarly, the roadway closure estimation yields error per-
centages as enlisted in Table 9. Again, a similar trend
is followed, and the highest accuracy is achieved by the
DNNC-based causality method in combination with BGR
methodology-based estimation.

C. FORECASTING ELECTRIC OUTAGES & ROADWAY
CLOSURES: JANUARY STORM 2017 CASE

In case of the January storm 2017, historical data from the
impact of Hurricane Hermine was considered as a training
data set along with weather and power outage data from the
January storm in order to predict roadway closures occurring
as a result of the January storm. The predicted roadway
closure data for the January storm is combined with other
weather variables pertaining to the storm in order to predict
the power outages occurred due to the storm itself. Table 10
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FIGURE 12. Prediction error for roadway closures during Hurricane
Hermine.

represents the error percentages for the case of power outage
prediction due to this storm. Table 10 is in agreement with
the other prediction errors reported, and DNNC combined
with Boosted Gradient regression provides the most accurate
power outage predictions.
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(a)

(b)

FIGURE 13. Actual vs Predicted power outages during the January Storm. (a) Actual power outages during the January storm. (b) Predicted power

outages during the January storm.

In order to better understand and judge the predictive
capability of this model, Figure 13 illustrates the compar-
ison between actual feeders affected and predicted feeders
affected due to the January storm.

The spatial density of the feeder outages are illustrated
in Figure 13. Based on the outcomes of DNNC causal model
and Boosted Gradient Regression, the prediction of feeders
affected during January storm is illustrated in Figure 13b.
By comparing 13b with 13a, it is observed that DNNC com-
bined with BGR-based prediction method provides a signifi-
cantly accurate prediction of feeder failures. Due to the lack
of roadway closure data in case of the January storm, a lower
accuracy of prediction is thus achieved when compared with
the findings of Hurricane Hermine. In order to overcome
this limitation, a roadway closure prediction was first per-
formed by utilizing the same model obtained for Hurricane
Hermine, but using data from January storm in this case.
This roadway closure prediction as illustrated in Figure 15
is then utilized for the prediction of power outages for the
January storm. Although following this approach yields lower
roadway closure predictions for the January storm, note that
the January storm was much lower in intensity and thus, had a
significantly lower impact in comparison with Hurricane Her-
mine. Itis observed that, due to lack of actual roadway closure
data and vegetation data for the January storm, the predic-
tion accuracy is comparatively lower than during the case
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of Hurricane Hermine. This is illustrated in Figure 14. The
prediction accuracy is higher when roadway closure data is
accounted for in the outage prediction, which strengthens the
concept of the proposed co-resilience metric.

On comparing the prediction error of power outages dur-
ing Hurricane Hermine as seen in Fig.10 with the predic-
tion error of power outages during January storm shown
in Fig.14, we observe a higher value of error in the case
of January storm. This limitation in the methodology is the
lack of available high resolution spatial data. In other words,
the variables considered in this study have different time
steps and different sample sizes. This is one limitation of
DNNC causal model, where a lower value of accuracy is
obtained for time series with different time steps and different
sample sizes. Despite the limitations, the higher accuracy
obtained is accounted to the advantages of applying a causal-
based methodology for the impact predictions under extreme
weather events.

D. TAKE-AWAY FROM THE IMPACT OF CAUSALITY

ON PREDICTION ANALYSIS

In order to evaluate the advantages of applying a causal-
ity based prediction approach, it is important to examine
the effect of each direct causal and non-causal variable one
by one for the prediction. To do this, power outage pre-
dictions were performed using a single variable as input.
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FIGURE 14. Prediction error in power outage prediction for January storm.

FIGURE 15. Roadway closure prediction for the January storm.

Therefore, following variables have been added one by
one to the number of failed electric feeders (EF) to esti-
mate the power outage (EF) during hurricane Hermine:
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FIGURE 16. Accuracy percentage for different combinations of Input
variables for Hurricane Hermine based predictions.

the wind speed (WS), the number of failed electric feed-
ers (EF), Rain Rate (RR), Land Cover (LC), Drainage sys-
tem (DS), Soil Moisture (SM), and Roadway Closure (RC).
In Figure 16, it is observed that the power outage predic-
tion error is higher when the input consists of EF variable
only. Adding RC information to EF as an input significantly
reduces the power outage perdition error compared to other
variables.

FIGURE 17. Intervention analysis on combination of Input variables for
Hurricane Hermine based predictions.

The advantages of applying the proposed causality-based
approach is also evident from Figure 17. This figure com-
pared the outcomes of outage prediction models with varying
input combinations. It is observed that the error is higher
when outage prediction was performed with intervention,
by utilizing ’outages’ data only. The error reduces when
outage data is combined with topographic data (O + T).
A similar trend is seen when outage data is combined with
weather data (O + W). It is to be noted that the error further
reduces when prediction is performed by combining outages
data with road closure data (O 4- RC). The accuracy is highest
when historical outage data is combined along with other
variables such as weather, topography and roadway closure
(O + W + T + RC) information. This similar pattern is
observed when a DNNC model based prediction is performed
by combining only the direct causal variables such as soil
moisture and wind speed under weather variables, soil mois-
ture under the topography variables, thereby strengthening
the need for causal based input selection process.

VOLUME 7, 2019



L. M. Konila Sriram et al.: Multi-Network Vulnerability Causal Model for Infrastructure Co-Resilience

IEEE Access

VIi. CONCLUSION

In this paper, we conceptualize the theory of Co-Resilience
utilizing causality approaches in order to understand the
interdependence between different infrastructure networks
during extreme weather events. A novel Deep Neural Net-
work based causality (DNNC) methodology was proposed
for this purpose, and the resultant multi-network vulnera-
bility assessment metric characterizes the direct dependency
between power outages and roadway closures combined with
weather and topology-based parameters. This approach can
significantly strengthen the resilience of different infras-
tructure networks fused together. The developed multi-
network vulnerability assessment metric was utilized as
a predictor model to estimate power outages and road-
way closures induced by the 2016 Hurricane Hermine and
2017 January storm that have impacted the City of Talla-
hassee, Florida. Results indicate high accuracy performance
of the model in the prediction of power outages as well as
roadway closures. For example, for the Hurricane Hermine,
the power outages were estimated with a 93.83% accuracy.
Roadway closures, on the other hand, were predicted with
an accuracy of 90.54% for the Hurricane Hermine case.
Similarly, power outage prediction due to the January storm
was within an accuracy of 80.13%. This lower accuracy is
obtained for the January storm mainly due to the lack of actual
roadway closure data.

The findings of the study evidence that the resilience of a
system is not an isolated issue, on the contrary, depends on
the resilience of other systems that work as a whole within
an urban infrastructure. That is, there exists an interdepen-
dence between different infrastructure components such as
power and roadway networks, which compels adoption of
the Co-resilience concept proposed in this study. From policy
and planning perspective, Co-resilience concept can aid offi-
cials and decision makers in demonstrating the importance of
holistic approaches while building a resilient infrastructure
which is crucial for communities to withstand against and
rapidly recover from extreme weather events. From a more
practical point of view, the proposed models for prediction
of roadway closures and power outages and the utilized
causality approach can assist city officials during response
and recovery phases after extreme events. That is, we showed
that power outage information, along with other predictors,
can be used to predict the high roadway closure probability
throughout the city. This is very important since there is no
other option than seek-and-find or citizen-reporting to locate
roadway closures and send crews to fix the problem. How-
ever, using the prediction approach presented in this study,
critical locations with high probability of roadway closures
can be identified, and public work crews can be directed to
those critical locations.

In general, the addition of the proposed multi-network
co-resilience framework into the electric grid outage
management brings more situational awareness and helps in
a more effective emergency management planning for city
governments, electric utilities, transportation departments,
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and other stakeholders. As such, the findings of this paper can
help policymakers in developing methodologies to come up
with the multi-network and multi-domain solutions for their
infrastructure resilience problems. Future work is directed
towards enhancing Co-Resilience metric with the inclusion of
other infrastructure networks. Furthermore, this method will
be applied on larger data sets and case studies to yield better
insights regarding the model performance.
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