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Evaluation of design flood estimates – a case study

for Norway

Florian Kobierska, Kolbjørn Engeland and Thordis Thorarinsdottir
ABSTRACT
The aim of this study was to evaluate the predictive fit of probability distributions to annual maximum

flood data, and in particular to evaluate (1) which combination of distribution and estimation method

gives the best fit and (2) whether the answer to (1) depends on record length. These aims were

achieved by assessing the sensitivity to record length of the predictive performance of several

probability distributions. A bootstrapping approach was used by resampling (with replacement)

record lengths of 30 to 90 years (50 resamples for each record length) from the original record and

fitting distributions to these subsamples. Subsequently, the fits were evaluated according to several

goodness-of-fit measures and to the variability of the predicted flood quantiles. Our initial hypothesis

that shorter records favor two-parameter distributions was not clearly supported. The ordinary

moments method was the most stable while providing equivalent goodness-of-fit.
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INTRODUCTION
The motivation for this study is the need to revise guidelines

for design flood estimation in Norway. According to Norwe-

gian dam safety regulations (Lovdata ), dam safety

should be evaluated for floods with 500 or 1,000 years

return periods, depending on an individual dam safety

class. According to building regulations (TEK ), build-

ings and infrastructure should resist or be protected from

floods with 20, 200, or 1,000 years return periods, depending

on the consequences of flooding. Flood inundation maps

used for land use planning are also based on design flood

estimates.

Existing guidelines are given in Midttømme et al. ()

and Castellarin et al. (), and summarized in Table 1.

The approach is based on using annual maximum floods,

and the recommendations depend on the length of the
local data record. A minimum of 30 years of local obser-

vations is required for local flood frequency analysis and at

least 50 years of data should be available to use three-par-

ameter distributions. The Gumbel (two parameters) and

generalized extreme value (GEV) (three parameters) are

the preferred distributions. More recently, Glad et al. ()

found the generalized logistic (GL) to be the preferred distri-

bution for annual maximum floods in small catchments.

Other guidelines for flood frequency estimation include

the USA (Stedinger & Griffis , ), Australia (Ball

et al. ), and Europe (Castellarin et al. ). The four dis-

tributions that are most commonly used for annual

maximum floods are the GEV distribution (Australia, Aus-

tria, Cyprus, Germany, France, Italy, Lithuania, Slovakia,

Spain) with the Gumbel distribution (Finland, Greece) as a

special case, the GL (UK) and the log-Pearson III (USA,

Australia, Lithuania, Poland, Slovenia). Two-component

Gumbel distributions are recommended in Italy and Spain

in order to account for different flood generating processes.

mailto:koe@nve.no
http://creativecommons.org/licenses/by/4.0/
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Table 1 | Guidelines for flood frequency analysis according to data availability

Data availability Procedure for calculation of the index flood Procedure for calculation of growth curve for target return periods between Q200 and Q1000

>50 years Not used Calculated from 2- or 3-parameter distribution, based on observed series

30–50 years Not used Calculated from 2-parameter distribution, based on observed series

10–30 years Calculated from observed series Calculated by analysis of other long series in the area

<10 years Calculated by analysis of other long series in the area

None Use of regional flood frequency curves
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Four methods are commonly used to estimate distri-

bution parameters: ordinary moments, linear moments,

maximum likelihood (ML), and Bayesian. The method of

linear moments has been recommended for its robustness

with small sample sizes (Hosking ). In recent years,

Bayesian flood frequency estimation has gained increased

attention in the research community (e.g., Coles & Tawn

; Gaál et al. ; Gaume et al. ; Renard et al.

b), and is recommended in the operational guidelines

in Australia (see Chapter 2.6.3 in Ball et al. ). The benefit

of the Bayesian method is the flexibility in model formu-

lation, the possibility to include prior and/or regional

knowledge in the local estimation, and the possibility to

account for errors in rating curves (Ball et al. ).

For many cases the streamflow record is either non-

existing or much shorter than the target return period. In

order to predict flood quantiles in ungauged catchments or

to reduce the estimation uncertainty for high flood quantiles,

three different strategies can be followed (Merz & Blöschl

): (i) use flood data from several locations within a

region (e.g., Dalrymple ); (ii) use historical, (e.g.,

Benson ) and/or paleo-hydrological information (e.g.,

Benito & O’Connor ); or (iii) use causal information,

i.e., by combining precipitation statistics with precipi-

tation–runoff models (e.g., Lawrence et al. ).

The recommendations provided in the national guide-

lines should preferably be based on systematic evaluations.

A recent example is provided in Kochanek et al. ()

where local, regional, and local-regional flood frequency

analysis, as well as local and regional applications of a simu-

lation approach are systematically compared resulting in

recommendations. Renard et al. (a) provide a short

review of evaluation frameworks and distinguish between

simulation-based and data-based frameworks. In the simu-

lation-based approach, the true distribution is known, and
ttps://iwaponline.com/hr/article-pdf/49/2/450/196222/nh0490450.pdf
Monte-Carlo-generated samples from the true distribution

are used to assess the performance of different distributions

and/or parameter estimation methods (e.g., Hosking et al.

). It is especially useful for assessing robustness (e.g.,

Stedinger & Cohn ) and evaluating the estimates of

standard errors (e.g., Cohn et al., ). For data-based

approaches, the true distribution is not known, and the

aim of the evaluation is to assess if the observations might

be realizations of the estimated distribution. Goodness-of-

fit tests combined with split-sample or cross-validation are

used in order to assess the predictive performance of the

fitted distribution. The goodness-of-fit criteria measure the

reliability, i.e., how well the model fits to (independent)

data. Renard et al. (a) introduced ‘stability’ as an

additional criterion. It measures the sensitivity of the

design flood estimates to different subsets of data. Design

flood estimates that depend strongly on the underlying

data might lead to re-assessment of the design flood. This

can, for example, result in large costs for dam owners as

the design of dams has to be re-assessed every 20 years. Stab-

ility is therefore an important criterion in order to choose

between the most reliable models.

The aim of this study is to perform a systematic evalu-

ation of the predictive performance of local flood

frequency distributions and estimation methods applied to

annual maximum data. The results will later be used as a

foundation for recommendations in new guidelines.

In this study, we wanted to answer the following

research questions:

1. Which combination of distribution and estimation

method best fits the data?

2. Does the answer to (1) depend on local data availability?

To answer these questions, we set up a test bench for

local flood frequency analysis using data-based evaluation
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methods inspired by Renard et al. (a) by using a

bootstrapping approach where we systematically evaluated

how the predictive performance depends on record length.
STUDY AREA AND DATA

We used annual maximum floods from 529 streamflow

stations of the Norwegian hydrological database ‘Hydra

II’. We present here a brief summary of the dataset and

associated quality control methods, which are described in

detail in Engeland et al. (). All data influenced by river

regulations were removed. In addition, quality controls of

the data including quality assessment by the field hydrologist
Figure 1 | Histograms showing the distribution of (a) record lengths, (b) catchment area, (c) effe

the relative contribution from rain to floods.

from https://iwaponline.com/hr/article-pdf/49/2/450/196222/nh0490450.pdf
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and of the rating curve for high flows, were used to select

flood data with a sufficient quality. For all gauging stations,

we extracted a set of catchment properties (for details see

Engeland et al. ). Figure 1 shows the histogram for

record length, catchment areas, lake percentage, mean

annual temperature and precipitation and the rain contri-

bution to floods. Figure 2 presents a map of mean annual

precipitation, temperature and floods and the rain contri-

bution to floods. All climatological descriptors are based

on the gridded temperature and precipitation data product

in SeNorge (www.senorge.no). In this study, we used 280

stations which have at least 30 years of record. Only 103

stations have more than 50 years of data. The catchment

area spans between 0.5 and 20,300 km2 with 163 km2 as
ctive lake percentage, (d) mean annual precipitation, (e) mean annual temperature, and (f)

http://www.senorge.no


Figure 2 | Maps showing (a) the mean flood (per unit area), (b) mean annual precipitation, (c) mean annual temperature, and (d) the contribution of rain precipitation to floods (index of

flood generating processes).
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the median. The presence of lakes influences flood sizes,

and 262 of the catchments have more than 1% of the

catchment area covered by lakes. For these catchments

the median lake percentage is 6.1. The mean annual pre-

cipitation ranges from 408 to 3,137 mm with 1,047 mm

as the median. We see a strong west–east gradient with

the highest precipitation on the west coast. The mean

annual temperature ranges from �3.73 to 7.62 �C with

0.56 �C as the median. The temperatures are influenced

by elevation as well as latitude (temperature decrease

with elevation and longitude). The relative contribution

of rain was estimated by calculating the ratio of accumu-

lated rain and snowmelt in a time window prior to each
ttps://iwaponline.com/hr/article-pdf/49/2/450/196222/nh0490450.pdf
flood and then averaging these ratios over all floods (for

details see Engeland et al. ). Rainfall processes domi-

nate most coastal catchments and none of the

catchments are completely dominated by snowmelt. A

majority of stations, i.e., those where contribution from

snow melt is important, show a prevalence of floods in

spring and very few floods during winter. The catchments

dominated by rain floods do not show a clear seasonal pat-

tern by frequently displaying floods in summer and winter.

Both the flood records and the catchment properties data-

sets (catchment area, record length, mean annual runoff

and several other catchment descriptors) are available

upon request to the authors.
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METHODS

Distributions

We evaluated five probability distributions (Supplementary

materials, Table S1): GEV, Gumbel, Pearson III, gamma,

and the GL distribution. The equations for the quantile func-

tions and the probability density functions (pdf) are

provided in Supplementary materials, Tables S2 and S3

(Tables S1–S3 are available with the online version of this

paper); below we provide the equations for the distribution

functions. See also Bezak et al. () for a recent overview.
GEV distribution

The extreme value theorem is also known as the Fisher–Tip-

pett theorem, which says that the maximum value from a

sample of independent and identically distributed (iid)

random variables follows the GEV distribution (e.g.,

(Fisher & Tippett ; Embrechts et al. ):

F(x) ¼
exp � 1� k

x�m
α

� �h i1=k� �

exp �exp � x�m
α

� �n o
8><
>:

k ≠ 0
k ¼ 0

(1)

where m is a location parameter, α a scale parameter,

and k a shape parameter. Defined on the region

1� k(x�m)=α > 0. The mean exists if k>�1.0, and the var-

iance if k>�0.5. The shape parameter k is important in the

GEV distribution as it shapes the tail of the distribution.

A negative value indicates a heavy tail, whereas positive

values describe a light tail and an upper limit for the

variable x.
Gumbel distribution

The Gumbel distribution is a special case of the GEV distri-

bution (shape parameter k¼ 0) and is written as:

F(x) ¼ exp �exp � x�m
α

� �n o
(2)

where m is a location parameter and α a scale parameter.

This distribution is often recommended for small data-

sets. Maximum values of random variables, with an
from https://iwaponline.com/hr/article-pdf/49/2/450/196222/nh0490450.pdf
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exponential like upper tail (e.g. Normal, lognormal,

Gamma), will theoretically follow a Gumbel distribution.

Generalized logistic

The GL distribution (Hosking &Wallis ) is recommended

for flood frequency estimation in the UK (Robson & Reed

) and was recently recommended for predicting floods

in small ungauged catchments in Norway (Glad et al.

). The distribution is a re-parameterization of the log-

logistic distribution (Ahmad et al. ), and has some simi-

larities to the GEV distribution, as shown in Equation (3):

F(x) ¼
1þ 1� k

x�m
α

� �h i1=k� ��1

1þ exp � x�m
α

� �n o�1

8>><
>>:

k ≠ 0
k ¼ 0

(3)

where m is a location parameter, α scale parameter and k a

shape parameter. As for the GEV distribution, the GL distri-

bution has an upper bound of k> 0. This is the case only

when the skewness is negative whereas for the GEV distri-

bution, there is also an upper bound for positive skewness,

i.e., L-skewness <0.17 (Robson & Reed ). Thus, for

flood data we could expect the shape parameter to be

between �0.5 and 0.2.

Gamma distribution

The gamma distribution is a flexible two-parameter distri-

bution often used in environmental sciences:

F(x) ¼ 1
Γ(k)

γ k,
x
α

� �
(4)

Here, Γ denotes the complete gamma function and γ the

lower incomplete gamma function.

Pearson III

The Pearson type III distributions are given as:

F(x) ¼ 1
Γ(k)

γ k,
x�m

α

� �
(5)

where m is a location parameter, α a scale parameter, and k

a shape parameter. For m¼ 0, the P3 distribution reduces to
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the gamma distribution. Applied to log-transformed floods,

this distribution is recommended for flood frequency analy-

sis in the USA (Stedinger & Griffis ; Dawdy et al. )

and Australia (Haddad & Rahman ). Prior distributions

are given in Reis & Stedinger ().

Fitting methods

Four methods for fitting the distributions to observed data

were used: ordinary moments, linear moments, ML and

Bayesian estimation.

Ordinary moments (O-moments)

The method of ordinary moments means that the moments

(mean, variance, and skewness) are estimated based on the

data, and subsequently, the parameters of the selected distri-

bution are calculated based on a theoretical relationship

between the moments and the distribution parameters.

Two-parameter distributions need the estimates of mean

and standard deviation whereas the three-parameter distri-

butions also require an estimate of the skewness. The

specific equations for each distribution used in this study

are given in Bezak et al. () and are also provided in Sup-

plementary materials, Table S4 (available online).

Linear moments (L-moments)

The method of linear moments is a popular method in hydrol-

ogy since it is a direct analog to the method of moments, easy

to apply and the parameter estimates are less sensitive to out-

liers in the data (Hosking ). As for the O-moments, the

linear moments are estimated from the data, and sub-

sequently, the parameters of the selected distribution are

calculated based on a theoretical relationship between the

L-moments and the distribution parameters. The specific

equations for each distribution used in this study are given

in Hosking (), and are also provided in Supplementary

materials, Table S5 (available online).

Maximum likelihood

The ML method chooses the values of the parameters’ esti-

mates that maximize the probability of the data sample. This
ttps://iwaponline.com/hr/article-pdf/49/2/450/196222/nh0490450.pdf
probability is the product of the probability density function

evaluated at all observations (with a common parameter set)

and is called the likelihood function l(θ|x) of the parameters

θ given data x. The objective is to maximize this function.

The likelihood functions are specified in Bezak et al.

(). For numerical reasons, the log-likelihood (and not

the likelihood) is maximized. For distributions used in

flood frequency analysis, numerical optimization is needed

for estimating the parameters. For small samples, the ML

estimator is known to be more biased and to give larger esti-

mation uncertainty compared to the two moment estimators

for the GEV distribution (Hosking et al. ; Madsen et al.

). It might also provide absurd estimates of the shape

parameter (Martins & Stedinger ). Those issues are

most conveniently minimized by adding a prior likelihood

for the shape parameter (Coles & Dixon ; Martins &

Stedinger ). An alternative estimation approach is

suggested in Laio (). Finally, the shape parameter of

the Pearson type III distribution is challenging to estimate

using the ML approach (Arora & Singh ). An estimation

strategy is suggested in Laio ().
Bayesian estimation

Bayes theorem combines the knowledge brought by the

prior distribution and the data (through the likelihood)

into the posterior distribution of parameters, whose pdf is

noted p(θjx):

p θjxð Þ ¼ p(θ)l θjxð ÞÐ p (θ)l θjxð Þdθ (6)

The Bayesian method might include prior knowledge

that could be expert knowledge or regional information

(e.g., Kuczera ; Gaume et al. ). It is possible to

express the prior knowledge on the estimated quantiles,

i.e., design floods (Coles & Tawn ). It can be extended

to non-stationary models accounting for trends or shifts in

extremes (Benito et al. ; Renard et al. ; a),

and to include historical information in the estimation

(e.g., Reis & Stedinger ; Viglione et al. ).

The Bayesian method allows the calculation of predic-

tive distributions, confidence intervals, and the median or
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mean of return levels based on the posterior sample from the

distribution of parameters (Coles et al. ; Renard et al.

b). For the application of the Bayesian approach, we

specified non-informative priors except for the shape par-

ameters in the GEV and GL distributions. Those were

normally distributed with mean and standard deviations

specified as N(0, 0.2) and N(�0.15, 0.175), respectively.

The non-informative prior in location parameter was pro-

portional to a constant whereas the scale parameter was

proportional to a constant on the log-transformed scale.

The prior for the GEV parameters was suggested in

Renard et al. (a), whereas the prior for the GL par-

ameters was obtained from scatter plots of the L-moment

skewness for flood data in the UK (Robson & Reed ).

In the Results section, we use the mode of the resulting pos-

terior distribution.

Evaluation methods

We followed the evaluation strategy specified by Renard

et al. (a) and evaluated goodness-of-fit according to

both reliability and stability indices. Reliability evaluates

how well the estimated model predicts return levels whereas

stability measures to what degree the design flood estimates

depend on the data used for estimation. The reliability can

only be evaluated for a return period within the length of

the data records whereas the stability can be analyzed for

any return period.

The approach used in Renard et al. (a) is based on a

split sample cross-validation test where, at each station s,

each sample is in turn used for estimation and evaluation.

The aim of this study is to assess performance as a function

of record length l. We therefore chose a bootstrapping strat-

egy by drawing, with replacement, 50 random samples

(noted m) for each record length l sampled every five

years between 30 and 90 years (30, 35, 40…). Subsequently,

for each sample, we fitted a distribution Fl,s,m, and derived

the associated return levels XT,l,s,m and evaluation scores

HT,l,s,m where T is the return period. The complete original

flood data at each station were used for evaluation. Results

were averaged over all subsamples to obtain average

scores for each record length HT,l,s,*. To yield general con-

clusions, station-specific results were then averaged over

all sites and groups of similar sites in order to obtain
from https://iwaponline.com/hr/article-pdf/49/2/450/196222/nh0490450.pdf
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evaluation score HT,l,*,* as a function of record length.

Both the fitted distribution parameters and the return

levels were used for evaluation, as described below.

Stability

The stability measure is a property of the statistical model

only and we can thus evaluate it for any return period,

including those greatly exceeding the length of record.

Here, we evaluated the stability by calculating the coeffi-

cient of variation (CV) of the return levels for each site s,

each resampling record length l, and each return period T

over all subsamples m¼ 1,…, 50 : CVT,l,s,*. Subsequently,

we calculated the average coefficient of variation over all

sites: CVT,l,*,*. This allowed us to show CV as a function of

record length for individual sites as well as averaged over

several sites.

Reliability: evaluation of distributions

The Anderson–Darling (AD) test measures the integral of

the distance between empirical and fitted cumulative distri-

bution functions. Here, Fl,s,m is the fitted cumulative

distribution to subsample m for record length l at site s

and Fn,s is the empirical cumulative distribution at site s

with n data. It places more importance on the tail of the dis-

tribution than the Kolmogorov–Smirnov (KS) test:

Al;s;m ¼ n
ð

Fn;s ðxÞ � Fl;s;m ðxÞ� �∧2
Fl;s;m ðxÞ � 1� Fl;s;m ðxÞ� � dFl;s;m ðxÞ (7)

The KS test evaluates how well an empirical distribution

fits to a parametric one. The statistics is based on the maxi-

mum distance between the two cumulative distributions and

should therefore be as small as possible:

Dl,s,m ¼ sup
q

Fn,s (x)� Fl,s,m (x)
�� �� (8)
Reliability: evaluation of thresholds

Since the aim of flood frequency analysis is to assess critical

design flood, it is relevant to evaluate the fitted distributions

according to how well they predict thresholds.
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The Brier score (BS) (Brier ) is commonly used for

evaluation, and was used in this paper for evaluating the pre-

dicted T-years event for flood frequency distributions. The

BS compares the predicted probability of the exceedance

of a threshold uT ,s (given by 1� Fl,s,m uT ,s
� �

) to actual excee-

dance of the threshold by independent data (given by

II xs,i > uT ,s
	 


):

Bl,s,m Fl,s,mjuT ,s
� � ¼ 1

ns

Xns

i¼1

1� Fl,s,m uT ,s
� �� II xs,i > uT ,s

	 
� �2

(9)

where uT ,s is the threshold defined by a return period T and II

is an indicator function that is 1 if xs,i > uT ,s and otherwise 0.

The quantile score (QS) compares observed floods xs,i to

the estimated flood quantile F�1
l,s,m 1� 1=Tð Þ for a given

return period T and gives the difference a low weight if the

observed flood is smaller than the estimated quantile:

Ql,s,m Fl,s,mjT
� � ¼ xs,i � F�1

l,s,m 1� 1
T

� �� �

× 1� 1
T

� �
� II xs,i � F�1

l,s,m 1� 1
T

� �� �� �

(10)

Since the shortest records have 30 years of data, BS and

QS were evaluated for return periods up to 30 years (2, 5, 15,

20, and 30). The thresholds uT ,s in the BS equation were esti-

mated for each station by applying the Hazen plotting

position shown in Equation (11) (Makkonen ):

P̂0
ið Þ ¼

i� 0:5
n

(11)

where i is the rank of the observation Q(i), n is the number of

observations, and P̂0
(i) is the estimated cumulative prob-

ability. According to Stedinger et al. (), the Hazen

plotting position is a traditional choice that is least specific

to a particular distribution.
Reliability: evaluation of empirical L-moments

The L-moment ratio diagram compares sample estimates of

τ2, τ3, and τ4 (standard deviation, skewness, and kurtosis) to
ttps://iwaponline.com/hr/article-pdf/49/2/450/196222/nh0490450.pdf
the theoretical population for parametric distributions by plot-

ting the relationship between τ4 and τ3 for three-parameter

distributions and between τ3 and τ2 for two-parameter

distributions. It was introduced by Hosking (), and

approximations for several distributions are given in Hosking

& Wallis (). The advantage of this evaluation is that we

visually compare how several theoretical distributions fit to

our data sample, and it has become a standard tool in

regional flood frequency analysis (Peel et al. ).
RESULTS

Estimation computational chain and open access to

results

Based on the methods presented above, our research

approach was highly multi-dimensional and involved

saving a great amount of data. For this reason, we chose

to save the input and model data into a NetCDF database.

The full computational chain was carried out with the R soft-

ware (R Core Team )). The following libraries were

used: RNetCDF (Michna & Woods ) for managing the

NetCDF files, doSNOW (Revolution Analytics & Weston

a) and doMC for parallel backend on Windows and

Linux, respectively, foreach (Revolution Analytics &

Weston b) for parallel computation. In addition, the fol-

lowing libraries were used for fitting the distributions: evd

(Stephenson ), nsRFA (Viglione ), fitdistrplus

(Delignette-Muller & Dutang ), ismev (Heffernan &

Stephenson ), and pracma (Borchers ). For the

Bayesian inference, we created MCMC chains of length

5,000 and did not discard any simulations. Two packages

were created to facilitate the re-usability of this work.

Code and data are available at https://github.com/NVE/

FlomKart and https://github.com/NVE/fitdistrib. Given

the size and multidimensionality of both NetCDF files (esti-

mated parameters and goodness-of-fit indices), an easy-to-

use visualization tool was required to analyze the data.

The R package Shiny (Cheng et al. ) was used to

create a browser-based graphical user interface. In addition,

the following libraries were used to create the graphical

interface: shinyBS (Bailey ), leaflet (Cheng & Xie

), DT (Xie ), and formattable (Ren & Russell ).

https://github.com/NVE/FlomKart
https://github.com/NVE/FlomKart
https://github.com/NVE/FlomKart
https://github.com/NVE/fitdistrib
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The code of this visualization tool was organized as

in the R package available at: https://github.com/NVE/

FlomKart_ShinyApp. For every station, key plots can be

drawn to compare the modeled probability distribution to

the empirical distribution of data, and the evaluation criteria

are shown for each station. Since we were interested in

extracting general conclusions for this study, we chose to

present results aggregated over all stations.

Station averaged results

We start by presenting the evaluation of reliability as aver-

age values over all stations and subsamples. The reliability

measures, i.e., KS test statistics, AD test statistics, BS for a

threshold corresponding to the overall 20 year return

period, and QS for 20 year return periods, are shown in

Figures 3–6, respectively. All 280 stations with more than

30 years of data were used, and the reliability measures

are plotted as a function of the length of the subsample

used for estimating distribution parameters. This allowed

us to evaluate how the performance depends on the

length of the available data. We made one subplot for

each distribution and one line for each estimation pro-

cedure. In these plots, the lowest value indicates the best

performance.
Figure 3 | Evolution of KS, as a function of length of record, averaged over all stations with m

from https://iwaponline.com/hr/article-pdf/49/2/450/196222/nh0490450.pdf
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The evaluation according to stability is shown in

Figure 7, where the average CV in return levels is plotted

as a function of record length. The calculation of the CV

was based on the 50 subsamples for each record length.

All distributions and methods become more stable as

record length increases.

In order to summarize the relative performance of the

different distributions and estimation methods, Figure 8 con-

tains a subplot of each of the performance measures. For

each distribution, the estimation method providing the best

performance was selected. For the three-parameter distri-

butions, we excluded the ML methods from the reliability

criteria since it was only marginally performing better and

provided unstable results. When selecting the estimation

methods for the CV, we excluded the method of moments

from the three-parameter distributions, since this method

never obtained the most reliable predictions. Figure 8 thus

allows us to compare the performance of the different distri-

butions for the estimation method that performed best for

each of them.

The L-moments ratios plotted in Figure 9 give a good

visual impression of the spread in L-kurtosis and L-skewness

across all stations. A moving average of L-skewness along

L-kurtosis removes much of the scatter and thus helps

analyze the data.
ore than 30 years of record.

https://github.com/NVE/FlomKart_ShinyApp
https://github.com/NVE/FlomKart_ShinyApp
https://github.com/NVE/FlomKart_ShinyApp


Figure 4 | Evolution of AD, as a function of length of record, averaged over all stations with more than 30 years of record.
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DISCUSSION

The first research question raised in the Introduction sought

to determine which combination of distribution and esti-

mation method best fits the data. From the results
Figure 5 | Evolution of BS, as a function of length of record, averaged over all stations with m

ttps://iwaponline.com/hr/article-pdf/49/2/450/196222/nh0490450.pdf
presented herein, we see that it is difficult to disentangle

the performance of the estimation methods from the per-

formance of the distributions, and that the combinations

of estimation method and distribution that give the best per-

formance vary between the performance measures. The
ore than 30 years of record.



Figure 6 | Evolution of QS, as a function of length of record, averaged over all stations with more than 30 years of record.
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interpretation of the results in order to answer the research

questions, is therefore, challenging.

From the performance of the reliability criteria, we see

that the best estimation methods for the three-parameter dis-

tributions perform, in general, equally well or better than the
Figure 7 | Evolution of the coefficient of variation (CV) of return levels averaged over all statio

from https://iwaponline.com/hr/article-pdf/49/2/450/196222/nh0490450.pdf
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best estimation methods for two-parameter distributions for

all record lengths (Figure 8). The gain in using a three-par-

ameter distribution increases with record length. The only

exception is the QS, where the Gumbel distribution is

equally good as the three-parameter distributions (Figure 8).
ns with more than 30 years of data.



Figure 8 | Plot of the best estimation method for each of the distributions as a function of record length.
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Among the three-parameter distributions, the GEV and the

GL distributions give the best performance. The GL distri-

bution is better than the GEV distribution for the BS,

whereas for the other two scores, the GEV distribution

slightly outperforms the GL distribution. The GL distri-

bution seems to be more challenging to estimate than the
Figure 9 | L-moment ratios for the 280 stations, the moving average of L-skewness over

L-kurtosis, together with the theoretical distributions used in this study.

Gamma and Pearson overlap. The black square is for Gumbel.

ttps://iwaponline.com/hr/article-pdf/49/2/450/196222/nh0490450.pdf
GEV distribution, since it is rather sensitive to the esti-

mation methods used. Taking into account the stability

criterion, the method of moments is most stable with the

GL distribution. However, choosing to look only at the

L-moments and Bayesian estimators that are the most

reliable, we see that the difference in stability between the

GEV and GL distributions is small (Figure 7). This indicates

a slight preference for the GEV distribution.

Concerning the choice of estimation methods, the ML

method should not be used in combination with three-par-

ameter distributions since this combination provides very

unstable results (Figure 7) and is, in some cases, only mar-

ginally better than the Bayesian and L-moment approaches

(Figures 4–6). The method of moments is the most stable

method for all distributions (Figure 7), but it also provides

the most unreliable results for several scores (Figures 4–6).

For all three-parameter distributions, either the L-moments

or the Bayesian methods is preferred (Figure 8).

An unexpected result is the relatively low performance,

as measured by the Brier and QS, when the Bayesian and

ML methods are used to fit the data to the Gumbel distri-

bution. In contrast, these two estimation methods perform

relatively well for the AD and KS test statistics (Figures 3

and 4). Further investigations revealed that this low perform-

ance is, to a large degree, controlled by the skewness of the
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original data. The relatively low performance of the ML and

Bayesian methods happens when the L-skewness is lower

than 0.15, which is slightly lower than the L-skewness of

the Gumbel distribution (0.17). This indicates that, for the

Gumbel distribution, the ML and Bayesian estimators are

more sensitive to low outliers in the dataset than the other

estimation methods, and that they should be avoided when

the L-skewness of the data is close to zero or negative.

The second research question was whether the answer

to (1) depends on local data availability. To answer this

question, we plotted all evaluation scores as a function of

record length. As expected, for all evaluation scores, the per-

formance improves with increasing record length. The

difference in reliability between the distributions increases

with record length, indicating that for the shortest record

lengths, there is little gain in choosing a three-parameter dis-

tribution (Figure 8). The BS is an exception where the three-

parameter distributions are better than the two-parameter

distributions for all record lengths (Figure 5). With

the exception of the method of moments, three-parameter

distributions show lower stability than two-parameter distri-

butions, even for the longest record length. There is no clear

threshold in record length above which one should use a

three-parameter distribution rather than a two-parameter

distribution. A threshold at 50 years of record for switching

from two- to three-parameter distributions could be justified

if we only looked at the AD and QS test statistics. The differ-

ence between the GEV and Gumbel distributions is, indeed,

small with those criteria. The Gumbel distribution is, how-

ever, considerably more stable for any length of record

(Figure 8, upper right panel).

The results presented herein might be influenced by sev-

eral factors that are not directly related to the choice of

distribution. For the Bayesian method in particular, the

choice of prior distribution might influence our conclusions.

For the GEV distribution, values were chosen from the

literature. Less information is available for the GL distri-

bution, and the prior for the shape-parameter was set

subjectively based on previous studies. For the Pearson-III

distribution, we used a non-informative prior. We might

therefore expect the performance of the Pearson-III distri-

bution to be lower than for the other two. The results are

prior-sensitive, in particular for the shortest record lengths.

Providing different priors might change our conclusions.
from https://iwaponline.com/hr/article-pdf/49/2/450/196222/nh0490450.pdf
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In addition, many of the algorithms used herein require

numerical solutions, and the convergence of these algor-

ithms might in some cases be misleading. For the MCMC

in particular, we could not monitor the convergence of the

more than 390,000 chains that were estimated using our

resampling approach. Convergence checks commonly con-

sist of running multiple MCMC chains with varying

starting values and checking that all chains converge to

the same values. While we have not performed such an

analysis, we have run multiple MCMC chains with varying

starting values and slight changes in the datasets. Through

the stability assessment, we have then assessed whether

the different chains yield similar results. As the stability

of the Bayesian method is on the order of that of the other

estimation approaches (see Figure 7), we conclude that the

convergence rate of our chains is sufficient.

The resampling with replacement approach allowed us

to compare all stations with sample sizes longer than 30

years, i.e., resampled records of lengths up to 90 years

were created from the original record of 30 years. The benefit

of using this approach was that more stations could be

included in the evaluation. We used 280 stations, of which,

only 35 had record lengths of 90 years or more. The draw-

back of this approach is that stations with short record

lengths will get resampled several times. By grouping stations

according to their length of record and plotting the group-

averaged CV of return levels for each group, we saw that

(i) the average CV is lowest for the shortest record lengths,

and (ii) the spread in CV is largest for the shortest record

lengths. An explanation for the second issue is that the

resampling approach used here might be sensitive to outliers

in the underlying data, as those might be sampled several

times for short records. We identified three stations that

may exhibit this behavior, but excluding them from the evalu-

ation showed little influence on the average performance.

Another aspect not tackled in this study is the possible

non-stationarity of flooding patterns in Norway. The stan-

dard approach for addressing non-stationarity related to

climate change is to look for a climate factor that describes

the expected change in design flood estimates (Lawrence

). The climate factor assumes that the reference design

flood is based on a stationarity assumption. The non-statio-

narity in our case might be linked to (1) the measurement

process, (2) changes in climate, and (3) changes in land
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use. As part of the quality control, we have in particular

looked for trends and/or step changes in floods with a

focus on the measurement process. To identify non-statio-

narity in a flood time series is also challenging due to the

large noise to signal ratio. Vormoor et al. () have

shown that rain-dominated catchments have a tendency to

more frequent floods but the trend is less clear regarding

flood magnitude. They also identified shifts in flood generat-

ing processes with a transition from snowmelt floods to rain-

dominated floods in many catchments.

Finally, some relationships between catchment proper-

ties and the most appropriate distribution were

investigated. There were however no clear indications that

catchments could be grouped according to their physical

properties. This could be due to the very fragmented

hydro-meteorological patterns in Norway. A more in-depth

study of those relationships was beyond the scope of this

paper and will be investigated in subsequent studies.
CONCLUSIONS

The aim of this study was to evaluate the predictive fit of prob-

ability distributions to annual maximum flood data, and in

particular to evaluate (1) which combination of distribution

and estimation method gives the best fit and (2) whether the

answer to (1) depends on record length. These aims were

achieved by assessing the sensitivity to record length of the

predictive performance of several probability distributions.

A bootstrapping approach was used by resampling (with

replacement) record lengths of 30 to 90 years (50 resamples

for each record length) from the original records and fitting

distributions to these subsamples. Subsequently, the fits

were evaluated according to several goodness-of-fit measures

and to the variability of the predicted flood quantiles.

Based on the results presented herein we conclude the

following:

• The GEV and GL distribution provided the most reliable

results.

• The method of linear moments or the Bayesian method

are the recommended estimation methods.

• The ML method was particularly unstable with three-par-

ameter distributions, even for short return periods. This

method should therefore be avoided.
ttps://iwaponline.com/hr/article-pdf/49/2/450/196222/nh0490450.pdf
• For the Gumbel distribution, the L-moment approach is

recommended. The Bayesian approach was sensitive to

the skewness of the data.

• The method of ordinary moments was consistently the

most stable estimation method. This stability results in a

light but consistent trade-off on goodness-of-fit against

the method of linear moments.

• There is no clear threshold in record length above in

which one should use a three-parameter distribution

rather than a two-parameter distribution.

• We focused on developing a reproducible workflow so

that the methodology can be reused and improved as

more data become available.

The results herein show that the use of the GEV or the

GL distribution is challenging since, in particular, the shape

parameter is sensitive to the underlying data resulting in

more unstable results. Alternative approaches such as

using a mixture of two-parameter distributions, should there-

fore be investigated.
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