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Abstract
1.	 Species	composition	is	a	vital	attribute	of	any	ecosystem.	Accordingly,	ecological	
restoration	often	has	the	original,	or	“natural,”	species	composition	as	its	target.	
However,	we	still	lack	adequate	methods	for	predicting	the	expected	time	to	com-
positional	recovery	in	restoration	studies.

2.	 We	describe	and	explore	a	new,	ordination	regression-based	approach	(ORBA)	for	
predicting	time	to	recovery	that	allows	both	 linear	and	asymptotic	 (logarithmic)	
relationships	of	compositional	change	with	time.	The	approach	uses	distances	be-
tween	restored	plots	and	reference	plots	along	the	successional	gradient,	repre-
sented	 by	 a	 vector	 in	 ordination	 space,	 to	 predict	 time	 to	 recovery.	 Thus,	 the	
approach	 rests	 on	 three	 requirements:	 (a)	 the	 general	 form	of	 the	 relationship	
between	compositional	change	and	time	must	be	known;	(b)	a	sufficiently	strong	
successional	gradient	must	be	present	and	adequately	represented	 in	a	species	
compositional	dataset;	and	(c)	a	restoration	target	must	be	specified.	We	tested	
the	approach	using	data	 from	a	boreal	old-growth	forest	 that	was	 followed	for	
18	years	after	experimental	disturbance.	Data	from	the	first	9	years	after	distur-
bance	were	used	to	develop	models,	the	subsequent	9	years	for	validation.

3.	 Rates	of	compositional	recovery	in	the	example	dataset	followed	the	general	pat-
tern	of	decrease	with	time	since	disturbance.	Accordingly,	linear	models	were	too	
optimistic	about	the	time	to	recovery,	whereas	the	asymptotic	models	provided	
more	precise	predictions.

4. Synthesis and applications.	Our	results	demonstrate	that	the	new	approach	opens	
for	reliable	prediction	of	recovery	rates	and	time	to	recovery	using	species	com-
positional	data.	Moreover,	it	allows	us	to	assess	whether	recovery	proceeds	in	the	
desired	direction	and	to	quantitatively	compare	restoration	speed,	and	hence	ef-
fectiveness,	between	alternative	management	options.
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1  | INTRODUC TION

In	a	world	of	progressive	ecosystem	degradation,	the	discipline	of	resto-
ration	ecology	has	become	ever	more	important	and	now	plays	a	signif-
icant	role	in	sustainable	development	efforts	across	the	globe	(Brudvig,	
2011;	 Perring	 et	al.,	 2015;	 Roberts,	 Stone,	 &	 Sugden,	 2009;	 Suding,	
2011).	It	is,	however,	still	a	young	science	and	as	such	in	need	of	meth-
odological	improvements	(Brudvig,	2017;	Laughlin,	2014;	Urban,	2006)	
to	more	effectively	inform	management	(Suding,	2011).	For	restoration	
ecology	to	become	a	predictive	science	 (Brudvig,	2017;	Brudvig	et	al.,	
2017),	there	is	an	urgent	need	to	develop	appropriate	methods	for	pre-
dicting	time	to	recovery	after	disturbance	that	is	until	specific	restoration	
goals	are	achieved.

Metrics	commonly	used	to	evaluate	restoration	success	(SER,	2004)	
can	be	ordered	 in	four	categories	from	general	 to	specific	by	the	eco-
system	properties	they	address	(Brudvig	et	al.,	2017):	(a)	physical	struc-
ture;	(b)	diversity	that	is	richness	and	evenness	measures	that	do	not	take	
species’	 identity	 into	account;	 (c)	 functional	 and	phylogenetic	diversity	
that	is	measures	for	which	species	may	be	functionally	redundant	of	one	
another;	and	 (d)	species	 (taxonomic)	composition.	While	their	 informa-
tion	content	increases	from	the	general	to	the	specific	metrics,	the	preci-
sion	of	predictions	that	can	be	made	from	them	is	expected	to	decrease	
(Brudvig	 et	al.,	 2017).	 Accordingly,	 several	 authors	 have	 argued	 that	
large	and	unpredictable	variation	 in	species	composition	among	 resto-
ration	sites	makes	composition-	based	metrics	less	useful	for	measuring	
restoration	success	than	the	more	general	metrics	(Brudvig	et	al.,	2017;	
Laughlin	et	al.,	2017).	Others	have	argued	that	species	composition	is	a	
fundamental	attribute	of	restored	ecosystems	(Clewell	&	Aronson,	2013;	
Reid,	2015),	and	that	the	rate	and	direction	of	vegetation	change	(suc-
cession)	are	fundamental	properties	that	must	be	considered	when	res-
toration	success	is	evaluated	(Urban,	2006).	Furthermore,	monitoring	of	
compositional	change	during	restoration	and	prediction	of	time	to	recov-
ery	may	actually	guide	the	restoration	process	(Zedler	&	Callaway,	1999).	
Such	prediction	is	particularly	valuable	in	harsh	environments	where	res-
toration	may	take	decades	or	even	centuries	(Harper	&	Kershaw,	1996;	
Jorgenson,	Ver	Hoef,	&	Jorgenson,	2010;	Rydgren,	Halvorsen,	Odland,	&	
Skjerdal,	2011).	Several	authors	therefore	regard	data	on	species	com-
position	as	particularly	informative	for	evaluation	of	restoration	success	
(Heslinga	 &	 Grese,	 2010;	Matthews,	 Spyreas,	 &	 Endress,	 2009;	 Reid,	
2015;	Waldén	&	Lindborg,	2016).

Previous	approaches	have	used	floristic	dissimilarity	measures	to	pre-
dict	time	to	recovery	after	disturbances	(Curran,	Hellweg,	&	Beck,	2014;	
Prach	et	al.,	2016;	Woodcock,	McDonald,	&	Pywell,	2011)	or	multivari-
ate	methods	such	as	constrained	and	unconstrained	ordination	(Rydgren	
et	al.,	 2011;	 Sarmiento,	 Llambí,	 Escalona,	 &	Marquez,	 2003)	with	 the	
implicit	assumption	that	successions	are	linear,	namely,	that	the	rate	of	
plant	 compositional	 change	with	 time	 is	 constant.	 Floristic	 dissimilari-
ties	have	proved	unsuitable	for	this	purpose	because	of	the	three	basic	
problems	associated	with	use	of	compositional	dissimilarity	as	a	proxy	for	
distance	along	an	ecological	gradient	(Gauch,	1973;	Økland,	1986,	1990):	
(a)	 the	 internal	 association	 problem	 that	 is	 small	 ecological	 distances	
cannot	be	separated	from	ecological	replicates	by	floristic	dissimilarity;	
(b)	the	indetermination	problem	that	is	the	ecological	distance	between	

observations	with	no	species	in	common	cannot	be	deduced	from	their	
species	composition,	and	(c)	the	nonlinearity	problem,	that	is,	the	pres-
ence	of	a	general,	nonlinear	relationship	between	ecological	distance	and	
floristic	dissimilarity.	Constrained	ordination	might	seem	a	plausible	alter-
native	for	summarising	compositional	change	in	response	to	one,	given,	
variable	(here:	time	since	disturbance).	However,	constrained	ordination	
is	also	inappropriate	for	this	purpose,	because	it	expresses	only	linear	re-
sponses	of	variables	(or	specific	transformations	of	these)	on	ordination	
axes	(ter	Braak,	1986),	and	therefore	fail	to	reflect	nonlinear	relationships.

Unconstrained	ordination	methods,	on	 the	other	hand,	 summarise	
compositional	gradients	regardless	of	these	gradients’	relationship	with	
time	or	other	explanatory	variables.	Therefore,	 it	could	potentially	also	
summarise	compositional	change	along	successional	gradients.	But	for	
these	methods	to	provide	robust	predictions	for	time	to	recovery,	five	
issues	need	to	be	addressed:	 (a)	To	ascertain	that	potentially	distorted	
axes	are	not	used	for	predictions	for	time	to	recovery,	they	must	be	iden-
tified	by	applying	more	than	one	ordination	method	to	the	same	dataset	
(van	Son	&	Halvorsen,	2014).	(b)	Compositional	change	along	a	specific	
successional	gradient	must	be	identifiable	as	a	vector	in	ordination	space,	
for	example,	the	gradient	must	be	strong	(see	Philippi,	Dixon,	&	Taylor,	
1998).	This	is,	however,	almost	always	the	case	after	major	disturbances.	
(c)	A	reference	that	the	restored	sites	can	be	compared	to	must	be	es-
tablished.	Since	nature	 is	not	static,	 this	reference	should	be	dynamic,	
allowing	change	with	time,	rather	than	fixed	to	a	historic,	ideal	time	point	
(Choi,	2004;	Hiers	et	al.,	2012).	(d)	Compositional	differences	(as	given	
by	distances	in	the	ordination	space)	must	be	modelled	as	a	function	of	
time.	This	is	not	straightforward,	as	shown	in	the	few	existing,	ordination-	
based	restoration	studies	(e.g.,	Jacquet	&	Prodon,	2009;	Rydgren	et	al.,	
2011;	Sarmiento	et	al.,	2003).	 (e)	Linear	models	will	fail	to	account	for	
decrease	in	successional	rates	with	time	(Rydgren,	Halvorsen,	Töpper,	&	
Njøs,	2014).	Therefore,	 an	alternative	approach	 for	predicting	 time	 to	
recovery	based	on	a	nonlinear	model	must	be	developed.

The	aim	of	this	paper	is	to	describe	a	novel	ordination	regression-	
based	approach	(ORBA)	for	predicting	time	to	recovery	in	restoration	
studies.	The	approach	includes	guidelines	for	how	to	select	a	refer-
ence	for	the	restoration	target,	how	to	choose	an	appropriate	func-
tional	 relationship	 between	 species	 composition	 at	 different	 time	
points	 and	 the	 reference	 to	 use	 in	 modelling,	 and	 how	 to	 choose	
time-	to-	recovery	predictors.	We	demonstrate	the	approach	for	linear	
and	asymptotic	(logarithmic)	relationships	between	species	composi-
tional	change	and	time,	using	an	18-	year-	long	dataset	recovery	after	
experimental	disturbance	in	an	old-	growth	boreal	forest.

2  | THEORY: A NOVEL APPROACH TO 
PREDIC T TIME TO RECOVERY

Our	 approach—ordination	 regression-	based	 approach	 (ORBA)—to	
predict	 time	to	 recovery	consists	of	 the	 following	components:	 (a)	
availability	of	species	composition	data,	recorded	in	plots	that	were	
established	 after,	 or	 ideally	 prior	 to,	 disturbances,	 and	 that	 have	
been	 reanalysed	on	 later	 occasions;	 (b)	 an	 adequate	 reference	 for	
the	targeted	species	composition	(successful	restoration);	(c)	a	proxy	
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for	the	successional	gradient	obtained	by	ordination;	(d)	a	regression	
model	which	 relates	 “compositional	 distance”	 from	 restored	plots,	
analysed	at	a	given	 time	point,	 to	 the	 temporal	gradient;	and	 (e)	a	
predictor	 for	 time	 to	 recovery.	Here,	we	will	describe	 the	analytic	
methods	that	constitute	the	approach,	as	well	as	data	requirements.

2.1 | Input data

The	 basic	 data	 requirement	 is	 one	matrix	M	 with	 n	 observation	
units	(the	restoration	plots),	established	at	a	time	point	te and re-
analysed	with	respect	to	the	species	composition	s	times	after	dis-
turbance	(plots	j	=	1,	…,	n;	time	points	t	=	1,	…,	s,	corresponding	to	
recordings	of	species	made	vt	years	after	disturbance).	The	matrix	
M	thus	contains	n∙s	columns,	one	for	each	restoration	plot	×	time	
(RP	×	T)	combination	 jt.	Furthermore,	one	matrix	Q	of	u	 (k	=	1,	…,	
u)	 observation	units	 for	 the	 reference	 is	 required.	The	 reference	
may	be	static	that	 is	 it	consists	of	plots	analysed	with	respect	to	
species	composition	at	one	time	point.	However,	ideally	a	dynamic	
reference	should	be	used,	 consisting	of	u	undisturbed	plots	ana-
lysed	at	all	or	 some	 time	points	 t.	The	static	 reference	may	con-
sist	of	the	restoration	plots,	analysed	before	disturbance,	of	plots	
from	the	undisturbed	surroundings,	analysed	at	any	time	point,	or,	
in	principle,	any	other	species	composition	Q	that	represents	the	
restoration	target.	With	a	static	reference,	the	matrix	Q	contains	
u	columns,	one	for	each	reference	plot,	while	a	full	dynamic	refer-
ence	matrix	Q	contains	u∙s	columns.	In	the	following,	the	approach	
is	outlined	for	a	static	reference	but	it	can	easily	be	adapted	to	a	
dynamic	reference.

The	 combined	 data	matrix	MQ,	with	n∙s + u	 recordings	 of	 the	
species	composition,	 is	 subjected	 to	ordination,	preferably	by	 two	
or	more	ordination	methods	 in	parallel,	 for	 identification	of	major	
gradients	in	species	composition.	The	ordination(s)	are	subsequently	
checked	 for	 artefacts	 and	 interpreted	 ecologically	 by	 standard	
methods	 (Økland,	 1990;	 van	 Son	&	Halvorsen,	 2014).	 Plot	 scores	
xi	along	an	 interpreted	ordination	axis	or	another	vector	 in	the	or-
dination	 space	 that	 represents	 the	 successional	 gradient	 are	 used	
as	input	for	time-	to-	recovery	prediction.	The	successional	gradient	
vector	is	orientated	in	the	direction	from	the	disturbed	plots	to	the	
restoration	reference.

2.2 | Regression time to recovery (TR)

For	 each	 restoration	 plot	×	time	 (RP	×	T)	 combination	 jt,	 the	 suc-
cessional	 distance	djt,0,	 that	 is	 the	distance	 along	 the	 successional	
gradient,	from	the	position	x0	that	represents	the	reference	to	xjt,	is	
calculated	(Figure	1a;	see	Appendix	S1	for	computer	code):
 

The	 position	 x0	 may	 be	 the	 centroid	 of	 observations	 in	 Q. 
Thereafter,	model	djt,0	as	a	function	of	vt,	the	time	since	disturbance	
(years),	using	an	appropriate	statistical	modelling	method.	Methods	
derived	from	general	linear	models	(GLM;	Venables	&	Ripley,	2002)	
are	 obvious	 choices,	 and	 may	 be	 used	 with	 an	 untransformed	 or	

a	 logarithmically	 transformed	 response	 variable	 (Figure	1b).	 Two	
models	are	particularly	relevant:	(i)	The	linear	response	model	ML—
obtained	 as	 a	 linear	model	with	 untransformed	 response	 variable	
(Figure	1b).	 According	 to	ML,	 the	 composition	 of	 restoration	 plots	
changes	at	a	constant	rate	so	that	these	plots	first	approach	the	ref-
erence,	then	reach	recovery	(djt,0	=	0)	and	thereafter	depart	from	the	
reference	again	(djt,0	<0).	(ii)	The	asymptotic	model	MA—obtained	as	
a	 linear	model	with	 logarithmically	 transformed	 response	 variable	
(Figure	1b).	 Predictions	 from	MA	 approach	 djt,0	=	0	 asymptotically.	
Temporal	 and	 spatial	pseudoreplication	due	 to	 repeated	 recording	
of	species	composition	in	permanent	plots	and	nested	sampling	can	
be	 accounted	 for	 by	 general	 linear	mixed-	effects	models	 (GLMM;	
Zuur,	Ieno,	Walker,	Saveliev,	&	Smith,	2009).

Time-	to-	recovery	 predictors	 TRL and TRA—time	 to	 recovery	
predicted	by	use	of	the	linear	response	model	ML	and	the	asymp-
totic	model	MA,	 respectively—are	obtained	by	a	two-	step	proce-
dure:	(a)	Define	a	threshold	value	for	the	successional	distance	djt,0 
at	which	 restoration	 is	 regarded	 as	 successful.	 (b)	 The	 predictor	
TR	is	the	value	of	vt,	the	predicted	number	of	years	since	distur-
bance	which,	according	to	the	model	in	question,	corresponds	to	
djt,0.	 Threshold	values	may	be	defined	 in	 at	 least	 three	different	
ways:	(a)	The	reference	itself	that	is	successional	distance	djt,0 = 0 
(Figure	1a).	(b)	A	fixed	successional	distance	c	from	the	threshold,	
that	is,	djt,0	=	c.	(c)	A	“statistical	threshold”	s	obtained	as	a	parame-
ter	that	characterises	the	statistical	distribution	of	reference	plot	
scores	along	the	successional	gradient,	for	example,	the	standard	
deviation,	the	mean	absolute	value	difference	from	the	mean,	or	
quantiles.	With	 the	 exception	 that	 the	 zero	 threshold	 does	 not	
make	 sense	 for	 asymptotic	 models,	 predictors	 and	 models	 can	
be	 combined	 freely.	 The	 fixed	 successional	 distance	 is	most	 rel-
evant	 for	 the	 asymptotic	model,	 in	 particular	 for	 a	 low	 value	 of	
c	 for	comparison	with	 linear	models	using	djt,0	=	0.	We	therefore	
concentrate	on	 four	 combinations	of	model	 (L—linear	 and	A—as-
ymptotic)	and	predictor	(0—the	reference,	c—a	fixed	distance,	and	
s—a	statistical	 threshold)	which	will	be	referred	to	as	TRL0,	TRLs,	
and TRAc and TRAs,	respectively.	The	use	of	statistical	thresholds	
will	 facilitate	 cross-	system	 and	 cross-	study	 comparisons.	 One	
plausible	choice	of	statistical	criterion	is	+1	SD	off	the	centroid	of	
reference	plot	 scores	 along	 the	 successional	 gradient,	which	we	
will	refer	to	as	the	“+1	SD	criterion”	(Figure	1b),	and	denote	TRAs+1. 
One	plausible	choice	of	fixed	successional	distance	c	is	0.01	from	
the	threshold,	which	we	will	denote	TRAc+0.01.

3  | WORKED E X AMPLE

3.1 | The dataset

To	exemplify	and	explore	the	proposed	approach,	we	used	a	data-
set	 that	 originates	 from	 an	 18	years	 experimental	 disturbance	
study	 in	 a	 boreal	 old-	growth	 forest	 in	 south-	eastern	 Norway	
(Rydgren,	 Økland,	 &	 Hestmark,	 2004).	 The	 dataset	 comprises	
records	 of	 the	 species	 composition	 of	 80	 permanently	 marked	
plots,	each	0.25	m2.	A	nested	sampling	design	was	used,	with	10	

(1)djt,0=x0−xjt
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subjectively	 placed	 blocks	 (5	×	10	m	 each),	 each	 with	 eight	 ran-
domly	placed	plots.	The	plots	were	established	in	1993	prior	to	ex-
perimental	disturbance	and	thereafter	revisited	yearly	from	1994	
until	2003,	in	2005,	and	in	2011,	after	18	years	of	recovery.	Three	
plots	 in	each	block	served	as	controls	while	 five	were	subjected	
to	 selective	 soil	 removal	 treatments,	T1	 (removal	 of	 vegetation),	
T2	(removal	of	vegetation	and	the	litter	layer),	T3	(removal	of	veg-
etation,	the	litter,	and	the	mor	soil	 layers),	T4	and	T5	(removal	of	
vegetation,	 organic,	 and	 bleached	 soil	 layers;	 with	 T4	 bordering	
intact	 vegetation	 on	 two	 sides,	whereas	 T5	 had	 a	minimum	dis-
tance	of	0.5	m	to	intact	vegetation).	Treatments	T1–T5	thus	made	
up	a	disturbance	severity	gradient	(Rydgren	et	al.,	2004).	Species’	
abundances	 were	 recorded	 as	 frequency	 in	 16	 equal-	sized	 sub-
plots.	 The	 combined	 boreal	 forest	 matrix	MQb	 consisted	 of	 69	
taxa	 (20	vascular	plants,	44	bryophytes,	and	5	 lichens)	 recorded	
for	 1,031	 plot	×	time	 combinations	 (80	 plots	×	13	 time	 points;	
nine	treatment	plots	in	1994	were	devoid	of	species	and	omitted	

from	 further	 analyses).	 The	 boreal	 forest	 dataset	 exemplifies	 a	
near	ideal	dataset	for	restoration	studies:	relatively	rapid	recovery	
(Rydgren	et	al.,	2004)	and	good	 temporal	 replication	 that	covers	
most	of	the	period	from	disturbance	to	recovery.

3.2 | Statistical analyses

We	extracted	the	gradient	structure	of	the	species	compositional	data	
matrix	MQb	by	parallel	use	of	detrended	correspondence	analysis	(DCA;	
Hill	 &	 Gauch,	 1980)	 and	 global	 nonmetric	 multidimensional	 scaling	
(GNMDS;	Minchin,	1987)	as	implemented	in	the	vegan	package	version	
2.3.3	 (Oksanen	et	al.,	2016),	see	Appendix	S2	for	specification	details.	
We	calculated	pairwise	Kendall’s	rank	correlation	coefficients	τ	between	
pairs	of	ordination	axes	to	ensure	that	only	axes	representing	true	com-
positional	gradients	were	used	for	further	interpretation	(Økland,	1996;	
van	Son	&	Halvorsen,	2014;	see	Appendix	S2	for	details).	The	first	DCA	
and	GNMDS	axes	had	|τ|	>0.7	and	both	were	confidently	interpreted	as	

F IGURE  1 Graphic	illustration	of	the	rationale	behind	the	new	approach	for	predicting	time	to	recovery,	exemplified	by	a	dataset	with	
restoration	plots	analysed	at	three	different	time	points	using	a	static	reference	with	the	centroid	as	large	green	circle	(a)	Calculation	
of	successional	distance,	obtained	by	Equation	(1),	along	the	first	ordination	axis,	which	represents	the	successional	gradient,	between	
restored	plots	and	the	centroid	of	the	reference	plots.	(b)	Two	models	for	successional	distance	as	a	function	of	time	since	disturbance;	a	
linear	model	shown	by	the	black	line	with	grey	95%	confidence	interval	and	an	asymptotic	(nonlinear)	model	shown	by	the	red	line	with	red	
confidence	interval.	The	three	points	of	which	we	demonstrated	the	calculation	of	successional	distance	in	(a)	is	shown	as	closed	circles	in	
their	respective	colours.	Predicted	time	to	recovery	occurs	when	the	modelled	response	reaches	the	confidence	limit	around	the	restoration	
target,	indicated	by	the	green	band	(of	breadth	+1	SD	off	the	centroid	of	reference	plot	scores)	or,	alternatively,	intersects	or	approaches	the	
restoration	target	itself	(y	=	0)
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the	successional	gradient	in	response	to	disturbance.	The	DCA	and	the	
three-	dimensional	 GNMDS	 solutions,	 orientated	with	 reference	 plots	
at	the	high-	score	end,	were	used	to	represent	the	successional	gradient	
and,	hence,	for	prediction	of	time	to	recovery.	R	version	3.2.2	was	used	
for	all	statistical	analyses	(R	Development	Core	Team	2016).

We	modelled	 successional	 distance	djt,0	 as	 a	 function	 of	 years	
after	 disturbance	 vt	 using	 general	 linear	 mixed-	effects	 modelling	
(GLMM)	 implemented	 in	 the	 R	 packages	 lme4	 (Bates,	 Mächler,	
Bolker,	 &	 Walker,	 2015)	 and	 lmerTest	 (Kuznetsova,	 Brockhoff,	 &	
Christensen,	2016).	We	parameterised	models	for	the	example	data-
set	by	using	data	for	the	first	9	years	after	disturbance,	t	=	1,	…,	9.	
For	one	plot,	the	value	djt,0	=	0.000	(obtained	for	T1	disturbance	in	
year t	=	9)	was	replaced	by	djt,0	=	0.001	to	allow	a	logarithmic	trans-
formation.	We	evaluated	the	models	visually	by	using	data	 for	10,	
12,	 and	 18	years	 after	 disturbance,	 and	 calculated	 the	 difference	
between	 predicted	 and	 observed	 values	 for	 the	 last	 observation	
(18	years	after	disturbance).

We	used	the	species	composition	of	restoration	plots	in	1993,	be-
fore	experimental	disturbance,	as	a	static	reference	in	the	analyses.	
Alternatively,	we	could	have	used	control	plots,	which	were	mostly	
not	significantly	displaced	along	the	successional	gradient	from	1993	
to	2011	(Table	S1).	We	fitted	a	linear	model	and	an	asymptotic	model	
to	all	combinations	of	five	response	variables,	one	for	each	of	treat-
ments	T1–T5	and	two	ordination	methods	to	obtain	time-	to-	recovery	
predictions	TRL and TRA.	For	each	of	the	20	combinations	of	model	
type,	treatment	and	ordination,	we	first	obtained	a	model	using	data	
for	all	9	years,	thereafter	successively	left	out	observations	for	t	=	1,	
then	 t	=	2	 and	 so	on,	 to	 obtain	 the	model	with	 the	best	 fit	 to	 the	
data	based	on	the	t	value.	The	rationale	behind	this	was	to	avoid	the	
influence	of	the	first	chaotic	years	after	disturbance	(Rydgren	et	al.,	
2004)	since	they	provide	poor	estimators	of	 time	to	recovery.	The	
model	with	the	best	fit	was	used	to	predict	time	to	recovery.	In	the	
few	cases	of	negative	or	zero	successional	distances	(see	Figure	S1),	
for	which	 ln(djt,0)	was	undefined,	they	were	not	 included	 in	the	as-
ymptotic	models.

We	modelled	temporal	and	spatial	stochasticity	in	species	com-
positional	 change	by	parameterising	 random	effects	 for	each	 time	
point	 and	block.	The	 random	block	effect	 applied	 to	 control	plots	
only	 since	 the	 disturbance	 treatments	 were	 not	 replicated	within	
blocks.	We	tested	if	control	plots	were	displaced	along	the	succes-
sional	gradient	during	the	study	period,	using	a	backward	elimination	
procedure	with	likelihood	ratio	tests	(Hastie,	Tibshirani,	&	Friedman,	
2009)	to	obtain	minimal	adequate	models.

4  | RESULTS

Restoration	 trajectories	 along	 the	 first	 ordination	 axes	 (Figure	2,	
Table	S2)	were	roughly	similar	for	all	treatments:	the	distance	to	the	
reference	 djt,0	 increased	 (for	 2	years	 with	 GNMDS	 and	 3–6	years	
with	 DCA),	 before	 starting	 to	 decrease	 gradually.	 The	 maximum	
single-	plot	djt,0	values	were	3.79	SD	units	and	3.22	H.C.	(half-	change)	
units,	as	obtained	by	DCA	and	GNMDS,	respectively.	This	indicated	
that	the	most	severe	treatment	(T5)	affected	some	plots	so	severely	
that	they,	after	disturbance,	shared	almost	no	species	with	the	refer-
ence.	 From	 the	 time	of	maximum	dissimilarity	with	 the	 reference,	
yearly	successional	rates	decreased	with	increasing	t	(Figure	2).

Eighteen	 years	 after	 disturbance,	 the	 two	 least	 severe	 treat-
ments	 (T1	 and	T2)	 had	 reached	 recovery	 according	 to	 the	 “+1	SD 
criterion,”	 that	 is	with	djt,0	 values	within	+1	SD	off	 the	centroid	of	
reference	plot	along	the	successional	gradient	(Figure	3).

The	 linear	 and	 asymptotic	 models	 ML and MA	 of	 successional	
distance	djt,0,	as	a	function	of	years	after	disturbance	vt	for	combina-
tions	of	ordination	method	and	treatment,	were	closely	similar	for	the	
years	used	to	parameterise	the	models.	However,	with	increasing	time	
since	disturbance,	predictions	from	the	two	models	became	increas-
ingly	different	(Figure	3,	Figure	S1).	Using	field	observations	18	years	
after	 disturbance	 as	 a	 reference,	 the	 linear	model	 clearly	 underpre-
dicted	successional	distance	in	all	cases	except	two	(T3	and	T5)	with	
DCA	ordination	(Figure	S1;	Table	1).	Predictions	from	the	asymptotic	

F IGURE  2 Ordination	of	the	full	example	dataset	(69	taxa	×	1,031	plots):	trajectories	of	restoration	plots	and	control	plots	in	(a)	
detrended	correspondence	analysis	(DCA)	and	(b)	global	nonmetric	multidimensional	scaling	(GNMDS)	ordination	spaces,	illustrated	by	
mean	resultant	displacement	of	each	combination	of	treatment	(T1–T5)	and	control	(C),	and	year	since	disturbance.	Ordination	axes	1	and	2	
are	shown.	Successive	years	for	the	same	treatment	are	connected	by	broken	lines	except	for	the	two	last	years	of	observation	(t = 12 and 
t	=	18),	which	are	connected	by	solid	lines	ending	with	an	arrow

–1.5 –1.0 –0.5 0.0

–0
.4

–0
.2

0.
0

0.
2

0.
4

0.
6

DCA axis 1 (S.D. units)

D
C

A
 a

xi
s 

2 
 (S

.D
. u

ni
ts

)

C
T1
T2
T3
T4
T5

DCA

–1.5 –1.0 –0.5 0.0

0.
0

0.
5

1.
0

1.
5

GNMDS axis 1 (H.C. units)

G
N

M
D

S
 a

xi
s 

2 
 (H

.C
. u

ni
ts

)

GNMDS(a) (b)



230  |    Journal of Applied Ecology RYDGREN Et al.

model	 accorded	generally	well	with	observations,	with	no	 tendency	
for	systematic	under-		or	overprediction	of	successional	distances	after	
18	years	of	recovery	(Table	1).	Generally,	predictions	from	the	asymp-
totic	 GNMDS-	based	models	 fitted	 the	 data	 better	 than	 predictions	
from	DCA-	based	models	(Table	1).

For	the	linear	ML	models,	the	10	TRL0	predictions	for	time	to	full	re-
covery	(5	treatments	×	2	ordination	methods)	ranged	between	13	and	
29	years,	whereas	 the	10	TRLs+1	predictions	gave	2–4	years	shorter	
time	 to	 recovery.	 Comparison	 of	 DCA-	based	 and	 GNMDS-	based	
predictions	 indicated	 that	 the	 former	 gave	 equal	 or	 higher	 values	
than	the	 latter	 (Figure	3;	Figure	S1).	For	the	asymptotic	MA	models,	
the	 TRAc+0.01 and TRAs+1	 predictions	 ranged	 between	 28–100	 and	
11–43	years,	respectively.	With	the	exception	of	T4,	time	to	recovery	
increased	with	increasing	disturbance	severity	(Figure	3;	Figure	S1).

5  | DISCUSSION

Our	 results	 suggest	 the	 compositional	 change	over	 time	 is	 a	 non-
linear	 process	 as	 successional	 rates	 gradually	 decrease	 over	 time	
(Foster	&	 Tilman,	 2000;	 Lepš,	 1987;	Myster	&	 Pickett,	 1994).	We	
show	that	 such	nonlinearity	can	be	described	precisely	as	a	 linear	

function	of	 log-	transformed	 compositional	 distances	 (in	 ecological	
space)	from	the	expected	successional	end	point.	Linear	models	of	
untransformed	distances,	on	the	other	hand,	can	only	describe	suc-
cessional	rates	over	very	short	time	periods,	since	they	overpredict	
successional	rates	in	the	longer	run	and	hence	strongly	underpredict	
time	to	recovery.	In	the	following,	we	discuss	basic	methodological	
issues	relating	to	prediction	of	time	to	recovery	in	restoration	eco-
logical	studies.

F IGURE  3 The	example	dataset:	Best	
linear	(black	lines)	and	asymptotic	models	
(red	lines)	for	successional	distance	
(distance	along	the	successional	gradient	
represented	by	the	first	global	nonmetric	
multidimensional	scaling	(GNMDS)	
ordination	axis)	as	a	function	of	time	
since	disturbance,	with	95%	confidence	
intervals	indicated	by	grey	and	red	
shading,	respectively.	Both	the	linear	and	
asymptotic	models	were	parameterised	
using	the	first	9	years	of	data	after	
disturbance,	shown	by	open,	black	circles.	
Red	dots	represent	the	mean	values	for	
each	year	for	the	first	9	years.	Blue	dots	
indicate	observations	10,	12,	and	18	years	
after	disturbance.	Green	shading	indicates	
the	recovery	reference,	that	is,	the	
centroid	of	reference	plot	scores	along	
the	successional	gradient	+1	standard	
deviation.	T1—removal	of	vegetation;	
T2—removal	of	vegetation	and	the	litter	
layer;	T3—removal	of	vegetation,	the	
litter,	and	the	mor	soil	layers;	T4—removal	
of	vegetation,	organic,	and	bleached	soil	
layers	bordering	intact	vegetation	on	two	
sides;	T5—removal	of	vegetation,	organic,	
and	bleached	soil	layers	with	a	minimum	
distance	of	0.5	m	to	intact	vegetation
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TABLE 1 Model	evaluation	results	based	upon	the	detrended	
correspondence	analysis	(DCA)	and	the	global	nonmetric	
multidimensional	scaling	(GNMDS)	ordinations:	difference	in	
successional	distance	djt,0	between	the	mean	plot	position	18	years	
after	disturbance	for	the	five	treatments	(T1–T5)	and	the	corresponding	
predictions	from	the	linear	and	asymptotic	models	ML and MA

Treatment

DCA GNMDS

ML MA ML MA

T1 0.44 0.03 0.18 −0.04

T2 0.59 0.12 0.54 0.00

T3 −0.10 −0.24 0.72 0.06

T4 0.09 −0.07 0.58 0.02

T5 −0.05 −0.10 0.65 0.04
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5.1 | The functional relationship of succession 
models and time- to- recovery predictors

Our	 worked	 example	 shows	 that	 successful	 predictions	 of	 time	
to	 recovery	 strongly	 depend	on	 appropriate	 specification	of	 the	
functional	relationship	of	successional	distance	to	time	since	dis-
turbance.	The	boreal	forest	data	presents	five	cases	of	very	close	
fit	to	a	nonlinear	relationship	between	compositional	distance	and	
time.	The	fact	that	the	same	functional	relationship	seems	to	apply	
over	a	considerable	span	of	disturbance	severities,	suggests	that	
this	 functional	 relationship	 may	 apply	 to	 successions	 after	 dis-
turbance	more	generally.	Until	 general	validity	of	 this	 functional	
relationship	 is	proven,	a	priori	 specification	of	models	 for	use	 in	
time-	to-	recovery	prediction	should	be	informed	by	knowledge	of	
the	studied	system	and	expert	judgements.

When	 the	 datasets	 include	 just	 two	 time	 points	 only	 a	 linear	
function	 is	 possible	 to	 fit	 (Rydgren	 et	al.,	 2011).	 However,	 when	
successional	rates	decrease	over	time,	as	typically	found	in	primary	
successions	 (Robbins	 &	 Matthews,	 2010;	 Rydgren	 et	al.,	 2014;	
Whittaker,	1989),	predictors	based	upon	a	linear	model	will	under-
predict	time	to	recovery	strongly	and	should	therefore	be	avoided	
if	the	data	allows	it.	Our	results	unequivocally	point	to	TRA predic-
tors	 that	are	based	on	an	asymptotic	model	 (MA),	as	best	choices.	
The	minimum	data	requirement	for	MA	models	is	a	time	series	of	at	
least	 three	 temporal	 recordings.	An	additional	danger	of	obtaining	
mis-	specified	models	from	sparse	data	appears	when	compositional	
dissimilarity	 from	 the	 restoration	 target	 increase	 shortly	 after	dis-
turbance	 (Auestad,	 Rydgren,	 &	Austad,	 2016;	 Kirmer,	 Rydgren,	 &	
Tischew,	2018).	In	succession,	random	variation	in	species	composi-
tion	between	years	may	override	a	weak	temporal	trend.	Thus,	data-
sets	used	for	 time-	to-	recovery	prediction	should	cover	a	 temporal	
interval	of	sufficient	length	to	describe	the	succession	adequately.	
Another	prerequisite	 for	using	 the	proposed	approach	 (ORBA)	 for	
time-	to-	recovery	prediction	 is	 that	 the	 imprint	of	 the	successional	
gradient	 on	 the	 species	 composition	 is	 strong	 enough	 to	 be	 rec-
ognised	as	a	vector	 in	ordination	space.	This	requirement	was	sat-
isfied	 in	 our	 example	 dataset,	 and	 likely	 also	 in	 other	 restoration	
projects	where	 disturbances	 have	 been	 severe.	Typically,	 a	 strong	
successional	 gradient	 emerges	 as	 the	 main	 axis	when	 postdistur-
bance	revegetation	data	after	severe	disturbance	are	subjected	 to	
ordination	 (Alday,	 Marrs,	 &	 Martínez-	Ruiz,	 2011;	 Fagan,	 Pywell,	
Bullock,	&	Marrs,	2008;	Matthews	&	Spyreas,	2010).	In	cases	where	
the	 successional	 gradient	 appears	 on	 several	 ordination	 axes	 (i.e.,	
as	a	vector	that	does	not	run	parallel	with	one	ordination	axis),	the	
vector	of	best	 fit	 to	 the	 time-	after-	disturbance	variable	 should	be	
used	 to	 estimate	 successional	 distance	 (see	Rydgren	 et	al.,	 2014).	
As	the	asymptotic	approach	handles	decreasing	successional	rates	
over	 time,	 the	 modelled	 succession	 levels	 off	 and	 asymptotically	
approaches	 a	 limit,	 which	 is	 in	 accordance	 with	 assumptions	 of	
convergent	 succession.	 In	 the	 linear	 approach,	 the	modelled	 suc-
cession	principally	 goes	on	 forever,	which	 is	why	we	consider	 the	
linear	model	as	a	generally	inappropriate	descriptor	of	the	recovery	
process.	This	parallels	the	use	of	linear	species	response	models	for	

extraction	 of	 compositional	 gradients	 in	 ordination,	which	 results	
in	 spurious	 ordination	 axes	 (Økland,	 1990).	We	 therefore	 caution	
against	uncritical	use	of	 linear	models	 for	ecological	data	 that	de-
scribe	 single	 species’	 or	 species	 compositional	 responses	 to	 envi-
ronmental	gradients.

5.2 | Choice of reference for the restoration target

Selection	 of	 a	 suitable	 reference	 is	 crucial	 in	 time-	to-	recovery	
prediction	 from	 species	 compositional	 data,	 as	 in	 all	 restoration	
projects.	 Optimally	 designed	 field	 experiments	 provide	 suitable	
candidates	 for	 the	 reference,	preferably	 the	 species	compositions	
of	control	plots	or	predisturbance	plots.	If	control	plots	show	small	
compositional	 change	 during	 the	 experiment	 (as	 in	 our	 example	
data),	predisturbance	restoration	plots	represent	an	optimal	choice	
of	reference.	When	reference	plots	are	located	in	exactly	the	same	
positions	 as	 restoration	 plots,	 effects	 of	 local	 environmental	 fac-
tors	 are	 efficiently	 ruled	 out.	 If,	 however,	 control	 plots	 undergo	
systematic	 changes	 in	 species	 composition	 during	 the	 restoration	
process,	for	example,	due	to	climate	change	(Hobbs	&	Cramer,	2008;	
Timpane-	Padgham,	Beechie,	&	Klinger,	2017),	use	of	control	plots	
analysed	at	a	 latest	possible	time	point	should	be	considered.	But	
since	 restoration	 projects	 seldom	 are	 planned	 experiments	 (see	
McKay,	Christian,	Harrison,	&	Rice,	2005;	Rydgren,	Hagen,	Rosef,	
Pedersen,	&	Aradottir,	2017)	restoration	targets	may	be	difficult	to	
define	precisely	in	terms	of	species	composition.	An	important	point	
is	that	the	variation	along	major	environmental	gradients	(and	hence	
species	composition)	among	reference	plots	must	match	the	resto-
ration	plots	for	the	two	datasets	to	be	comparable	(Rydgren	et	al.,	
2011).	 Unclear	 restoration	 targets	 therefore	 necessarily	 translate	
into	difficulties	in	defining	a	reference	for	predicting	time	to	recov-
ery.	We	recommend	choosing	the	reference	by	taking	all	available	
knowledge	on	the	species	composition	of	 the	restoration	site	and	
the	 successional	 process	 into	 account.	Moreover,	we	 recommend	
using	 a	 dynamic	 reference	 (Hiers,	 Jackson,	 Hobbs,	 Bernhardt,	 &	
Valentine,	 2016;	Hiers	 et	al.,	 2012;	 Kirkman	 et	al.,	 2013;	 Rydgren	
et	al.,	2011)	based	upon	species	composition	of	reference	plots	ana-
lysed	simultaneously	with	restored	plots,	to	handle	changes	in	un-
disturbed	control	plots	due	to,	for	example,	climate	change	(Prach	
&	Walker,	2011).

Selection	of	a	threshold	for	“successful”	recovery	to	be	used	in	
time-	to-	recovery	prediction	also	requires	careful	consideration.	The	
choice	of	threshold	value	for	acceptable	recovery	should	be	made	
after	careful	consideration	of	 the	goal	of	each	restoration	project.	
We	used	the	centroid	of	the	reference	points	+1	SD,	but	this	partic-
ular	solution	needs	further	testing	with	other	datasets	before	it	can	
be	generally	recommended	as	a	default	value.

5.3 | The role of time- to- recovery prediction in 
restoration ecology

Development	of	methods	for	prediction	of	time	to	recovery	based	on	
the	species	composition,	a	fundamental	ecosystem	attribute	(Clewell	



232  |    Journal of Applied Ecology RYDGREN Et al.

&	 Aronson,	 2013),	 will	 be	 a	 boon	 to	 restoration	 ecology	 (Urban,	
2006).	Species	composition	data	may	appear	variable	and	less	pre-
dictable	 than	 other	 ecosystem	 properties	 (Brudvig	 et	al.,	 2017;	
Laughlin	et	al.,	2017),	but	our	example	nevertheless	demonstrates	its	
value	for	assessing	the	outcome	of	restoration	and,	more	generally,	
its	usefulness	in	predictive	restoration	science	(Brudvig	et	al.,	2017).	
Better	methods	for	prediction	of	time	to	recovery	may	shift	the	per-
spective	 in	 restoration	 ecology,	 from	 a	 narrow	 focus	 on	 whether	
restoration	goals	are	reached	or	not,	to	insights	that	may	guide	the	
entire	restoration	process.	We	need	to	assess	different	restoration	
measures,	predict	the	time-	scales	involved	in	the	recovery	process,	
and	 propose	 knowledge-	based	management	 recommendations	 on,	
for	 example,	 additional	 restoration	 measures.	 Knowing	 that	 eco-
logical	restoration	may	require	decades	or	even	centuries	(Harper	&	
Kershaw,	1996;	Jorgenson	et	al.,	2010;	Prach,	Fajmon,	Jongepierová,	
&	Řehounková,	2015),	availability	of	reliable	methods	for	prediction	
of	time	to	recovery	will	significantly	advance	restoration	ecology.

This	paper	describes	and	provides	the	first	applications	of	new	
approach	(ORBA)	for	time-	to-	recovery	prediction,	intended	for	use	
in	restoration	ecological	studies.	More	studies	are	needed	to	get	a	
full	overview	of	the	circumstances	that	 influence	the	performance	
of	the	proposed	predictors,	for	example,	the	quality	and	quantity	of	
data	 required	 to	 obtain	 reliable	 predictions.	Nevertheless,	 our	 re-
sults	clearly	indicate	that	predictors	based	upon	asymptotic	models	
for	successional	distance	should	be	preferred	over	predictions	based	
on	linear	models	whenever	adequate	data	are	available.
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