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ABSTRACT
Identifying the separate parts in ultrasound images such as bone and skin plays a crucial
role in the synovitis detection task. This paper presents a detector of bone and skin
regions in the form of a classifier which is trained on a set of annotated images. Selected
regions have labels: skin or bone or none. Feature vectors used by the classifier are
assigned to image pixels as a result of passing the image through the bank of linear and
nonlinear filters. The filters include Gaussian blurring filter, its first and second order
derivatives, Laplacian aswell as positive andnegative threshold operations applied to the
filtered images. We compared multiple supervised learning classifiers including Naive
Bayes, k-Nearest Neighbour, Decision Trees, Random Forest, AdaBoost and Support
Vector Machines (SVM) with various kernels, using four classification performance
scores and computation time. The Random Forest classifier was selected for the final
use, as it gives the best overall evaluation results.

Subjects Orthopedics, Radiology and Medical Imaging, Rheumatology, Human–Computer
Interaction, Computational Science
Keywords Synovitis, Medical imaging, Machine learning, Linear detector

INTRODUCTION
Synovitis—that is, an inflammation of the synovial membrane around the joint—may lead
to a dangerous and irreparable joint degeneration. It may cause swelling and pain in the
relatively early stages, but its prolonged persistence may result in a functional disability.
An often used noninvasive method of synovitis assessment is a doctor’s examination of
ultrasound images of joints. Since such examination consumes time of a trained medical
practitioner, and the results fromdifferent examinersmay vary due to subjectivity of human
judgment, it is desirable to develop an automated tool for the assessment of synovitis.

This paper describes a method for bone and skin detection which is a part of the system
for automated assessment of synovitis activity, a work in progress within the Polish-
Norwegian research project Medusa (Medusa, 2015). In the Medusa system, the bone and
skin detection method provides the initial estimates of the bone and skin. The improved,
final estimates (Segen, Kulbacki & Wereszczyński, 2015) are obtained by registering a model
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with a structural description of the image in the form of a group of parts that includes the
results of the detector described here and an initial estimate of the joint which is described
in a separate article (Wereszczyński et al., 2015).

The area of research that is nearest to the detection problem addressed in this paper
is the analysis and processing of medical ultrasound images. This is explained by the
shared characteristics of ultrasound image formation process, where the image is built
as a plot of travel times of ultrasound pulses, that are sent by a transducer and received
back after being reflected by organs and tissues at different depths. A noticeable feature
of medical ultrasound images is the presence of speckle noise, and all ultrasound image
analysis techniques must include some form of speckle noise reduction or removal. Among
the accessible publications on analysis and processing of medical ultrasound images, the
literature search conducted by the authors did not find articles related to the detection of
skin or bone.

Yap, Edirisinghe & Bez (2007) proposed a fully automatic detection of breast lesion
in ultrasound images. They used a histogram equalization, hybrid filtering, multifractal
analysis and a rule-based approach for identification of region-of-interest, which is used as
a seed-point in thresholding based background separation and followed by active contour
method for final lesion boundary detection. Supriyanto et al. (2011) used a threshold
segmentation and combination of morphological techniques for early detection of breast
cancer and several other types of abnormalities in breast tissues. Lokesh, Shailaja & Nanda
(2014) used automatic contouring and texture analysis for the classification of breast
lesions. The anisotropic diffusion filtering is applied to remove the speckle noise while
preserving the lesion boundaries. A segmentation based on watershed transform finds
the contour of the breast lesion and features based on the histogram of co-occurring
greyscale values are extracted from the segmented lesion and used in the SVM classifier
to identify the breast lesion as benign or malignant. Chen et al. (2016) describe detection
and segmentation of anatomical structures by multi-domain regularized deep learning
method which uses a convolutional network and iteratively refines the results. The method
is applied to obstetric and cardiac ultrasound images. Kisilev et al. (2013) construct a
multi-stage learning of lesion-specific boundaries for automatic detection of breast lesion
in ultrasound images. They apply multiple image filters and segmentation algorithms
to obtain various textural characteristics and local directional coherence features from
the image, which are used by an SVM classifier for automatic detection of breast lesion
boundaries. Their approach similarly to the method proposed in this paper uses image
filters as features for pixel classification, however our method is distinct in other aspects.
It uses a different, unique set of image features, most of which are one-dimensional and
include threshold operators, and a discrete optimization process is applied to find the best
configuration of the features and filter parameters.

METHOD OVERVIEW
The main purpose of the detectors described in this paper is to find the bone and skin
parts as lines in the image. Supervised learning accomplishes this by using training samples
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extracted from annotated areas of training images by filtering. The Insight Segmentation
and Registration Toolkit (ITK) (Johnson et al., 2013) algorithms are used for image filtering
including Gaussian smoothing, the first and second derivatives, Laplacian and threshold
filters. The results of filtering are then applied to generate an appropriate vector of features
used as training samples for learning algorithms. The scikit-learn tool (Pedregosa et al.,
2011) was used for learning selected features, which is a specialized machine learning
environment with many configurable classifiers. A few different classifiers were evaluated
in this work including Gaussian Naive Bayes (Zhang, 2004), k-Nearest Neighbours (kNN)
(Altman, 1992), Support Vector Machines (SVM) (Boser, Guyon & Vapnik, 1992; Chang &
Lin, 2011), Decision Trees (Breiman et al., 1984; Hastie, Tibshirani & Friedman, 2009),
Random Forest (Breiman, 2001) and AdaBoost (Freund & Schapire, 1997; Zhu et al.,
2009). Both the generation of the feature vector in ITK and the learning algorithms in
scikit-learn require a large number of parameters, which have a strong influence on
the result of detection. Additionally, different combinations of filters applied to feature
vector generation give significantly different learning efficiencies. It requires finding the
optimal configuration of the system over the vast space of parameters. For that reason,
the parametrization tool was developed for an automatic execution of feature extraction
and learning procedure in an iterative way combined with the effective result visualization
module. It allows executing a big number of experiments to find some optimal parameters
as well as most efficient filter combination in much easier and quicker way than manual
trials. The general architecture of bone and skin detector and the operations flow are
illustrated in Fig. 1.

The following sections describe more details regarding the steps of feature extraction
and applied learning and present the results of empirical evaluation.

Regional Committee for Medical and Health Research Ethics, Region West, Norway has
approved the study (ref. 2013/743). All participants signed an informed consent form.

FEATURE EXTRACTION
Learning algorithms require appropriate representative features extracted from raw images
to be able to learn and detect the bone and skin areas efficiently. The form of such features
must allow representing different regions of interest in the image in a discriminative way.

The features in the determined form are computed in two parts of the method: (1)
extraction of features from training images used as training data for learning and (2)
extraction of features from the test image subjected to detection of bone and skin by
already trained algorithms. Both cases require slightly different procedures of extraction,
though the basic concept is similar. These procedures are described in the following
sections.

Features for training
As the bone and skin detector uses supervised learning, the training data for algorithms
must explicitly indicate for each set of features extracted from the image, whether it is
related to bone or skin or to neither of them. This information must be provided a priori
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Figure 1 The architecture of system and operations flow between its components.
Full-size DOI: 10.7717/peerj.4411/fig-1

Figure 2 Example of image annotations for training and evaluation: (A) image without annotations,
(B) image with annotations. Skin, bones, joint and synovitis region are marked with different colors.

Full-size DOI: 10.7717/peerj.4411/fig-2

as a set of annotations attached to each processed image of a training set. An example of
image annotations is shown in Fig. 2B.

The pixels for training features generation selected from bone and skin annotations are
called samples. There are three types of samples: (1) positive samples that represent bone,
(2) positive samples that represent skin and (3) negative samples that represent neither
bone nor skin.

The pixels used for generation of positive bone samples are the same as bone annotation
points. Similarly, the pixels used for positive skin samples generation are the same as skin
annotation points. By contrast, the pixels used for negative samples generation are selected
from areas of an image that are neither bone nor skin regions. The bone and skin regions
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Figure 3 Example of pixel selection for samples generation.
Full-size DOI: 10.7717/peerj.4411/fig-3

are defined as areas within a given radius from bone and skin annotation points. Thus,
each pixel selected for the negative sample must lie in distance bigger than given radius
from any pixel belonging to bone or skin annotation. Figure 3 presents the example of
pixels selection that is further used for samples generation.

To obtain the proper characterization of the selected pixels, their neighborhood should
also be considered. This is done by taking as a pixel representation the subimage [2·w+1,1]
centered at the pixel, where 2·w+1 is a vertical windowaround the pixel. The representation
vector of a pixel pi is defined as a vector of pixels Ki= (pk,l−w ,pk,l−w+1,...,pk,l+w), where
k and l are the image coordinates of the pixel pi.

Once the pixels for samples are selected and their vertical neighborhood is defined the
final samples generation process may start. First of all, a series of new images is obtained by
use of different filters, where each new image is an output of particular filter applied to the
original image. It includes Gaussian smoothing, first and second derivatives of Gaussian,
Laplacian of Gaussian as well as thresholding filters. The Gaussian smoothing, as proposed
in Deriche (1990), is done by recursive filtering that approximates an image convolution
with the Gaussian kernels. The convolution with first and second derivatives of Gaussian is
applied in vertical direction and the Laplacian of a Gaussian filter is obtained by applying
the second derivative of a Gaussian in both vertical and horizontal directions. Additionally,
all outputs of these filters are processed by the binary thresholding. This operation with the
use of some given thresholds produces binary output images by mapping the original pixel
values to black or white ones. All filtering operations use the efficient implementation of
recursive filters (Deriche, 1993) taken from ITK library. The resulting images obtained by
selected filters are presented in Fig. 4.

The set of images obtained by applying n filters to the original image I forms a vector
F = (I1,I2,...,In), which is used for final samples generation. The samples are generated by
taking the values of all selected pixels with their vertical neighborhood Ki from each image
Ij which is obtained from the jth filter. This generates for each Ki the matrix made from
concatenated vectors of values extracted from filtering outputs Ij (where j ∈ [1,n]) for each
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Figure 4 Images obtained from selected ITK filters: (A) the original image, (B) Gaussian smoothing,
(C) smoothing first derivative, (D) smoothing second derivative, (E) Laplacian, (F) Laplacian positive
threshold.

Full-size DOI: 10.7717/peerj.4411/fig-4

pixel in the window, which can be denoted as:

Vi=


vi11 vi12 .. vi1n
vi21 vi22 .. vi2n
: : : :

vik1 vik2 .. vikn

. (1)

The example of a few different neighborhoods Ki indicating the pixels to be taken from
the Laplacian output as part of training samples is presented in Fig. 5.

The final training samples for given image I consist of three matrices. Each such matrix
is a concatenation of matrices from Eq. (1) for all samples of given type t :

Xt =
(
V1,V2,..,Vm

)

=



v111 v112 .. v11n
v121 v122 .. v12n
: : : :

v1k1 v1k2 .. v1kn



v211 v212 .. v21n
v221 v222 .. v22n
: : : :

v2k1 v2k2 .. v2kn

 ..


vm11 vm12 .. vm1n

vm21 vm22 .. vm2n

: : : :

vmk1 vmk2 .. vmkn



(2)

where m is a number of samples of given type, t ∈ {Skin,Bone,None}, k is a window size
and n is a number of filters applied to the image I . Each column of matrix Eq. (2) represents
the output values of particular filter for one neighborhood Ki of pixel pi and each row
represents the output values from all filters for one index in the neighborhood window
Ki across all pixels pi. Such form of training data is directly passed as feature vectors to
learning algorithms in the second phase of the processing described in following sections.
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Figure 5 Different neighborhoodsKi taken from Laplacian filter output: green, pink and blue lines
represent samples for bone, skin and none areas respectively.

Full-size DOI: 10.7717/peerj.4411/fig-5

Features for classification
Once the learning algorithms are trained on the feature vectors described in the previous
chapter, they require a similar form of data for classification instead of raw pixel values
from the original test image. The process of samples generation for classification is the same
as for training samples generation. The only difference is that the samples are generated
for all pixels pi of the test image instead of those representing only positive and negative
samples. It means that if the test image resolution isM×N , the number of pixels selected
for samples generation is M ·N . The final data for classification are also concatenated in
the same way as the training data Eq. (2) using all vertical neighborhoods Ki and output
values from all filters F , which gives the final size of the generated matrix asM ·N ·n ·k.

LEARNING AND CLASSIFICATION
The learning part of the system was built using the scikit-learn environment, which
offers many configurable algorithms suitable for three-class classification tasks. The list of
evaluated classifiers is described below.
1. Gaussian Naive Bayes classifier (Zhang, 2004) is based on a conditional probability

model defined by applying the Bayes’ theorem with strong (naive) assumption of
independence between the features. The model parameters are estimated during
training step with the use of maximum likelihood, and the classification rule relies
on the most probable hypothesis selection according to the estimated probability
distribution.

2. The k-Nearest Neighbour classifier (kNN) (Altman, 1992; Hastie, Tibshirani &
Friedman, 2009) is one of the simplest classification methods which caches training
samples at training step and then performs the classification for new sample by finding
some predefined number of cached samples closest in distance to that new sample and
using the label from them as a prediction.

Bąk et al. (2018), PeerJ, DOI 10.7717/peerj.4411 7/15

https://peerj.com
https://doi.org/10.7717/peerj.4411/fig-5
http://dx.doi.org/10.7717/peerj.4411


3. Support Vector Machine (SVM) (Boser, Guyon & Vapnik, 1992; Chang & Lin, 2011)
is a classifier which is trained to obtain a hyperplane splitting the samples in some
sample space into different classes with margin maximization. The SVM classifier can
use different kernels, which implicitly map the inputs into high-dimensional feature
space and thus efficiently perform a non-linear classification. There were a few different
kernels evaluated in this work including linear, polynomial and Radial Basis Function
(RBF) kernel.

4. Decision Tree classifier (DTs) (Breiman et al., 1984; Hastie, Tibshirani & Friedman,
2009) is based on a directed graph of decisions inferred from the data features.

5. Random Forest classifier (Breiman, 2001) uses many decision trees classifiers executed
on various subsets of samples averaging the results for improving accuracy and
overfitting control. The Random Forest classifier belongs to ensemble method domain,
where many predictions from basic classifiers are combined to improve generalizability
and robustness.

6. Another ensemble method evaluated in this work is an AdaBoost classifier (Freund &
Schapire, 1997; Zhu et al., 2009), which initially trains the basic classifier on the original
dataset and after first evaluation it trains additional copies of the classifier on the same
dataset but focusing on incorrectly classified cases during that evaluation.
Each classifier can be trained with training samples generated with use of ITK as

described in previous sections. By using the three-class model for classifiers, they can learn
simultaneously the classes representing two types of positive samples for bone and skin as
well as negative samples for other parts of the image.

The classification is done by querying the particular classifier for the class of each pixel
on the test image. The result of classification is written as a matrix of the same dimension
as test image being classified and consists of the values indicating the class for a particular
pixel, that is, bone or skin or none. The output matrix that represents detected skin and
bone regions is then passed to the next phase of synovitis detection system, namely the part
responsible for the approximation of clean lines for bone and skin, which are then used
directly by the registration model (Segen, Kulbacki & Wereszczyński, 2015).

SEARCHING PARAMETER SPACE
Both the ITK based samples extraction and the scikit-learn based classifier is set up with
many parameters, which directly affect the final detection result. The screenshot of the ITK
parameters configuration panel for samples generation including filtering configuration
is presented in Fig. 6. Even more parameters can be defined for different classifiers in the
scikit-learn part.
The optimal configuration of bone and skin detector that gives the best efficiency relies on

finding the optimal values for all these parameters. The number of all possible parameters
is too high to execute the exhaustive search in a reasonable time taking into consideration
the relatively long time of samples generation and classifier learning. Instead, the heuristic
approach is applied using an easy protocol to define some series of parameters in a form of
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Figure 6 Configuration of samples generation by the ITK parameters panel.
Full-size DOI: 10.7717/peerj.4411/fig-6

an extendable tree structure and filtering the large number results efficiently. The process
of searching the optimal system configuration is performed according to Algorithm 1.

Algorithm 1 Searching the optimal parameters of detector
1: Define the parameters of the detection system for optimization, e.g.: Z =

(z1,z2,z3,z4,z5)
2: Define the range of values for each parameter, e.g.: (a11,a12,a13) for z1 and (a21,a22)

for z2
3: Split Z into L groups G={Z1,..,ZL}, e.g.: Z1= (z1,z2), Z2= (z4,z5)
4: Define the set of fixed parameters Fixed ={∅}
5: goto TREE(Z1)
6: TREE(Zi):
7: Generate the search tree from Zi in such way that each value of preceding parame-

ters is a parent for all defined values of its successive parameters, e.g. the branches
bi of tree for Z1 are following: b1 = (a11,a21),b2 = (a11,a22),b3 = (a12,a21),b4 =
(a12,a22),b5= (a13,a21),b6= (a13,a22)

8: Check each configuration of the system defined by params= Fixed ∪ bi including fea-
ture extraction, learning and classifier performance evaluation

9: Select the branch b∗ from line 7 which gives the best evaluation result in line 8 on the
base of precision, recall, fallout and accuracy values

10: Fixed← Fixed∪b∗
11: G←G\{Zi}
12: if G 6= ∅ then
13: goto TREE(Zi+1)
14: else
15: Exit
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Above iterative process can be repeated for a different split of parameters (line 3 in
Algorithm 1) or by using additional parameters until some global criteria for evaluation
result are met.

One of the most important uses of such iterative search is to find the best image filter
combination for samples generation which is called a feature selection. It was proven during
experiments that different filter sets give very different results: some filters have more
impact on results than others and in some cases the smaller set of filters gives a better result
than the bigger one. Some examples of different results for different filter combinations
are presented in following section describing empirical results.

RESULTS
A set of 34 images was used for evaluation, which allowed obtaining around 120,000
samples including around 40,000 positive samples representing bone and skin and around
80,000 negative samples. We assumed that a test set of the size of 50,000 samples is adequate
to assess the quality of the results. The remaining 70,000 samples are used for the training
set, giving the training to test ratio of 60:40. Four metrics were used to evaluate the quality
of predictions done by classifiers described in previous sections: precision, recall, fallout
and accuracy. The results of classifier prediction are divided into four groups defined by
the indicators listed below:
1. True Positives (TP) is a number of correct predictions of positive samples.
2. False Positives (FP) is a number of incorrect predictions of positive samples.
3. True Negatives (TN) is a number of correct predictions of negative samples.
4. False Negatives (FN) is a number of incorrect predictions of negative samples.
Above indicators are used to define the appropriate evaluation metrics (Zhu, 2004)

according to a mathematical formulation in Eqs. (3)–(6).

Precision indicates how many predictions of positive samples were correct.

Precision=
TP

TP+FP
(3)

Recall indicates how many positive samples were correctly done among all positive
samples and measures the sensitivity of classifier.

Recall=
TP

TP+FN
(4)

Fallout indicates the proportion of incorrectly predicted positive samples to
all negative samples and thus measures the classifier proneness to false
detections.

Fallout=
FP

FP+TN
(5)

Accuracy is the proportion of correct predictions out of all predictions performed by
the classifier and measures the overall performance of a classifier.

Accuracy=
TP+TN

TP+FP+TN +FN
. (6)
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Table 1 Results from experiments.

Classifier Precision Recall Fallout Accuracy Learn time Detection time

Naive Bayesian 0.58 0.96 0.35 0.75 1 s <1 s
kNN 0.85 0.78 0.06 0.88 30 s 2 min 10 s
SVM (linear) 0.94 0.91 0.03 0.95 7 h 45 min 33 s
SVM (polynomial) 0.92 0.86 0.04 0.93 2 days 16 s
SVM(RBF) 0.90 0.36 0.02 0.77 3 h 3 min
Decision trees 0.92 0.74 0.03 0.89 2 min <1 s
Random forest 0.96 0.79 0.02 0.92 35 s <1 s
Adaboost 0.70 0.84 0.17 0.83 11 min <1 s

Figure 7 The results from experiments: (A) input images for detection, (B) features generated by opti-
mal set of filters, (C) features generated by full set of filters.

Full-size DOI: 10.7717/peerj.4411/fig-7

The results achieved in the experiments are summarized in Table 1. Both learning and
prediction time durations were measured only during the real activity of the classifier,
which means that the file loading and feature preprocessing time is not included in the
reported results. The prediction time refers to the prediction of a single test image. Each
entry in Table 1 is an average result obtained from two learning rounds, where each round
splits the image dataset into two exclusive subsets (training and test set) in a different way.

The best results were achieved for the RandomForest classifier and SVMwith polynomial
and linear kernels giving the accuracy of 0.92, 0.93 and 0.95 respectively. Though SVM
classifiers achieved the best overall accuracy, the Random Forest classifier was selected for
the final use as it obtained the best precision and showed less proneness to false positive
detection (Fallout ), which gives less noise for further steps of the synovitis detection process.
Additionally, the RandomForest classifier provides the best computational efficiency. Some
examples of visualization results for the best configuration of the system are presented in
Fig. 7.

Asmentioned in the previous sections, the selection of proper filter combination used for
samples generation has a significant impact on the final result. The optimal configuration
of filters that was found by our automatic heuristic search consists of Gaussian smoothing,
first and second derivatives as well as Laplacian where the first and second derivatives have

Bąk et al. (2018), PeerJ, DOI 10.7717/peerj.4411 11/15

https://peerj.com
https://doi.org/10.7717/peerj.4411/fig-7
http://dx.doi.org/10.7717/peerj.4411


0 2 4 6 8 10

Number of filters

0.80

0.85

0.90

0.95

1.00

1.05

E
v
a
lu
a
ti
o
n

precision

recall

fallout

accuracy

Figure 8 The results for the different filter combinations.
Full-size DOI: 10.7717/peerj.4411/fig-8

the most impact on the result. Adding the threshold filters makes the results to get worse.
Figure 8 presents the example of samples generation where just a few filters gave a better
result than the full set of filters.

CONCLUSIONS
This paper presents a bone and skin detector which is an important part of a synovitis
detection system (Medusa, 2015). The detector output is further processed by a registration
method which improves the detection result, therefore the precision achieved by the bone
and skin detector does not need to be perfect. The results presented in this paper are
sufficient for the detector to fulfill its role as determined in tests that will be described in a
future article. The optimization of bone and skin detector is done locally, based only on the
comparison of results with the annotations. There is a plan to introduce a global feedback,
from the output of the entire synovitis detector to find the best configuration of bone and
skin detector for which the system is the most effective.
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