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Abstract Multilevel Modelling is a powerful paradigm that can improve the way
we create and use models. The community and approaches related to Multilevel
Modelling have been constantly growing, and the need to agree on some basic
concepts, semantics and vocabulary has become paramount. In this paper, we
present a tool that can provide empirical data and practical instrumentation to aid
in the discussion of the foundational concepts of the paradigm. We outline the
structure, modules and applications of the tool in detail, and explain how they
can be employed for different tasks that can benefit the Multilevel Modelling
community. To illustrate these benefits, we also describe several experiments
carried out with the tool and their positive results.

1 Introduction

The field of Multilevel Modelling (MLM) has crystallised in recent years as a relevant
field inside the Model-Driven Software Engineering (MDSE) community. Concepts
like multiple levels of abstraction, deep instantiation and inter-model constraints have
been proven as valid solutions to scenarios where traditional fixed-level modelling
lacks expressiveness [10]. Consequently, the number of proposals and tools in the field
of MLM has grown considerably. However, some of these concepts, as well as their
semantics, remain to be agreed upon by the community. This lack of consensus is noticed
in recent examples like the Bicycle Challenge [7], aimed at showcasing and comparing
different approaches to MLM; the challenges and need of discussion described in [4]; a
comparison between two prominent MLM tools [11]; and even the description of the
MULTI workshop series on its website3.

Our aim is to contribute to the convergence of MLM concepts and their semantics,
so that a common base of knowledge is created and the discussions about MLM can
progress towards more advanced topics. We build upon the work presented in [12], where
a prototype of a tool for rearchitecting Ecore metamodels into multilevel hierarchies
was introduced. For that rearchitecting process, we identified certain patterns in the
metamodels (so-called “smells” [10]) and transformed them to encode the same inform-
ation into more concise multilevel hierarchies. We present here new additions to the
original proposal and highlight the advantages which they provide and can be relevant
for the MLM community, such as the interoperability and comparison of MLM tools.
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The structure and main contributions of this paper are: (1) a detailed presentation
of an intermediate, tool-agnostic metamodel that can be used to represent multilevel
hierarchies (Section 2); (2) the addition of importing capabilities so that models defined
in different tools can be transformed into instances of the tool-agnostic metamodel; this is
to facilitate their comparison, interoperability, evaluation and improvement, as well guide
the choice of suitable tools for a specific scenario (Section 3); and (3) the description
and results of an experiment using these import and export capabilities, drawing from
our own experiences and illustrating the usefulness of the process (Section 4). Finally in
Section 5 we present some related works, summarise the main results of this paper and
draw future lines of research that can stem from our contributions.

2 Tool-agnostic MLM metamodel

The tool-agnostic Ecore metamodel depicted in Figure 1 contains the concepts that are
used to represent a multilevel, tree-shaped hierarchy of models, which can also be used
to represent a single stack with only one model per level. This metamodel aims to include
all features from three MLM tools and be open for the inclusion of new ones. In its
current shape, it has been constructed by some of the proponents of the included tools
based on their knowledge and experience.

Root

[0..*] models [0..*] elements

[0..1] level

[1..1] target

[0..1] potency

[0..*] features

[0..*] subTypes[0..*] superTypes

[0..*] instances[0..*] types[0..*] children[0..1] parent

[1..1] potency
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Figure 1: Metamodel to represent tool-agnostic multilevel hierarchies

The tool-agnostic metamodel has a root class, called Hierarchy that acts as the root
(required in EMF) and contains a list of models. This list contains Model elements,
that can have at most one metamodel (reference parent) and any number of instance
models (reference children). These two references ensure the aforementioned tree shape
of hierarchies. A model can have a Level, represented as a class containing an integer
attribute whose default value is zero. This level information is required by some MLM
tools, and the numbering convention may differ from tool to tool. A Model may also



have Potency, which in some cases is used as the default potency of the elements it
contains, as explained below. Both hierarchies and models must have a name that can be
used to identify them.

All elements that can be contained inside a Model inherit from the abstract class
TypedElement. By doing so, we ensure that all the concepts that we present in the
following will have a name (since TypedElement extends Named) and a potency (by
extending DeepElement). Typed elements can have any number of types—allowing for
multiple typing, which is supported by some MLM tools—and therefore any number of
instances. Furthermore, the required Potency for all elements is used to control where,
and how many times, an element can be instantiated. The design decision to have it as a
separate class is to favour composition over inheritance and keep the metamodel (and
related code) flexible in case of future modifications, and the same applies to LEVEL.
In order to cover all potency possibilities provided by the three tools considered so
far—Melanee [3], MetaDepth [9] and MultEcore [13]—the potency is specified by three
values: start, to indicate the minimum number of levels below where the element can
be instantiated (minimum value is 1); end, to indicate the maximum number of levels
below where the element can be instantiated (this value must be bigger or equal than
start); and depth, to indicate the number of times an instance of the element can be
instantiated at the levels below. That is, the depth of an instance will always be one less
than the depth of its type. For example, if an element A at level 1 has potency 2,3,2, then
A can be instantiated in levels 3 and 4 (the instances will have depth 1), and instances of
those instances can also be created, but not instantiated any further (since their depth
will be 0).

A Model can contain Clabjects, representing the class-object duality of the element,
as initially defined in [2]. Clabjects can be abstract (meaning they cannot be instantiated)
and have multiple types. This is indicated by the two boolean attributes it contains,
which are set to false by default. The possibility of a clabject acting as superclass of
another (inheritance relation) is indicated by the superTypes reference and its opposite,
subTypes. As specified by the cardinalities of these references, multiple inheritance is
allowed. Clabjects can contain two kinds of Features, namely Reference and Attribute.
The former relates its containing clabject (source) with another clabject, indicated by
target, whereas the latter specifies an attribute of the clabject, where a type must be
specified as one of the given data types in the DataType enumeration. These data
types are limited for now to the most common four: boolean, integer, float and string
(the default one). Both Clabject, Reference and Attribute can have any number of
cardinalities (optional for now), which control the minimum and maximum number of
instances that can be created of the corresponding element. The boundaries are given
by the cardinality’s two integer attributes, min (with default value 0) and max (default
value -1, i.e. unbounded). These cardinalities must also define a potency (by inheriting
from DeepElement) which specifies in which levels each cardinality must hold.

The purpose of this metamodel is to act as an internal representation for the rear-
chitecting process described in Section 3. Besides, it can be used as a reference for key
features that are expected from multilevel-aware modelling tools, and as a basis for
discussion about those features: which ones should be included and their semantics.



3 MLM Rearchitecter tool

In this section, we describe our MLM rearchitecting tool, with special focus on the
parts relevant to this paper and the new additions. The original version of this tool was
presented in [12], as an implementation of some of the ideas from [10] for detecting
“smells” in two-level metamodels and refactoring them into MLM patterns.
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Figure 2: Rearchitecting process overview, updated from [12]

The rearchitecting process has a pipeline-like structure, as shown in Figure 2. The
process can be executed automatically in a single run or in a step-by-step basis, allowing
to fix errors, make adjustments or complete the results of any step throughout the process.
Each of the modules, as well as the complete tool which encompass all of them, the
Rearchitecter itself, are available in the form of Java JAR files, which can be downloaded
from the project’s website [16]. The interaction with the different modules is made by
a console interface, and allows for different execution modes—single-file and batch—
and additional output like debugging information. The tool also outputs statistical data
about some of the processes, as explained below. The modules that compose the whole
rearchitecting process follow a pipeline-like structure, and are described in the following.

– Annotator Looks for bad design “smells” in Ecore metamodels, and uses EAn-
notations to mark them, together with a confidence level. Different techniques like
structural patterns, string similarity for names and semantic proximity are used in
of the already implemented heuristics. The full description of smells can be found
at [10]. This module contains the interface Heuristic which can be implemented by
new Java classes in order to find new smells, as indicated in Figure 2. As a result
of this step, we obtain the same Ecore metamodel from the input, enriched with
annotations in the elements that conform a smell and a confidence level, normalised
between 0 and 10.

– Transformer Takes an annotated Ecore metamodel as input. Based on the informa-
tion carried by these annotations—which are obtained in the previous step and can
be extended or corrected manually—different transformations can be applied, in



order to turn the elements in the metamodel (e.g. an EClass) into instances of ele-
ments from our tool-agnostic metamodel (e.g. an instance of Clabject). The current
state of this module already implements transformations for the currently supported
annotations and, as in the previous module, can be easily extended by implement-
ing the existing Transformation Java interface. To ease the task of implementing
new transformations, this module contains a registry of the already transformed
elements, to ensure traceability from input to output and the combination of differ-
ent transformations. For example, this registry is necessary when transforming an
EReference, in order to locate the clabjects that correspond to its source and target
EClasses. Furthermore, this module contains default copy transformations, that are
applied if no other transformation is suitable for a given element. The result of this
process is a model representing a multilevel hierarchy that optimizes the original
metamodel, and which is an instance of the metamodel presented in Section 2. It is
also important to notice that the process can be adjusted to only treat annotations
with a confidence level above a given threshold: some early experiments, briefly
explained below, have been used to compare the automatically annotated Ecore
metamodels against manually annotated ones; the experiments have shown that a
confidence threshold of 7 gives the best value for precision and recall, and that is the
value currently configured for this step.

– Recommender This module takes an instance model of the tool-agnostic metamodel,
which can be generated by the previous step or by importing (explained below),
and ranks the registered multilevel tools based on their suitability for modelling
the hierarchy represented by the model. This ranking is calculated by counting the
number of multilevel features that appear in the model, and whether the MLM tools
can support them (2 points), emulate them (1 point) or do not support them (-1 point
and warning). The ranking is both written as console output and as a CSV file; some
of these results can be found online [16]. This information provides an empirical
way of comparing MLM tools, and their suitability for different scenarios. As with
the previous modules, Figure 2 also shows how the Recommender can be easily
extended: contributors can both register new tools by listing their degree of support
for all MLM features already defined (by implementing the Tool interface), as well
as defining new MLM concepts and implementing how to find them in the model
(implementing the Concept interface).

– Exporter Since the rearchitecting tool itself does not provide any custom editors
for MLM, this module allows to transform the tool-agnostic representation into a
tool-dependent one. The nature of the generated hierarchy depends completely on
the selected tool, so it is the responsibility of the contributor to respect the format
used for the target representation. For example, MetaDepth requires text files with a
JSON-like syntax and the mdepth file extension. In order to add exporting options for
additional tools, this module provides the Format interface. Any class implementing
the interface will be automatically included in the tool’s catalogue of registered
exporters and be accessible for exportation. Apart from the existing MetaDepth
exporter, the new version of the tool has been extended with another implementation
for the tool MultEcore.



The pipeline conformed by the four aforementioned modules can also be used as a
single black box module, called Rearchitecter. This module takes any Ecore metamodel
as an input and outputs the representation of the equivalent multilevel hierarchy in any
number of selected formats. If executed this way, the ranking information provided by
the Recommender can be used to automatically select the best scoring tool as target for
exportation, in addition to the default manual selection. This dependence is also depicted
in Figure 2 with a grey arrow. As with the separate modules, the Rearchitecter also outputs
optional debugging information and the CSV file generated in the recommendation step.
Additionally, the Rearchitecter generates a second CSV file with information about the
reduction achieved by the process, in terms of classes, references and attributes. This
data is used to empirically assess the validity of the approach.

In parallel to the rearchitecting process, we also implemented an experiment for
calculating the precision and recall of the heuristic-driven, automatic annotations against
manually-annotated metamodels. We run the experiment for all potential threshold
values, ranging from 0 (best recall, worst precision) to 10 (worst recall, best precision),
and found the optimal value to be 7. The complete results for 35 Ecore metamodels
from the AtlanMod Metamodel Zoos [6] can be found in an online table where the 11
CSV files resulting from the experiment have been imported and synthesized [16]. As
mentioned before, we used this information to evaluate the correctness of the process
and adjust the tool’s confidence threshold for executing a specific MLM transformation
in the Transformer.

Finally, in this work we present a new module for the rearchitecting tool, which
provides new ways to interact with the tool-agnostic metamodel presented in Section 2.

– Importer This new module was created in order to increase the usefulness of the
rearchitecting tool for the MLM community, by allowing the exchange of repres-
entation from tool-dependent to tool-independent. As with the previous modules,
extending the module with new MLM tool compatibility is straightforward. By
implementing the Format interface it provides, the module can automatically register
it, and offer it as a possibility for importing from that MLM tool representation.
Similar to the Exporter, it is the contributor’s responsibility to ensure the proper
exchange of representation, both in parsing the tool-dependent representation and
generating a valid tool-agnostic model instance. Also similar is the fact that we did
not use any model transformation or model weaving techniques (such as ??) since it
cannot be guaranteed that the tools will have a metamodel for their representation
format, or that it will be compatible with EMF technologies. A proof of concept
implementation for the tool MultEcore is included in the current version of the
module. A small experiment presented in Section 4 shows how this new module
allows for an exchange of representation between MultEcore and MetaDepth and a
“round-trip” for MultEcore.

4 Experiments and results

In this section, we present some initial experiments and experiences with the rearchitect-
ing tool, with special focus on the newly added Importer module and its capabilities.



Table 1: Repetition of the experiment from [12], including the results after improving
MultEcore: best scores in bold and tools with unsupported features in red

Hierarchy Size (multilevel) Melanee MetaDepth MultEcore
(old)

MultEcore
(new)Models Classes Refs. Attrs.

Security Policies 1 4 5 4 31 29 10 32
Agate 1 64 118 81 398 518 279 518
CloudML 1 15 17 26 111 120 64 120
CloudML-2.0 1 21 40 44 188 214 112 214
HAL 1 41 15 72 256 284 156 284

Improving score in the Recommender In earlier experiments with the Rearchitecter, the
tools Melanee, MetaDepth and MultEcore were compared. MultEcore was the most
recent one, and hence its score was always the lowest. In Table 1, columns 6, 7 and
8 show the results from those first experiments (repeated from[12]). Thanks to the
possibility of comparing empirically with third-party examples, we identified the most
necessary improvements that needed to be made to MultEcore. These were, mainly, the
necessity to introduce the depth value into potencies—hence becoming three-valued—,
the way to handle attributes and the semantics of inheritance. After these improvements,
the support of several multilevel features in MultEcore changed, and a repetition of the
experiment showed that the tool is now as capable as the other two, and even better in
one case. The improved scores can be found in the last column of Table 1. We believe
that other tools can also benefit from this empirical evaluation, especially in the case of
new proposals for multilevel-aware frameworks.

Evaluating MultEcore’s examples One of the main contributions of the Importer module
is allowing to represent examples made specifically for a multilevel modelling tool—
normally aimed at showcasing that tool’s strengths—in the tool-agnostic format. This
way, the creators of the tool can empirically validate the claimed strengths of their
approach. To illustrate this, we used several example hierarchies that were previously
developed for different projects, available at the MultEcore project repositories4. Addi-
tionally, this experiment helped test the new Importer module with its implementation
for MultEcore. The process followed in this experiment consisted firstly in using the
Importer to represent the multilevel hierarchies in our examples as instances of the
tool-agnostic metamodel. Once this was done, we used the Recommender to create
a similar table to the one previously showed. For this second experiment, the results
are depicted in Table 2. As expected, MultEcore obtains the highest scores in the most
complex examples, and ties with Melanee and MetaDepth in the simplest ones, validating
the strengths of MultEcore in certain scenarios.

Import-Export for the same tool With the new addition of the Importer, it is now possible
to transform back and forth among different representations, or even within the same
representation. To check that no information is lost, we imported a small hierarchy,
and obtained its tool-agnostic representation. The example is an excerpt of the solution

4 https://bitbucket.org/account/user/phd-fernando/projects/MUL
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Table 2: Results for each tool after importing and recommendation: best scores in bold
and tools with unsupported features in red

Hierarchy Size (Multilevel) Melanee MetaDepth MultEcoreModels Classes References Attributes
bicycle 6 32 17 17 125 119 140
datatypes 3 21 27 0 96 96 96
ltl 5 59 35 4 196 196 196
petrinets 4 20 21 3 85 82 94
pls 5 32 25 0 105 105 114
robolang 7 69 78 1 215 214 296

presented in [14] to the first edition of the Bicycle Challenge from the MULTI 2017
workshop (see the new edition at [7]). The initial version of the hierarchy in MultEcore
is depicted in Figure 3a, which contains three models. After running the importer,
we obtained the tool-agnostic representation, depicted in Figure 3b. Re-exporting into
MultEcore, using the Exporter, yields the same three initial models from Figure 3a,
hence demonstrating—although not formally proving—that no information is lost or
corrupted for small hierarchies when importing and exporting, and that the tool-agnostic
metamodel is capable of representing multilevel hierarchies.

Import-Export for different tools In a similar fashion to the previous experiment, we
tested the capabilities of the tool as a future “exchange format” to be used among
multilevel modelling tools. To this end, we used the imported version of the example
hierarchy from the previous experiment (Figure 3b), and exported to a different MLM
tool than the original one; i.e. to MetaDepth instead of MultEcore. By doing this, we
manually compared the initial version of the hierarchy (Figure 3a) against the exported
version (Figure 3c), and verified that the same models, classes, references and attributes
were created; and that their properties (being abstract, potencies, cardinalities, etc.) were
preserved. It is important to note that the initial version of the hierarchy was adapted
to ensure that it would be completely compatible with MetaDepth. The Recommender
module was helpful for this task, since it informs whether a tool supports all features of
a given hierarchy or not, as previously explained.

5 Conclusions

To the best of our knowledge, this is the first effort dedicated towards a tool-supported
common representation of multilevel hierarchies, including import/export capabilities
that can evolve into a fully fledged exchange format for MLM tools. However, there
are other works worth mentioning with similar goals. One of them is the conceptual
classification of architectures described in [5], where fixed-level and multilevel concep-
tual frameworks are presented and exemplified. In [11] the creators of of Melanee and
MetaDepth made a feature-based comparison of both tools, and mention transformations
for exchanging between them as a work in progress. Finally, in [15] the authors compare
the realisation of potency and the conceptual basis of several MLM tools. All these works,
as well as the one presented here, focused only on the functional aspects of the tools. We
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Figure 3: Representation exchange from MultEcore, back to MultEcore and to MetaDepth

believe that a comparison of non-functional features like usability, user-friendliness and
performance might as well be useful for the MLM community in the future. Moreover,
an analysis of the suitability of MLM tools for their pragmatic value and suitability for
specific domains could complement the results presented in this paper.

The main contributions of this paper are aimed at fostering discussion and collabor-
ation towards the convergence of MLM principles and semantics, a necessity already
identified in previous works [4]. For this purpose, we have proposed a metamodel for the
representation of multilevel hierarchies and we invite collaborations and contributions
to the tool and the metamodel, which we consider to be still in an early version. Future
versions should address missing concepts like instantiated attributes and constraints like
non-cyclic typing. Also, we have improved the tool built around this metamodel, so
that MLM tools can be compared by directly importing technology dependent MLM
hierarchies into the tool-agnostic representation. In addition, the experiments we have
run on several examples have shown that the evaluation helps in finding out which
features a specific MLM tool should implement in order to get a higher score; hence
providing a roadmap for further improvements. Based on the authors’ own experience,
we showed how MultEcore was improved by adding explicit support for depth, better
attribute handling and inheritance, thanks to the results of these experiments.

We have also included import and export capabilities to the Rearchitecter for our own
tool MultEcore as a proof of concept (in addition to the existing MetaDepth exporter
implementation). The tool is nevertheless designed to be fully extensible by providing
interfaces in every step of the process, making straightforward the addition of, for
example, new tool importers, exporters and recommenders. This can be seen as a call
for future community contributions to adapt and implement the scoring mechanisms
for the recommender and the import/export capabilities for other MLM tools. The
experiments we have run on several examples have shown that importing from MultEcore
and exporting back to it gives an equivalent model, demonstrating the preservation of
information in both processes.



We believe that another future line of work can be the formal definition of the
semantics for the tool-agnostic metamodel, so that it can serve as a reference implement-
ation, a standard and an exchange format for MLM-capable tools, in the line of previous
approaches for model exchange through common representations (see, e.g. [8]). Thanks
to the mapping between tools that the Rearchitecter provides, it may even be possible to
unify existing tool-independent formalisations, like the ones presented in [17], [15] and
[1], and adapt them to the tool-agnostic representation.
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