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Introduction

The need for formal treatment of the system development process is well mo-
tivated from large software projects. Algebraic specification techniques offer a
promising tool to obtain the goal of correct and efficient data programs. The
underlying idea is that programs are modelled as algebras i.e. a set of functions
with a corresponding set of axioms specifying the behavior of the functions.
There exists several different algebraic specification formalisms in the litera-
ture, each of them particulary well suited to specify some aspect of the software
developing process. In this thesis we propose that multialgebras could be used
as a unifying framework that captures most of the advantages offered by other
specification frameworks.

Multialgebras provide a powerful algebraic framework for specification – pri-
marily, but not exclusively, of nondeterministic behavior [22, 55, 27]. Actually
multialgebras were introduced to computer science for specifying nondetermin-
istic programs, in a multialgebra a nondeterministic operation returns the set
of all possible outcomes of the operation. Hence operations are interpreted as
functions from the carrier to the powerset of the carrier, i.e. multialgebras are
a direct generalization of classical algebras. In the thesis we don’t focus on
nondeterministic aspect of multialgebras but we focus on other aspects offered
by this generalization of algebras.

It seems to be accepted in the literature that the notion of institution is the
right level of abstraction for combining and comparing specification formalisms.
We recall the relevant notions of multialgebras and institutions and show that
multialgebras is an exact institution.

Since a nondeterministic constant c :→ s denotes a subset of the carrier
in a multialgebra, we can use multialgebraic constants to model unary predi-
cates, it means that we easily can represent algebras with unary predicates in
multialgebras, (it’s also possible to encode algebras with general predicates in
multialgebras, in a similar way as predicates are encoded in partial algebras).
We exemplify this by constructing the actual embedding of institutions from
membership algebras to multialgebras. The particular case when operations in
a multialgebra have the empty result set gives straightforwardly a subinstitu-
tion of partial algebras. Hence multialgebras can combine the advances of total
and partial algebras in one framework. As an example of this we develop a
methodology for partiality handling where we start by transforming partial al-
gebra specifications to multialgebra specifications and stepwise refine them with
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specific error recovery.
To reason about specifications one need a logical entailment system, we give

a sound and complete reasoning system for multialgebras. The logic has two
atoms: set inclusion, ≺ and element equality .=. The set inclusion t ≺ t′ holds iff
the interpretation of t is included in the interpretation of t′, i.e. every possible
value for t is a possible value for t′. In other words: the term t is not more
nondeterministic than t′. The element equality t

.= t′ holds iff there is a unique
element e returned by the terms t and t′: i.e. t and t′ are deterministic.

Besides axiomatic descriptions of operations, the algebraic frameworks are
well suited to combine specifications i.e. one introduces the concept of param-
eterized specifications. On the other hand one can combine models (algebras),
i.e. one can model composition of programs as parameterized datatype specifi-
cations. We use the general notion of homomorphism in multialgebras to define
parameterized programs essentially as a special kind of subalgebras. The general
syntax gives us a presentation of parameterized datatype specifications.

The structure of the thesis is: We start each chapter by an introduction sec-
tion, where we announce the results to be presented in the chapter. The intro-
duction section also contains a discussion of our results compared with related
work. After the introduction section follows the main results of the chapter.
Each chapter also has a section with concluding remarks that summarizes the
results of the chapter and addresses further work.

The thesis starts by giving the mathematical background to write specifica-
tions in chapter 1. We define the institution of multialgebras, and show that
it is exact. We also compare multialgebras with other algebraic specification
formalisms by use of different maps of institutions. In chapter 2 we develop a
sound and complete Raisowa-Sikorski type of logic to reason about multialgebra
specifications, this logic offers a canonical strategy for proving sentences, hence
it should be well suited for implementation. We transform the Raisowa-Sikorski
logic to a Gentzen style logic that is more convenient for doing proofs by hand.
On the more practical level we develop a methodology that uses nondeterminism
for partiality handling in chapter 3 and show how we can reuse partial algebra
specifications and give them particular error recovery with multialgebras. We
also give a technique for specifying parameterized datatypes with multialgebras
in chapter 4, the technique generalizes the notion of persistency, i.e. we allow
the parameter algebra to be a tight subalgebra of the parameterized algebra.
We close the chapter by introducing refinement of parameterized datatypes, and
we motivate our definitions by several examples. We end the thesis by giving
some overall conclusions summarizing the results of the thesis and addresses the
most interesting further work.
[ The thesis mainly consists of material first presented in technical reports:
Chapter 1 most of this chapter is from the technical report [28]
Chapter 2 is based on the technical report [32]
Chapter 3 is based on the technical report [27], parts also published in [30]
Chapter 4 based on the technical report [29], also published in [31] and [33] ]
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Chapter 1

Multialgebras

In the first chapter we present the mathematical background for the thesis. We
start by recalling the relevant notions about multialgebras and institutions in
section 1.1. Multialgebras are a powerful algebraic framework for specification
- primarily, but not exclusively, of nondeterministic behavior. A nondetermin-
istic operation returns the set of all possible outcomes of the operation. Hence
operations are interpreted as functions from the carrier to the powerset of the
carrier. Our definitions of multialgebraic specifications follow the thesis of Wal-
icki, [50], with small differences. In [50] operations are required to return only
nonempty result set, while we also allows operations to return the empty set.
It means that our definition of multialgebras is a direct generalization of partial
algebras, as shown in section 1.4.1. Again following [50], we have two types of
atomic formula for specification, set inclusion t ≺ t′ and element equality t

.= t′.
Formulae used for writing specifications are sequents over atomic equalities and
inclusions.

There is also a slight difference in our definition of variable assignment for
empty sorts. For technical reasons, coming from the design of the logical rea-
soning system in chapter 2, we let evaluation of variables of an empty sort be
the emptyset.

In the remaining part of the chapter we give some new general results about
multialgebras that is used in the subsequent chapters.

The concept of institutions [18] has become the standard framework for pre-
senting model-theoretic approaches to logic and, in particular, to algebraic spec-
ification. We prove that multialgebras form an institution, MA in section 1.2.
In section 1.2.1 we show that the model functor for multialgebras ModMA sends
finite co-limits in Th (category of specifications) to limits in Cat, i.e. MA is
an exact institution [40] (called institution with composable signatures in [48]).
We also mention the well known fact that every exact institution satisfies the
amalgamation lemma. The results are not used in this chapter but they form
a basis for chapter 4 on structuring multialgebras and their specifications, in
particular, on amalgamation and parameterized multialgebras. In study of pa-
rameterized specifications the co-limits (actually pushouts) are used for defining
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parameter instantiation. The exactness of the model functor (actually the amal-
gamation lemma) ensures that corresponding instantiation can be performed at
the semantic level.

The category of multialgebras uses weak homomorphisms to relate multial-
gebras. In section 1.3 we recall the semantical properties for ensuring initial
models for specifications from [22], we get a slightly weaker demand since we
allow operations to return emptyset. We must stress that it is still an open
question to find general conditions that ensure existence of initial models for
multialgebra specifications. The recent work of [52] presents some promising
categories with alternative definitions of homomorphisms between multialge-
bras, that may be worth further studies.

In section 1.4 we show the and we show the formal correspondence between
the institution of multialgebras and other specification formalisms. In 1.4.1 mul-
tialgebras are related to partial algebras and in 1.4.2 to membership algebras,
actually are the two later institutions are embedded into the former. We also in-
dicate how we can transform models of partial algebra and membership algebra
specifications to multialgebras and extended the corresponding multialgebra by
e.g. nondeterminism.

The structure of the chapter is: We begin, in section 1.1 by introducing some
notation and presenting the background definitions of multilagebras and collect-
ing the relevant definitions and results about institutions. In section 1.2 we show
that multialgebras form an institution MA and that it’s exact in section 1.2.1.
Section 1.3 studies the conditions for the existence of initial models in MA.
We compare multialgebras with other specification frameworks in section 1.4
by embedding partial algebras and membership algebras to multialgebras. We
close the chapter by summarizing the contributions in section 4.5. Section 1.1
contains only old material, the rest of the sections present some new results
about multialgebras.

1.1 Preliminaries

1.1.1 Notation

We use the notation |C| to denote the objects of a category C. The same notation
is used to denote the carrier |A| of an algebra A. (This shouldn’t cause any
confusion.) Institutions are written with the script font I, categories with bold
Cat, and functors with Sans Serif Func.

Specifications form categories, hence we write Spec for ordinary specifica-
tions. Given an arbitrary specification SP we will sometimes write Σ(SP) to
denote its signature.

Sequences s1, . . . , sk will be often denoted by s. Application of functions
are then understood to not distribute over the elements, i.e., f(s) denotes the
term f(s1, . . . , sk). Occasionally, a sequence s1 . . . sk may be denoted by s∗ –
applications of functions are then understood to distribute over the elements,
i.e., f(s∗) denotes the sequence (f(s1), . . . , f(sk)). We will denote the disjoint
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union of sets A,B by A ]B.

1.1.2 Algebraic Signatures

Signatures for multialgebras are the same as classical algebraic signatures.

Definition 1.1.1 The category of signatures Sign has:
• signatures as objects: a signature Σ is a pair of sets (S, Ω) of symbols for

names of sorts and operations. Each operation symbol ω ∈ Ω is a (k+2)-
tuple: ω : s1 × · · · × sk → s, where s1, . . . , sk, s ∈ S and k ≥ 0. ω is the
name of the operation, s1 × . . . × sk it’s source and s its target. If k = 0
then an operation c :→ s is called a constant of sort s.

• signature morphisms as arrows: a signature morphism µ : Σ → Σ′ is a
pair µ = (µS , µΩ) of (total) functions: µS : S → S′, µΩ : Ω → Ω′, such
that: µΩ(ω : s1 × · · · × sn → s) = ω′ : µS(s1)× · · · × µS(sn) → µS(s)

• Identities are the identity signature morphisms and morphisms are com-
posed component-wise.

Example 1.1.2 Signature for the natural numbers:

sign Nat =
S : Nat
Ω : zero :→ Nat

succ : Nat → Nat

The natural numbers has one sort called Nat, a constant called zero and an
unary operation called succ.

Terms are defined in the standard way, and in the standard way we extend the
signature morphism µ : Σ → Σ′ to terms, we use the notation TΣ,X for the Σ
terms with X as variables.

Definition 1.1.3 Extension of a signature morphism µ to terms
µ̃ : TΣ,X → TΣ′,X′ is defined by:

• µ̃(xs) = xµ(s), for each variable xs ∈ Xs

• µ̃(c) = µ(c)
• µ̃(ω(t1, . . . , tn)) = µ(ω)(µ̃(t1), . . . , µ̃(tn))

In general variables can be renamed too, but (without loss of generality) we
simplify the presentation. We will write µ(t) instead of µ̃(t), for terms t ∈ TΣ,X .

Algebraic signatures have all finite co-limits

It is well known that the category of algebraic signatures is co-complete, see
e.g. [17]. We are merely restating here this standard fact. Limiting our atten-
tion to finite co-limits, it is sufficient to consider the existence of initial object,
co-products (sums) and co-equalizers (see e.g. [3]). Since multialgebras use al-
gebraic signatures all these results will also hold for multialgebraic signatures,
i.e Sign from 1.1.1.
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Fact 1.1.4 The empty signature Σ∅ is initial in Sign

Fact 1.1.5 The sum of two signatures; Σ + Σ′ is the disjoint union (of sorts
and operations), with the natural injections.

Fact 1.1.6 Given two signature morphisms µ, ν : Σ → Σ′, let ∼ be the least
equivalence on Σ′ induced by the relation with components:

• Sorts: ∼S′= {〈µ(s), ν(s)〉 : s ∈ Σ},
• Operations ∼Ω′= {〈µ(ω), ν(ω)〉 : ω ∈ Ω}
Then Σ′/∼ is a co-equalizer object, with canonical signature morphism ι :

Σ′ → Σ′/∼ , and we have that µ; ι = ν; ι, by construction.
Note that if σ : Σ′ → Z is a signature morphism such that µ; σ = ν; σ, then

the kernel of σ has to include ∼, so the signature morphism uσ : Σ′/∼ → Z,
defined by uσ([s′]∼) = σ(s′) and uσ([ω′]∼) = σ(ω′) is the unique factorization
arrow.

Fact 1.1.7 [17] The category Sign of algebraic signatures has all (finite) co-
limits.

1.1.3 Multialgebras

We will now summarize the relevant notions about multialgebras (for an overview,
see [55, 52]).

A multialgebra for a signature Σ is an algebra where operations may be
set-valued.

Definition 1.1.8 (Multialgebra) A multialgebra A for Σ is given by:

• a set sA, the carrier set, for each sort symbol s ∈ S

• a subset cA ∈ P(sA), for each constant, c :→ s

• an operation ωA : s1
A × · · · × sk

A → P(sA) for each symbol ω : s1 × · · · ×
sk → s ∈ Ω, where P(sA) denotes the power set of sA. Composition of
operations is defined by pointwise extension, i.e.,
fA(gA(x)) =

⋃
y∈gA(x) fA(y).

The carrier set of a multialgebra A is denoted by |A| and the carrier set of the
sort s is denoted by sA. One sometimes demands that constants and operations
are total [55, 53], i.e. never return empty set and take values only in P+(sA),
the nonempty subsets of sA, we will not make this assumption. An operation
is called partial if it returns the empty set for some arguments. An operation
returning more than one value for some arguments is called nondeterministic.
So an operation that is neither partial nor nondeterministic is a function. In
other words a function is a total deterministic operation.

We also generalize earlier works by allowing carrier sets to be empty. This
generalization is crucial when we relate multialgebras with other formalisms

9



in section 1.4, we will also use this in the completeness proof for the logic in
chapter 2.

Note that for a constant c ∈ Ω, cA denotes a (sub)set of the carrier sA. This
allows one to use constants as predicates (as will be done, in chapter 3).

Example 1.1.9 N and A below give two examples of Nat-multialgebras for the
signature from example 1.1.2:

NatN = N NatA = N
zeroN = 0 zeroA = pos the set of positive integers
succN (x) = x + 1, for x ∈ N succA(x) = N, for x ∈ N

The algebra N is the expected algebra of natural numbers, the algebra A illus-
trates that a nondeterministic constant may be a set and that the nondetermin-
istic operation succ could give any natural number.

As homomorphisms of multialgebras, we will use weak homomorphisms (see
[52] for alternative notions).

Definition 1.1.10 Given two multialgebras A and B, a (weak) homomorphism
h : A → B is a set of functions hs : sA → sB for each sort s ∈ S, such that:

1. hs(cA) ⊆ cB, for each constant c :→ s

2. hs(ωA(a1, . . . , an)) ⊆ ωB(hs1(a1), . . . , hsn(an)), for each operation ω :
s1 × · · · × sn → s ∈ Ω and for all ai ∈ sA

i .

Saying “homomorphism” we will mean weak homomorphism and by algebra will
we mean multialgebra, unless something else is stated.

Definition 1.1.11 The category of Σ-multialgebras, MAlgΣ, has Σ-multialgebras
as objects and homomorphisms as arrows. The identity arrows are the identity
homomorphisms and composition of arrows is the obvious composition of homo-
morphisms.

We will now give the formulae used for multialgebra specifications:

Definition 1.1.12 Given a signature Σ and a set of variables X we define the
well formed formulae as the least set FΣ,X , such that:

1. Atoms, if t, t′ ∈ TΣ,X , then:

• t
.= t′ ∈ FΣ,X (equality), t and t′ denote the same one-element set.

• t ≺ t′ ∈ FΣ,X (inclusion), the set interpreting t is included in the set
interpreting t′.

2. Composite formulae, if γ, φ ∈ FΣ,X , then:

• ¬γ ∈ FΣ,X , negation.

• γ ∨ φ ∈ FΣ,X , disjunction.
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• γ ∧ φ ∈ FΣ,X , conjunction.

The implication sign → is introduced in the usual way, i.e. γ → φ ≡ ¬γ ∨ φ.
Note that formulae in specifications will often be restricted to the form: a1 ∧
. . . ∧ an → b1 ∨ . . . ∨ bm, where either n > 0 or m > 0 and each ai and bj is
atomic. We will often drop the symbols ∧ and ∨ in specifications, i.e. we write
a1, . . . , an → b1, . . . , bm instead of a1 ∧ . . . ∧ an → b1 ∨ . . . ∨ bm.

Given a set of variables X, we define an assignment α by:

Definition 1.1.13 An assignment α to a multialgebra A is a function
α : X → |A| ] {∅} where α(xs) = ∅ ⇐⇒ sA = ∅.

So an assignment assigns an element of the carrier to each variable of a nonempty
sort. One could alternatively define assignment as a partial function, α : X →
|A|, with domain the variables over nonempty sorts, as done in [6]. Our formu-
lation gives immediately that any non-ground term with variables over empty
sort will be empty, since operations in multialgebra applied to empty set yield
empty set. Moreover our assignment definition ensures that x

.= x holds if and
only if the carrier is nonempty, using the alternative assignment definition x

.= x
is a tautology since there is no assignment to a empty sort. This the reason
that they need quantifiers to express the predicate x

.= x in [6].

Definition 1.1.14 An assignment α induces a unique interpretation α(t) in a
multialgebra A of any term t ∈ TΣ,X as follows:

• α(x) = {α(x)}
• α(c) = cA

• α(ω(t1, . . . , tn)) =
⋃

ai∈α(ti)
ωA(a1, . . . , an)

Keep in mind that variables are assigned not sets but individual elements of the
carrier. We will write α(t) instead of α(t).

A pair 〈A,α〉, where A is a Σ-algebra and α an assignment for A, will be
called a Σ-structure.

Satisfaction of formulae in a multialgebra is defined as follows:

Definition 1.1.15 Let A be a Σ algebra. The satisfaction relation |= is defined
by:

1. 〈A, α〉 |= t ≺ t′ ⇐⇒ α(t) ⊆ α(t′), where t, t′ ∈ TΣ,X

2. 〈A, α〉 |= t
.= t′ ⇐⇒ α(t) = e = α(t′) , where e is an element of the

carrier and t, t′ ∈ TΣ,X .

3. 〈A, α〉 |= ¬γ ⇐⇒ 〈A,α〉 6|= γ, where γ ∈ FΣ,X

4. 〈A, α〉 |= γ ∨ φ ⇐⇒ 〈A,α〉 |= γ or 〈A, α〉 |= φ, where γ, φ ∈ FΣ,X

5. 〈A, α〉 |= γ ∧ φ ⇐⇒ 〈A,α〉 |= γ and 〈A, α〉 |= φ, where γ, φ ∈ FΣ,X
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6. A |= γ ⇐⇒ 〈A,α〉 |= γ for all α, where γ ∈ FΣ,X

7. A |= Γ ⇐⇒ A |= γ for all γ ∈ Γ, and Γ ⊆ FΣ,X

Remark 1.1.16 According to point 2 in definition 1.1.15, an equality may hold
only if the carrier is non-empty. Given an algebra A, we have that:

• A |= ¬(xs
.= xs) ⇐⇒ sA = ∅

• A |= xs
.= xs ⇐⇒ sA 6= ∅

Also, if sA = ∅, we have for any terms ts, t
′
s:

• A |= ts ≺ t′s and

• A 6|= ¬(ts ≺ t′s)

We introduce logical symbols, used in chapter 2 to construct reasoning sys-
tems for multialgebras, abbreviating the formulae stating that a carrier is empty
or not.

Definition 1.1.17 We define the symbols Es ≡ ¬(xs
.= xs), for any xs ∈ Xs,

and ¬Es ≡ xs
.= xs, for any xs ∈ Xs. By remark 1.1.16, for any algebra A:

• A |= Es ⇐⇒ sA = ∅
• A |= ¬Es ⇐⇒ sA 6= ∅
Putting these definitions together, we show (in section 1.2) that the multi-

algebras form an institution MA. Before that we recall the standard concepts
of institution and some results which will be relevant for us in investigating the
institution of multialgebras.

1.1.4 Institutions

Definition 1.1.18 [18] An institution is a quadruple I = (Sign, Sen,Mod, |=),
where:

• Sign is a category of signatures.

• Sen : Sign → Set is a functor which associates a set of sentences to each
signature.

• Mod : Signop → Cat is a functor which associates a category of models,
whose morphisms are called Σ-morphisms, to each signature Σ

• |= is a satisfaction relation – for each signature Σ, a relation |=Σ⊆ |Mod(Σ)|×
Sen(Σ), such that the following satisfaction condition holds: for any M ′ ∈
Mod(Σ′), µ : Σ → Σ′, φ ∈ Sen(Σ)

M ′ |=Σ′ Sen(µ)(φ) iff Mod(µ)(M ′) |=Σ φ

12



The definition can be represented as the following diagram:

Σ

µ

²²

Mod(Σ) |=Σ Sen(Σ)

Sen(µ)

²²
Σ′ Mod(Σ′)

Mod(µ)

OO

|=Σ′ Sen(Σ′)

The following subsections review institution independent concepts and re-
sults which will be used in the later section.

Category of specifications

For Γ ⊆ Sen(Σ) and ϕ ∈ Sen(Σ) we write: Γ |=Σ ϕ iff ∀M ∈ Mod(Σ) : M |=Σ

Γ ⇒ M |=Σ ϕ. With this in mind we write Γ• for the semantical consequences
of Γ i.e. Γ• = {ϕ : Γ |= ϕ}

A theory (specification) in an institution is any pair Th = (Σ, Γ) where
Σ ∈ |Sign| and Γ ⊆ Sen(Σ). For a given institution I, we have the correspond-
ing category of theories Th with theories as objects and theory morphisms
µ : (Σ, Γ) → (Σ′,Γ′), where µ : Σ → Σ′, is a signature morphism such that:
Γ′ |=Σ′ Sen(µ)(Γ). The models for the theory Th = (Σ,Γ) is the full sub cate-
gory Mod|=(Σ,Γ) of Mod(Σ) where M ∈ Mod|=(Σ, Γ) iff M |=Σ ϕ,∀ϕ ∈ Γ, we
will write Mod(Σ,Γ) instead of Mod|=(Σ, Γ). The satisfaction condition gives
that Mod(µ)(Mod(Σ′, Γ′)) ⊆ Mod(Σ, Γ), for each theory morphism µ : (Σ,Γ) →
(Σ′, Γ′) ∈ Th. This means that the functor Mod can be extended to a func-
tor Mod|= : Thop → Cat. There is a canonic projection (forgetful) functor
Sign : Th → Sign and there is an embedding functor th : Sign → Th defined
by th(Σ) = (Σ, ∅). A theory morphism µ : (Σ,Γ) → (Σ′, Γ′) is called axiom
preserving if µ(Γ) ⊆ Γ′. This defines the sub category Th0 with theories as
objects and axiom preserving theory morphisms as morphisms.

Construction of co-limits of specifications

The following institution independent result ensures that the category of spec-
ifications has all co-limits if the signature category has. This result is used to
create co-limits of specifications by first creating the co-limit for the correspond-
ing signatures.

Theorem 1.1.19 [18] The functor Sign : Th → Sign reflects co-limits, in any
institution I.

As a particular case, the theorem means that: Given specifications X = (Σ,Φ),
X1 = (Σ1, Φ1), X2 = (Σ2, Φ2), and specification morphisms µ1 : X → X1 and
µ2 : X → X2. If the diagram to the left is a pushout of signatures than the
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diagram to the right is a pushout of specifications:

Σ

µ2

²²

µ1 // Σ1

µ′2
²²

X

µ2

²²

µ1 // X1

µ′2
²²

Signks

Σ2
µ′1

// Σ′ X2
µ′1

// X′

where X′ = (Σ′,Φ′) and Φ′ = µ′1(Φ2) ∪ µ′2(Φ1).

Continuity of Mod and amalgamation

Construction on specifications can be “carried over” to the respective construc-
tions on their model classes provided that the Mod functor has some desired
properties. Typical constructions on specifications are co-limits and the desired
property of Mod is that it transforms co-limits in Th to limits in Cat.

Definition 1.1.20 An institution I is

1. semi exact iff Sign has pushouts and Mod sends pushouts in Sign to
pullbacks in Cat,

2. exact iff Sign has finite co-limits and Mod sends finite co-limits in Sign
to limits in Cat.

Of course, any exact institution is also semi exact. The importance of this
notion is exemplified by the following lemma which indicates the construction
for instantiation of parameterized specifications.

Lemma 1.1.21 (Amalgamation Lemma).
In any semi exact institution I, for every pushout of signatures (on the left):

Σ

µ2

²²

µ1 // Σ1

µ′2
²²

Mod(Σ) Mod(Σ1)
|µ1oo

Mod +3

Σ2
µ′1

// Σ′ Mod(Σ2)

|µ2

OO

Mod(Σ′)

|µ′2

OO

|µ′1
oo

we have that: for any two models M1 ∈ Mod(Σ1) and M2 ∈ Mod(Σ2) satisfying
M1|µ1 = M2|µ2 , there exists a unique model M ′ ∈ Mod(Σ′), such that M ′|µ′1 =
M2 and M ′|µ′2 = M1.

The corresponding amalgamation property holds also for homomorphisms. In
fact, the amalgamation lemma tells that the model class of a pushout Σ′ of
signatures along µ1, µ2 is a pullback (in Cat) of the respective morphisms |µ1 ,
|µ2 . The model M ′ is the amalgamated union of M1 and M2.

By theorem 1.1.19, the amalgamation lemma holds then also for pushouts
of specifications, since these are constructed from pushouts of signatures.
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1.1.5 Relations among institutions

To relate different institutions we will use map of institutions [36]. To define
map of institutions we need the following definition:

Definition 1.1.22 Given a functor Φ : Th0 → Th′0 and a natural transforma-
tion α : Sen ⇒ Sen′ ◦ Φ, Φ is α-sensible iff:

• There is a functor Φ¦ : Sign → Sign′ such that sign′ ◦ Φ = Φ¦ ◦ sign

• (Γ′)• = (∅′Σ ∪ αΣ(Γ))•

Where we denote the set of axioms induced by Φ(Σ, ∅) by ∅′Σ.

Definition 1.1.23 Given two institutions I = (Sign,Sen, Mod, |=) and I ′ =
(Sign′, Sen′, Mod′, |=′), a map of institutions is a triple (Φ, α, β) : I → I ′ where:

• α : Sen =⇒ Sen′ ◦ Φ is a natural transformation.

• Φ : Th0 → Th′0 is an α-sensible functor

• a natural transformation β : Mod′ ◦ Φop =⇒ Mod

such that for each φ ∈ Sen(Σ) and M ′ ∈ Mod′(Φ(Σ, ∅)) the satisfaction condi-
tion:

M ′ |=sign′(Φ(Σ,∅)) αΣ(φ) iff β(Σ,∅)(M ′) |=Σ φ

The condition from the above definition corresponds to the following commuting
diagrams:

(Σ,Γ)op

Mod

²²

Φop
// (Σ′,Γ′)op

Mod′

²²
Cat Cat

β
ks

(Σ, Γ)

Sen

²²

Φ // (Σ′,Γ′)

Sen′

²²
Set

α +3 Set

Definition 1.1.24 An embedding of institutions [37] is a map of institutions
(Φ, α, β) : I → I ′, where the functor βT : Mod′(Φ(T )) → Mod(T ) is an equiva-
lence of categories for each T ∈ ThI . We will use the notation (Φ, α, β) : I ↪→
I ′ to denote an embedding of institutions.

An α-extension to theories of a functor Φ : Sign → Th′0 is a functor Φ : Th0 →
Th′0 mapping the theory Th = (Σ,Γ) to the theory Φ(Th) with signature Φ(Σ)
and with axioms Φ(Σ) ∪ αΣ(Γ), for a given natural transformation α : Sen →
Sen′ ◦ Φ.

Definition 1.1.25 A map of institutions (Φ, α, β) is:

• (α) simple iff Φ is a α-extension to theories of a functor F : Sign → Th′0,
i.e. Φ maps axioms to axioms.
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• (α) plain iff Φ is a α-extension to theories of a functor F : Sign → Th′0
that maps Σ to (Σ′, ∅), i.e. Φ maps signatures to signatures.

Definition 1.1.26 A subinstitution [36] is a map of institutions (Φ, α, β) : I →
I ′ that is plain, with Φ faithful and injective on objects, α injective and with β
a natural isomorphism.

We will use institutioin transformation [35] as a formalisiation of model class
extension.

Definition 1.1.27 Given institutions I = (Sign, Sen,Mod, |=) and
I ′ = (Sign′,Sen′, Mod′, |=′), an institution transformation is a triple (Φ, α, β) :
I → I ′ where:

• α : Sen =⇒ Sen′ ◦ Φ is a natural transformation.

• Φ : Th0 → Th′0 is an α plain, α-sensible functor

• a natural transformation β : Mod =⇒ Mod′ ◦ Φop

such that for each φ ∈ Sen(Σ) and M ∈ Mod(Σ, ∅) the satisfaction condition:

β(Σ,∅)(M) |=sign′(Φ(Σ,∅)) αΣ(φ) iff M |=Σ φ

1.2 Institution of multialgebras, MA
We now define and prove that the multialgebras form an institution MA and
that this institution is exact (subsection 1.2.1).

First we apply the standard concept of reduct to multialgebras.

Definition 1.2.1 Let µ : Σ → Σ′ be a signature morphism.

• Reduct of an algebra:

– The µ-reduct of a Σ′-multialgebra A′, is the Σ-multialgebra A′|µ de-
fined by:

sA′|µ = µ(s)A′ , for all s ∈ S,
ωA′|µ = µ(ω)A′ , for all ω ∈ Ω,

• Reduct of assignment:

– For a set of variables X, A′ a Σ′ algebra and α′ : µ(X) → A′ an
assignment for A′, the µ-reduct of α′, α′|µ : X → A′|µ is defined by:

(α′|µ)s(x) = α′µ(s)(µ(x))

• Reduct of a homomorphism:
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– The µ reduct of a weak Σ′ homomorphism h′ : A′ → B′, is the weak
Σ homomorphism h′|µ : A′|µ → B′|µ defined by:

(h′|µ)s = h′µ(s)

If one allows possible renaming of variables X along the signature morphisms
µ, the definition would be entirely analogous – we omit this technicality.

Fact 1.2.2 The reduct of a multialgebra is a multialgebra, the reduct of an
assignment is an assignment to the corresponding reduct algebra, the reduct
of a weak homomorphism is a weak homomorphism between the reduct of two
algebras.

The proof of this fact is analogous to the classical case.
We are now ready to define the model functor ModMA : Signop → Cat

which maps each signature Σ ∈ |Sign| to the category of all Σ-multialgebras
MAlgΣ.

Definition 1.2.3 The functor ModMA : Signop → Cat is defined by:
• objects: ModMA(Σ) = MAlgΣ

• arrows: ModMA(µ : Σ → Σ′) = ModMAµ : MAlgΣ′ → MAlgΣ,
where the functor ModMAµ is given by:

1. ModMAµ(A′) = A′|µ
2. ModMAµ(h′) = h′|µ

Lemma 1.2.4 (Reduct theorem) If µ : Σ → Σ′ is a signature morphism, X a
set of variables, t a Σ term, A′ a Σ′ algebra and α′ : µ(X) → A′ an assignment
for A′ then we have that:

α′|µ(t)A′|µ = α′(µ(t))A′

Proof. The proof goes by induction on the complexity of the term t.

1. t = x ∈ Xs.

α′|µ(x)A′|µ

= { assignment}
(α′|µ)s(x)

= { def. α′|µ}
(α′µ(s))(µ(x))

= { assignment}
α′(µ(x))A′

2. t = c, (c :→ s)
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α′|µ(c)A′|µ

= { no assignment for constants}
cA′|µ

= { def. A′|µ}
µ(c)A′

= { no assignment, for constants}
α′(µ(c))A′

3. t = ω(t1, . . . , tn), (ω : s1 × · · · × sn → s)

α′|µ(ω(t1, . . . , tn)A′|µ

= { assignment on function}⋃
ai∈α′|µ(ti)

ωA′|µ(a1, . . . , an)
= { ind. hyp. and def reduct}⋃

ai∈α′(µ(ti))
µ(ω)A′(a1, . . . , an)

= { assignment on function}
α′(µ(ω)(µ(t1), . . . , µ(tn))A′

¤
The following lemma leads immediately to the satisfaction condition.

Lemma 1.2.5 For any signature morphism µ : Σ → Σ′ and Σ′ algebra A′,
given assignment

• α : X → A′|µ, define α′ : µ(X) → A′ by: α′µ(s)(µ(x)) = αs(x), and

• α′ : µ(X) → A′, define α : X → A′|µ by: αs(x) = α′µ(s)(µ(x)), i.e.
α = α′|µ

Then for any Σ-formula ϕ and for any Σ′ multialgebra A′ we have that:

(A′|µ) |=α ϕ ⇐⇒ A′ |=α′ µ(ϕ)

Proof. By induction on the formulas:

1. For atomic formulae t1
.= t2 and t1 ≺ t2, the reduct theorem gives

α′|µ(ti)A′|µ = α′(µ(ti))A′ , which yields the result.

2. Composite formulae:

• ϕ = ¬γ : γ ∈ FΣ,X

(A′|µ) |=α ¬γ

⇐⇒{ satisfaction relation}
(A′|µ) 6|=α γ

⇐⇒{ IH}
A′ 6|=α′ µ(γ)

⇐⇒{ satisfaction relation}
A′ |=α′ µ(¬γ)
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• ϕ = γ ∨ φ : γ, φ ∈ FΣ,X

(A′|µ) |=α γ ∨ φ

⇐⇒{ satisfaction relation}
(A′|µ) |=α γ or (A′|µ) |=α φ

⇐⇒{ IH}
A′ |=α′ µ(γ) or A′ |=α′ µ(φ)

⇐⇒{ satisfaction relation}
A′ |=α′ µ(γ ∨ φ)

• ϕ = γ ∧ φ : γ, φ ∈ FΣ,X

(A′|µ) |=α γ ∧ φ

⇐⇒{ satisfaction relation}
(A′|µ) |=α γ and (A′|µ) |=α φ

⇐⇒{ IH}
A′ |=α′ µ(γ) and A′ |=α′ µ(φ)

⇐⇒{ satisfaction relation}
A′ |=α′ µ(γ ∧ φ)

¤

Lemma 1.2.6 (Satisfaction condition) The satisfaction condition is fulfilled for
multialgebras, i.e. for any signature morphism µ : Σ → Σ′, for any Σ-formula
ϕ and for any Σ′ multialgebra A′ we have that:

(A′|µ) |=Σ ϕ ⇐⇒ A′ |=Σ′ µ(ϕ)

Proof. Let ϕ be an arbitrary formula.
“⇐”: let α : X → A′|µ be arbitrary and let α′ be as in lemma 1.2.5. Then,
by assumption, A′ |=Σ′ µ(ϕ) and, in particular, A′ |=α′ µ(ϕ). By lemma 1.2.5,
(A′|µ) |=α ϕ. Since α was arbitrary, we obtain (A′|µ) |=Σ ϕ.
“⇒”: let α′ : µ(X) → A′ be arbitrary, and let α be as in lemma 1.2.5. By
assumption, (A′|µ) |=Σ ϕ, in particular, (A′|µ) |=α ϕ. By lemma 1.2.5, A′ |=α′

µ(ϕ). Since α′ was arbitrary, we obtain A′ |=Σ′ µ(ϕ). ¤
Finally, the functor assigning to each signature the set of sentences is defined

as in definition 1.1.12:

Definition 1.2.7 The sentences functor SenMA : Sign → Set is given by:

• objects: SenMA(Σ) = the set of all Σ formulae (def. 1.1.12)

• SenMA(µ : Σ → Σ′) = SenMAµ : SenMA → SenMA(Σ′) defined by:

1. SenMAµ(t .= t′) = µ̃(t) .= µ̃(t′)

2. SenMAµ(t ≺ t′) = µ̃(t) ≺ µ̃(t′)
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3. SenMAµ(¬γ) = ¬(µ̃(γ))

4. SenMAµ(γ ∨ φ) = µ̃(γ) ∨ µ̃(φ)

5. SenMAµ(γ ∧ φ) = µ̃(γ) ∧ µ̃(φ)

With these definitions, lemma 1.2.6 yields the following:

Fact 1.2.8 The multialgebras form the institution MA with:

• the category Sign as signatures (def. 1.1.1),

• the model functor ModMA (def. 1.2.3),

• the sentence functor SenMA (def. 1.2.7),

• |= from def. 1.1.15 as the satisfaction relation.

1.2.1 MA is an exact institution

As recalled in section 1.1.2 the category of algebraic signatures is co-complete.
Using the constructions of the required co-limits of algebraic signatures from
1.1.2, we now show that MA is an exact institution – that the model functor
for multialgebras ModMA : Signop → Cat is continuous, i.e. it maps finite
co-limits in Sign into limits in Cat. (Note that this is different from showing
that the category ModMA(Σ) has all limits (resp. co-limits), which is claimed
in [51].)

Lemma 1.2.9 The model of the empty signature is the unit category, #, that
is final in Cat.

Proof. The model of the empty signature, Σ∅ is an algebra with no carrier
(and no operations), i.e. ModMA(Σ∅) = #. There is only one function (homo-
morphism) h : # → # – the identity homomorphism. This is obviously a final
object in Cat. ¤

Lemma 1.2.10 Mod sends sums to products:

Σ

ιΣ

¾¾7
77

77
77

7 Σ′

ιΣ′
¤¤¨̈

¨̈
¨̈

¨̈
ModMA(Σ) ModMA(Σ′)

Mod +3

Σ + Σ′ ModMA(Σ + Σ′)

|ιΣ

ffLLLLLLLLLLLL |ιΣ′

88qqqqqqqqqqqq

Proof. Since the reduct |µ is a functor for any signature morphism µ the
diagram to the right is a cone in Cat – we have to show that it is a product
cone.
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Suppose that (C,F : C → ModMA(Σ), G : C → ModMA(Σ′)) is a cone in
Cat.

C

F

££

G

ÀÀ

!u(F,G)

²²Â
Â
Â

ModMA(Σ + Σ′)

|ιΣvvmmmmmmmmmmmmm

|ιΣ′ ((QQQQQQQQQQQQQ

ModMA(Σ) ModMA(Σ′)

Given two multialgebras A ∈ ModMA(Σ) and A′ ∈ ModMA(Σ′), we get an
algebra A⊕A′ ∈ ModMA(Σ+Σ′) by taking the Σ-part from A and the Σ′-part
from A′ – it is defined as follows: for any sort symbol s ∈ Σ : sA⊕A′ = sA (and
s ∈ Σ′ : sA⊕A′ = sA′), and for any operation symbol f ∈ Σ : fA⊕A′ = fA (and
f ∈ Σ′ : fA⊕A′ = fA′). This works because Σ + Σ′ is disjoint union.

Likewise, given a Σ-homomorphism h : A → B and a Σ′-homomorphism
h′ : A′ → B′, the Σ ⊕ Σ′-homomorphism h ⊕ h′ : A ⊕ A′ → B ⊕ B′, is defined
by (h⊕ h′)s = hs if s ∈ Σ, and h′s otherwise (when s ∈ Σ′). Then ⊕ yields the
unique objects/morphisms satisfying:

(A⊕A′)|ιΣ = A and (A⊕A′)|ιΣ′ = A′

(h⊕ h′)|ιΣ = h and (h⊕ h′)|ιΣ′ = h′ (1.1)

We define the functor u(F,C) : C → ModMA(Σ+Σ′) by u(F,C)(C) = F(C)⊕G(C)
(and analogously for morphisms in C). It is a factorization, i.e., u(F,G); |ιΣ = F,
similarly for |ιΣ′ and G.

u(F,G) is unique since each pair of algebras (resp. homomorphisms) A ∈
ModMA(Σ) and A′ ∈ ModMA(Σ′), has a unique pre-image (A⊕A′) ∈ ModMA(Σ+
Σ′), satisfying (1.1).

Thus the image of a co-product diagram from Sign is a product diagram in
Cat. ¤

Lemma 1.2.11 Mod sends co-equalizers to equalizers.

Proof. Let µ, ν : Σ → Σ′ be two morphisms in Sign and Σ′/∼ , ι : Σ′ → Σ′/∼
their co-equalizer. We have to show that ModMA(Σ′/∼), |ι is an equalizer for
|µ and |ν , in Cat. So assume that for any σ′′ such that µ; σ′′ = ν;σ′′, there is
a unique uσ′′ with σ′′ = ι;uσ′′ :

Σ
ν

33
µ

++
Σ′

ι //

σ′′
&&NNNNNNNNNNNNN Σ′/∼

uσ′′

²²Â
Â
Â

Σ′′
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Let C and F : C → ModMA(Σ′) be arbitrary in Cat such that F; |µ = F; |ν .
We have to show the existence of a unique uF : C → ModMA(Σ′/∼) satisfying
uF; |ι = F, i.e. the following diagram commutes:

C
F

))TTTTTTTTTTTTTTTTT

!uF

²²Â
Â
Â

ModMA(Σ′/∼) |ι
// ModMA(Σ′)

|ν
11

|µ --
ModMA(Σ)

1. First, we show that |ι; |µ = |ι; |ν , i.e. ModMA(Σ′/∼) is a cone.

Let A′′ ∈ ModMA(Σ′/∼) be arbitrary and let s be any sort symbol in
Σ. We have s(A′′|ι)|µ = µ(s)(A

′′|ι) = ι(µ(s))A′′ , and similarly s(A′′|ι)|ν =
ν(s)(A

′′|ι) = ι(ν(s))A′′ . But since ι is equalizing µ and ν, we have ι(µ(s)) =
ι(ν(s)), so that s(A′′|ι)|µ = ι(µ(s))A′′ = ι(ν(s))A′′ = s(A′′|ι)|ν . In the same
way, we show the equality ω(A′′|ι)|µ = ι(µ(ω))A′′ = ι(ν(ω))A′′ = ω(A′′|ι)|ν
for any operation symbol ω ∈ Σ.

2. We now show that ModMA(Σ′/∼) is a limit cone.

(a) Given an A′ ∈ ModMA(Σ′) with A′|µ = A′|ν we construct an A− ∈
ModMA(Σ′/∼) satisfying A−|ι = A′.
Since ι is surjective, any symbol x′′ ∈ Σ′/∼ is in its image, i.e.,
x′′ = ι(x′) for some x′ ∈ Σ′. We then let ι(x′)A− = x′A

′
. This is

in fact well defined algebra. For suppose that there are two different
symbols s′ 6= t′ ∈ Σ′ such that ι(s′) = ι(t′) = x′′. Then, from the
construction of ι and Σ′/∼ , we know that there exists an x ∈ Σ such
that s′ = µ(x) and t′ = ν(x). But then, since A′|µ = A′|ν , we obtain
the middle of the following equalities: s′A

′
= xA′|µ = xA′|ν = t′A

′
.

Thus ι(s′) = ι(t′) ⇒ s′A
′
= t′A

′
, and A− is well defined.

Obviously, A−|ι = A′, since for each symbol x′ ∈ Σ′ we have x′A
−|ι =

ι(x′)A− = x′A
′
.

(b) In fact A− is the unique Σ′/∼ -algebra satisfying A−|ι = A′.
For if B′′ ∈ ModMA(Σ′/∼) is such that B′′|ι = A′ then we must
have for any symbol ι(x′) = x′′ ∈ Σ′/∼ : x′′B

′′
= ι(x′)B′′ = x′B

′′|ι =
x′A

′
= x′A

−|ι = ι(x′)A− = x′′A
−
, i.e., B′′ = A−.

(c) We extend the definition of A− from 2a. to homomorphisms between
the respective objects. That is, for a (homo)morphism h′ : A′ → B′ in
ModMA(Σ′) where both A′|µ = A′|ν and B′|µ = B′|ν , h− : A− → B−

is a (homo)morphism in ModMA(Σ′/∼) defined by h−ι(s′)(a) = h′s′(a)

for all sort symbols ι(s′) = s′′ ∈ Σ′/∼ and a ∈ s′A
′
. Obviously, this

is a unique h− such that h|ι = h′.

(d) Now, given an F : C → ModMA(Σ′) satisfying F; |µ = F; |ν , we define
uF : C → ModMA(Σ′/∼):
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• for any object C ∈ C : uF(C) = (F(C))− (as in point 2a.)
• for any morphism h : C → D ∈ C : uF(h) = (F(h))− (as in point

2c.)

It is trivial to verify that uF is a functor and, indeed, one that makes
uF; |ι = F. By uniqueness of A− and h−, this is also a unique functor
satisfying this equality.

¤
Summing up we get the following result.

Proposition 1.2.12 ModMA is a finitely continuous functor.

Proof. We have that ModMA is finitely continous on signatures by lemma 1.2.9,
lemma 1.2.10 and lemma 1.2.11. So the result follows by teorem 1.1.19. ¤

Corollary 1.2.13 MA is an exact institution.

Corollary 1.2.14 The amalgamation lemma holds for MA.

1.3 Initial models for MA specifications

In general, MA specifications do not possess initial models [22, 55]. The most
powerful logic that admits initial models is Horn logic, [34], so the first restriction
would be to consider a sub-institution of multialgebras with Horn clauses over
atoms, MAH. However, as showed in [22], even atomic specifications in MA
don’t always have initial models.

Using essentially the same construction as in [22], we will state sufficient
semantic condition for the existence of initial models – also for specifications
using disjunctive axioms (subsection 1.3.1). Then we will review Hussmann’s
construction in our framework obtaining conditions ensuring the existence of
initial models for atomic specifications (subsection 1.3.2).

The results of this section are of relatively limited value and the problem of
identifying a satisfactory general sub-institution ofMA admitting initial models
is still open.

1.3.1 The general construction of initial structure

In [22] Hussmann gives sufficient conditions to ensure the existence of initial
models when multialgebras are restricted to non empty interpretation of opera-
tions and with only atomic formula as axioms. The carrier of the initial model
contains all and only deterministic ground terms. We first review this construc-
tion (some lemmata and proofs are different from [22]) which leads to a general
result showing that it yields an initial model whenever it actually belongs to the
model class (proposition 1.3.12).
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Definition 1.3.1 [22] For a specification SP = (Σ, Γ), the (deterministic based)
term structure T (SP ) is defined by:

• sT (SP ) = {ts : ts ∈ TΣ ∧ SP |= ts
.= ts}, for s ∈ S.

• for f : s → s, the operation fT (SP ) : sT (SP ) → P(sT (SP )) is defined by

fT (SP )(t) = {t′s : t′s ∈ TΣ ∧ SP |= t′s
.= t′s ∧ SP |= t′s ≺ f(t)},

The first thing is to ensure that this construction yields a multialgebra. Two
conditions on specifications from [22] to this goal are: DET-completeness and
DET-additivity. The former requires that for every ground term t, there exists
at least one deterministic term included in t. Since we are allowing empty set
interpretation of terms, this condition is not needed in our case. The second
condition is as follows:

Definition 1.3.2 [22] A specification SP = (Σ,Γ) is DET-additive iff:

∀f : s → s ∈ Ω : ∀t, t ∈ TΣ : SP |= t ≺ f(t) ∧ SP |= t
.= t ⇒

∃t′ ∈ TΣ : SP |= t ≺ f(t′) ∧ SP |= t′ ≺ t ∧ SP |= t′ .= t′

The condition says: if a deterministic value t is produced by an application
of an operation f to some terms t, then this value t must be produced by
an application of f to some deterministic elements t′ of t. This condition is
necessary to be able to define the operations on term structure. It allows to
construct the result set of an application f(t) as the union of the deterministic
terms returned by the applications of f to all deterministic terms (elements) t′

included in t.

Fact 1.3.3 [22] If SP is a DET-additive specification then T (SP ) is a multi-
algebra.

We now begin to turn T (SP ) into a model for SP .

Lemma 1.3.4 There is a unique homomorphism h : T (SP ) → A for every
A ∈ Mod(SP )

Proof. Define h by h(t) = tA, for all t ∈ |T (SP )| (remember that SP |= t
.= t).

• h is a homomorphism:

h(fT (SP )(x))
= { x = t for some t ∈ TΣ, and SP |= t

.= t}
h(fT (SP )(t))

= { def. T (SP )}
h({t′ : t′ ∈ TΣ ∧ SP |= t′ .= t′ ∧ SP |= t′ ≺ f(t)})

= { def. h}
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{t′A : t′ ∈ TΣ ∧ SP |= t′ .= t′ ∧ SP |= t′ ≺ f(t)}
⊆ { t′A ∈ fA(tA)}

fA(tA)
= { def. h and SP |= t

.= t}
fA(h(t))

• h is unique:
Suppose h′ : T (SP ) → A is another homomorphisms with h′ 6= h. Then:

h′(t) ⊆ tA

We show this by induction on the term structure of t:

1. t = c, c constant:

h′(t)
= { assumption}

h′(c)
⊆ { h′ homomorphism}

cA

2. t = f(t′):

h′(t)
= { assumption}

h′(fT (SP )(t′))
⊆ { h′ homomorphism}

fA(h′(t′∗))
⊆ { ind. hyp.}

fA(t′A)
= { def. interpretation}

(f(t′))A

= { assumption}
tA

For the elements t ∈ |T (SP )| we have that SP |= t
.= t, i.e. |tA| = 1 and from

the above we get:
h′(t) = tA = h(t), ∀t ∈ |T (SP )|

¤

Definition 1.3.5 [51] The kernel of a homomorphism h : A → B is the equiv-
alence relation ∼h⊂ |A| × |A| such that a ∼h b iff h(a) = h(b)
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Definition 1.3.6 [51] The quotient of a multialgebra A wrt. an equivalence
relation ∼ is the multialgebra A/∼ where:

• |A/∼| = {[a]∼ : a ∈ |A|}
• fA/∼([x]) = {[a] : a ∈ fA(x′), x′ ∈ [x]}

Fact 1.3.7 [51] Given an equivalence relation ∼ on a multialgebra A then the
mapping h∼ : A → A/∼, defined by h∼(a) = [a]∼ is a homomorphism (in fact,
an epimorphism).

Fact 1.3.8 [51] Given a homomorphism h : A → B, between two Σ multial-
gebras A,B, there exist homomorphisms h1 : A → A/∼h

and h2 : A/∼h
→ B,

defined by h1(a) = [a]∼h
and h2([a]∼h

) = h(a) such that h1 is epi, h2 is mono
and h = h1; h2.

Fact 1.3.9 [51] If ∼1 ⊆ ∼2 for two equivalences ∼1,∼2 on A then there is a
(epi) homomorphism h : A/∼1 → A/∼2 .

Definition 1.3.10 Let ∼= be the equivalence relation defined on T (SP ) by ∼= =⋂
A∼hA : where hA is the unique homomorphism hA : T (SP ) → A for each

A ∈ Mod(SP ).

Lemma 1.3.11 There is a unique homomorphism φA : T (SP )/∼= → A, for
each A ∈ Mod(SP ).

Proof. We have the following picture:

T (SP )
!hA

zzuuuuuuuuuu
ηA

²²

η

&&NNNNNNNNNNN

A T (SP )/∼hAh′A

oo T (SP )/∼=h∼
oo

There is a unique homomorphism hA : T (SP ) → A, for each A ∈ Mod(SP ),
by lemma 1.3.4. Fact 1.3.8 ensures the existence of a monomorphism h′A :
T (SP )/∼hA

→ A. By fact 1.3.9 there is, for each A ∈ Mod(SP ), an epimorphism
h∼ : T (SP )/∼= → T (SP )/∼hA

, since ∼hA
⊇ ∼=. And since composition of

homomorphisms is a homomorphism, we get a homomorphism φA : T (SP )/∼= →
A, defined by φA = h∼; h′A. By fact 1.3.7 there is an epimorphism η : T (SP ) →
T (SP )/∼=. This gives that φA is unique since hA is unique and η is epi. ¤
Lemma 1.3.11 gives us immediately the following proposition:

Proposition 1.3.12 If T (SP )/∼= ∈ Mod(SP ) then T (SP )/∼= is an initial model
for SP .

Of course, checking whether T (SP )/∼= ∈ Mod(SP ) may be a hard task. Nev-
ertheless, the above proposition gives us a general way of finding initial models
irrespectively of the form of specification. For instance, we may construct an
initial model for the following specification of binary nondeterministic choice t
which uses disjunction.
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Example 1.3.13 Initial model for nondeterministic binary choice.

spec NDChoiceMA =
S : s
Ω : a :→ s

b :→ s
c :→ s
d :→ s
t : s× s → s

axioms : 1. a
.= a

2. b
.= b

3. c
.= c

4. d
.= d

5. x ≺ x t y
6. x t y ≺ y t x
7. z ≺ x t y → z ≺ x, z ≺ y

T (SP )/∼= is initial for the above specification, since it is a multialgebra and
satisfies all axioms, especially axiom 7.

sT (SP )/∼= = {[a], [b], [c], [d]}, where [a] = a, a t a, . . .
aT (SP )/∼= = [a]
bT (SP )/∼= = [b]
cT (SP )/∼= = [c]
dT (SP )/∼= = [d]
(x t y)T (SP )/∼= = {x, y} where x, y ∈ sT (SP )/∼=

T (SP )/∼= has the following property of standard initial models of deterministic
specifications.

Proposition 1.3.14 If T (SP )/∼= ∈ Mod(SP ) then for any ground terms s, t ∈
TΣ :

T (SP )/∼= |= s
.= t ⇐⇒ SP |= s

.= t

Proof. ⇐ is trivial by the assumption. So assume that T (SP )/∼= |= s
.= t.

This means, in particular, that [s], [t] ∈ |T (SP )/∼=|, i.e., that SP |= s
.= s

and SP |= t
.= t. For any A ∈ Mod(SP ), we have the unique homomorphism

φA : T (SP )/∼= → A by lemma 1.3.11. Thus A |= s
.= t.

¤
The above property does not hold for ≺, i.e. it’s possible that T (SP )/∼= |= s ≺ t
but SP 6|= s ≺ t
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Example 1.3.15 Consider the following specification:

spec SP =
S : s
Ω : c :→ s

d :→ s
axioms : 1. c

.= c
2. c ≺ d

Then sT (SP )/∼= = c = cT (SP )/∼= = dT (SP )/∼= , hence T (SP )/∼= |= d ≺ c, but
SP 6|= d ≺ c. Consider A ∈ Mod(SP ) given by: sA = {c, d} = dA and

cA = c.

1.3.2 Initial models for atomic specifications

We show that for an atomic DET-additive specification SP (with only atomic
formulae as axioms), T (SP )/∼= ∈ Mod(SP ), and hence that it is an initial model.
We will end up this section with a counter example demonstrating that the
conditions for atomic specifications are not sufficient for ensuring the existence
of initial models for specifications involving also conditional axioms.

Lemma 1.3.16 If SP |= s
.= t, for s, t ∈ TΣ,X , then we have that:

T (SP )/∼= |= s
.= t.

Proof. Note that for an A ∈ Mod(SP ), each assignment α : X → T (SP )/∼=
induces a unique assignment α′ : X → A, defined by α′ = α; φA, where φA is
the unique homomorphism φA : T (SP )/∼= → A.

If SP |= s
.= t, than for any given assignment α : X → T (SP )/∼= we have

that φA(α(s)) = φA(α(t)) for all A ∈ Mod(SP ), where φA is as above. But also
|φA(α(s))| = 1 = |φA(α(t))| i.e α(s) ∼= α(t), by definition 1.3.10. Thus, since α
was arbitrary, T (SP )/∼= |= s

.= t ¤

Lemma 1.3.17 [22] For an assignment α : X → T (SP )/∼= and a term t ∈ TΣ,X

we have that: α(t)T (SP )/∼= = {[t′] : t′ ∈ TΣ ∧ SP |= t′ .= t′ ∧ SP |= t′ ≺ α(t)}

Proof. We have three cases to prove.

1. t = xs, xs ∈ X: Two cases:

(a) If sT (SP )/∼= = ∅ then:

α(t)T (SP )/∼=

= { assumption}
α(x)T (SP )/∼=

= { def.assignment for empty carrier}
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∅
= { def. T (SP )/∼=}
{[t′] : t′ ∈ TΣ ∧ SP |= t′ .= t′ ∧ SP |= t′ ≺ α(x)}

(b) Else:

α(t)T (SP )/∼=

= { assumption}
α(x)T (SP )/∼=

= { def. T (SP )/∼=, lemma 1.3.16 and SP |= α(x) .= α(x) }
{[t′] : t′ ∈ TΣ ∧ SP |= t′ .= t′ ∧ SP |= t′ ≺ α(x)}

2. t = c, c constant:

α(t)T (SP )/∼=

= { assumption}
α(c)T (SP )/∼=

= { no assignment for constants}
cT (SP )/∼=

= { def. T (SP )/∼=}
{[t′] : t′ ∈ TΣ ∧ SP |= t′ .= t′ ∧ SP |= t′ ≺ c}

= { no assignment for constants}
{[t′] : t′ ∈ TΣ ∧ SP |= t′ .= t′ ∧ SP |= t′ ≺ α(c)}

3. t = f(t1, . . . , tn):

α(t)T (SP )/∼=

= { assumption}
α(f(t1, . . . , tn))T (SP )/∼=

= { assignment}⋃
ai∈α(ti)

f(a1, . . . , an)T (SP )/∼=

= { def. T (SP )/∼=}
{[t′] : t′ ∈ TΣ ∧ SP |= t′ .= t′ ∧ SP |= t′ ≺ ⋃

ai∈α(ti)
f(a1, . . . , an)T (SP )/∼=}

= { assignment}
{[t′] : t′ ∈ TΣ ∧ SP |= t′ .= t′ ∧ SP |= t′ ≺ α(f(t1, . . . , tn))}

¤

Lemma 1.3.18 If s, t ∈ TΣ,X and SP |= s ≺ t then: T (SP )/∼= |= s ≺ t:

Proof. If SP |= s ≺ t and α an assignment we have that:
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α(s)T (SP )/∼=

= { lemma 1.3.17}
{[t′] : t′ ∈ TΣ ∧ SP |= t′ .= t′ ∧ SP |= t′ ≺ α(s)}

⊆ { SP |= s ≺ t}
{[t′] : t′ ∈ TΣ ∧ SP |= t′ .= t′ ∧ SP |= t′ ≺ α(t)}

= { lemma 1.3.17}
α(t)T (SP )/∼=

¤

Combining lemma 1.3.11, lemma 1.3.16 and lemma 1.3.18 we get the suffi-
cient condition for the existence of initial models for atomic specifications:

Proposition 1.3.19 [22] If SP is an atomic DET-additive specification then
T (SP )/∼= is an initial model for SP .

One might hope that the conditions of proposition 1.3.19 will carry over to
conditional axioms, but the following example shows that this it not the case.

Example 1.3.20 Counter example: DET-additivity does not ensure the exis-
tence of initial models for Horn formulae.

spec CounterExMAH =
S : s
Ω : c :→ s

d :→ s
e :→ s

axioms : 1. c
.= c

2. d
.= d

3. c ≺ e
4. c

.= e → d
.= e

The following multialgebra A satisfies the specification:

sA = {c, d, j}
cA = c
dA = d
eA = {c, j}

But T (SP )/∼= will not satisfy the specification. It looks as follows:

sT (SP )/∼= = {[c], [d]}, where [c] = {c, e} and [d] = {d}
cT (SP )/∼= = [c]
dT (SP )/∼= = [d]
eT (SP )/∼= = [c]

So T (SP )/∼= does not satisfy axiom 4. On the other hand, if we take the least
congruence ∼=′ on T (SP )/∼= that satisfies the axioms, we would obtain [c] = [d],
but then we have no homomorphism to A – T (SP )/∼=′ satisfies now the equation
c

.= e that is not satisfied by A.
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At the moment, we do not have general syntactic conditions ensuring the ex-
istence of initial models for conditional specifications and we have to live with
the proposition 1.3.12 as the strongest general result.

1.4 Other specification frameworks in multial-
gebraic setting

Multialgebras offer a highly abstract specification formalism. The price of this
abstraction is the loss of structure, some closure properties, in particular, such
as the existence of initial models. In the following, we will restrict the institution
MA in various ways to relate it to other specification frameworks and, on the
other hand, to ensure the existence of initial models.

In 1.4.1 we relate multialgebras to partial algebras and in 1.4.2 to mem-
bership algebras. These two examples will hopefully illustrate the possibility
to use multialgebras to compare and combine of other algebraic specification
formalisms, which will be illustrated in later chapters.

Fact 1.4.1 The multialgebras with Horn clauses is a subinstitution MAH of
MA. All components are as in MA except for the sentence functor which is
SenMA restricted to Horn clauses over atomic formulae.

The proof of the satisfaction condition is a special case of the proof for MA,
the only difference is that now we only have to consider formulae of the form
a1, . . . , an → b. The subinstitution mapping is (Φ, α, β) : MAH→MA, where
Φ is the identity functor, each component of α is identity and each component
of β is the identity functor.

Fact 1.4.2 The multialgebras with equational Horn clauses is a subinstitution
MAEH of MAH. All components are as in MAH except for the sentence
functor which is SenMA restricted to Horn clauses over element equalities.

The proof of the satisfaction condition is a special case of the proof for MAH,
the only difference is that now we only have to consider formulae build over
element equations. The subinstitution mapping is (Φ, α, β) : MAEH →MAH,
where Φ is the identity functor, each component of α is identity and each com-
ponent of β is the identity functor.

Fact 1.4.3 The multialgebras with atomic sentences is a subinstitution MAA
of MAH. All components are as in MAH except for the sentence functor which
is SenMA restricted to atomic formulae.

The proof of the satisfaction condition is a special case of the proof for MAH,
the only difference is that now we only have to consider atomic formulas. The
subinstitution mapping is (Φ, α, β) : MAA → MAH, where Φ is the identity
functor, each component of α is identity and each component of β is the identity
functor.
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1.4.1 Partial algebras and multialgebras

In this subsection we will study the relationships between the institution of
partial algebras, PA andMA. We start with recap of partial algebras and shows
an embedding of the institution of partial algebras into MA. We also illustrates
by example the intended way of reusing partial algebra specifications in our
framework, the results of this subsection are used to give a methodology for
partiality handling with multialgebras in chapter 3, where we in subsection 3.3.1
describes another way of relating institutions, namely institution transformation
from [35], which formalizes the intentions of the example 1.4.8.

We recall the basic definitions from partial algebras, for a survey see [8, 10,
38].

Partial algebras uses algebraic signatures, i.e. the same signatures as for
multialgebras, Sign from definition 1.1.1.

Definition 1.4.4 A partial algebra A for a signature Σ = (S, Ω) is given by:
• A set sA for each sort s ∈ S

• A partial function1 ωA : s1
A × · · · × sn

A → sA, for each symbol
ω : s1 × · · · × sn → s ∈ Ω

Given two partial algebras A and B, a (weak) homomorphism h : A → B is a
set of total functions hs : sA → sB, for each sort s ∈ S such that:

• hs(ωA(x1, . . . , xn)) = ωB(hs1(x1), . . . , hsn(xn)) for each operation
ω : s1×· · ·× sn → s ∈ Ω and arguments x1, . . . , xn, where ωA(x1, . . . , xn)
is defined.

The total functions are special cases of the partial ones. Weak homomorphism
h can be equivalently described as an ordinary homomorphism such that: for
each operation ω ∈ Ω : h(dom(ωA)) ⊆ dom(ωB), where dom identifies ω’s
definition domain in a given algebra A.

Definition 1.4.5 Formulae:

• Atomic t
e= t′ – existential equalities

• Formulae are universally quantified Horn clauses over existential equali-
ties: X; a1 ∧ · · · ∧ an → a with n ≥ 0.

Definition 1.4.6 Let α : X → |A| be an assignment (total function):

• A |=α (X; t e= t′) iff α(t) and α(t′) are defined and α(t) = α(t′)

• A |=α (X; a1 ∧ · · · ∧ an → a) iff ∃i : 1 ≤ i ≤ n : A6|=αai or A |=α a

• A |= (X; φ) iff A |=α (X;φ) for all α

1A partial function is a function that is undefined for some arguments.
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Example 1.4.7 Following is an example of a partial algebra specification:

spec NatPA =
S : Nat
Ω : zero :→ Nat

succ : Nat → Nat
pred : Nat → Nat

axioms : 1. zero
e= zero

2. {x}; succ(x) e= succ(x)
3. {x}; pred(succ(x)) e= x

4. {x}; pred(x) e= pred(x) → succ(pred(x)) e= x

The first two axioms make zero and succ total operations. The third axiom
ensures that pred(succ(x)) is defined and equal to x. The last axiom means that
if pred(x) is defined then also succ(pred(x)) is defined and equal to x.

Partial algebras and multialgebras

To relate multialgebras with partial algebras we recall the similarities between
the element equalities .= from multialgebras and the existential equalities e=
in partial algebras. Both equalities hold when both sides of the equality sign
denote the same element. In a multialgebra, the equality does not hold if one
side of the equality sign is interpreted by a set with cardinality greater than one
or by the empty set. The existential equality does not hold in a partial algebra
if one side of the equality sign is undefined. (Besides equality does not hold,
in both multialgebra and partial algebra, when the elements are different on
each side of the equality sign.) These similarities suggest the straightforward
relation between multialgebras and partial algebras: replace e= by .=. Each x in
the variable context X in (X;φ), will give rise to an extra condition x

.= x in
the antecedent of φ.

Example 1.4.8 The multialgebra specification corresponding to the specifica-
tion from example 1.4.7 is as follows:

spec NatMA =
S : Nat
Ω : zero :→ Nat

succ : Nat → Nat
pred : Nat → Nat

axioms : 1. zero
.= zero

2. x
.= x → succ(x) .= succ(x)

3. x
.= x → pred(succ(x)) .= x

4. x
.= x, pred(x) .= pred(x) → succ(pred(x)) .= x

The partial algebra models and the multialgebra models for the specifications
from the above two examples will coincide on their total parts but the differ-
ence concerns the undefined parts. Among the partial algebra models, there
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will be ones where the term pred(zero) has no interpretation – is undefined.
Similarly, among the multialgebraic models there will be ones where this term
denotes empty set. But we also have the possibility that this term may be
nondeterministic, even completely nondeterministic.

If, instead of axiom 4., one writes the axioms {x}; succ(pred(x)) e= x, re-
spectively x

.= x → succ(pred(x)) .= x, one forces succ(pred(x)) to be always
defined (on nonempty carriers). In the partial algebra case, due to strictness of
all operations, this forces also pred(x) to be defined. In the multialgebra case
this corresponds to a particular error recovery – even if pred(zero) not return an
unique element, the subsequent application of succ will yield zero. The model
class of the multialgebraic specification has “more” models.

The above example shows our intended goal of allowing reuse of partial
algebra specifications in the context where additional flexibility is offered by the
extension of the model class. This will be our topic in subsection 3.3.1. As a
preliminary step we show first a direct embedding of PA into MA.

Embedding PA into MA.

Any Σ-partial algebra can be trivially converted into a Σ-multialgebra by mak-
ing all undefined operations return the empty set. Since operations in multial-
gebra are strict on the empty set, the implicit strictness assumption from partial
algebras, will be enforced automatically.

Definition 1.4.9 The functor β− : ModPA(Σ) → ModMA(Σ) maps a partial
algebra A to a multialgebra in the following way:

• |β−(A)| = |A|
• for all x ∈ |β−(A)| and f ∈ Ω: f(x)β−(A) =

{ {f(x)A} −if it is defined
∅ −otherwise

For a homomorphism: h ∈ Mod(Ψ(Σ, Γ)), we define β−(h) = h.
For a multialgebra M where all undefined operations return empty set, β(M)

will denote the corresponding partial algebra, i.e., β−(β(M)) = M .

Saying that a multialgebra and a partial algebra are “essentially the same”, we
will mean that they are obtained from each other by means of β( ), resp. β−( ).

The embedding of PA into MA is now obtained by augmenting the partial
algebra specification with additional axioms forcing all operations to return
either a unique element or the empty set. This is the underlying model in
partial algebras which in our, generalized, context need explicit axioms.

For an operation f(x), the axiom forcing it to be empty or deterministic is
of the form y

.= y, y ≺ f(x) → f(x) .= f(x), where y is a fresh variable2. We
first show that this is the case – i.e., that multialgebras satisfying such axioms
(for all operations) are “essentially” partial algebras.

2Note that the premiss y
.
= y could be dropped if we disallow variables to be assigned to

the emptyset.
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Lemma 1.4.10 Let SP = (S, Ω,Γ) be a specification in MA such that, for
each operation f : s → s ∈ Ω : SP |= y

.= y, y ≺ f(x) → f(x) .= f(x), where
y is distinct from all x. Then in any M ∈ ModMA(SP ) we have that for all
x ∈ |M | : f(x)M = ∅ or f(x)M is deterministic.

Proof. Let M ∈ ModMA(SP ) and α : {y, x} → M be an assignment, We have
two cases:

1. M 6|=α y
.= y, then the carrier set of s is empty so α(f(x))M = ∅.

2. M |=α y
.= y, if M 6|=α f(x) .= f(x) then, since M |=α y

.= y, y ≺ f(x) →
f(x) .= f(x), we must have that M 6|=α y ≺ f(x), i.e., α(f(x))M = ∅.

Note that α(f(x))M may be ∅ also when some of x range over empty sorts, but
this case is covered by point 2. Thus we do not need additional conditions x

.= x
for x ∈ x. ¤

Proposition 1.4.11 There is an embedding (Ψ, α, β) of institutions from PA
to MA; the embedding is a simple map.

Proof.

• The functor Ψ : SignPA → Th0MA is given by: Ψ(S, Ω) = ((S, Ω), ∅Σ),
where ∅Σ contains an axiom y

.= y, y ≺ f(x) → f(x) .= f(x) for each
f ∈ Ω. For morphisms Ψ(µS , µΩ) is the identity.

• The natural transformation α : SenPA → SenMA ◦Ψ is given by:

1. α(t e= t′) ≡ t
.= t′ auxilary definition for atoms

2. α({x1, . . . , xk}; a1∧· · ·∧an → a) ≡ x1
.= x1, . . . , xk

.= xk, α(a1), · · · , α(an) →
α(a)

Ψ is extended to a functor Ψ : Th0PA → Th0MA by letting Ψ(Σ, Γ) =
(Σ, ∅Σ ∪ αΣ(Γ)).

• The components of the natural transformation β : ModMA ◦ Ψop →
ModPA are:
β’s from definition 1.4.9, i.e.:

– |βΣ(M ′)| = |M ′|

– f(x1, . . . , xn)βΣ(M ′) =
{

undefined if f(x1, . . . , xn)M ′
= ∅

x such that f(x1, . . . , xn)M ′
= {x} otherwise

This is a well defined partial algebra by lemma 1.4.10. For a homomor-
phism: h ∈ ModMA(Ψ(Σ,Γ)), we define βΣ(h) = h.

We verify the “truth” condition: for every M ′ ∈ ModMA(Ψ(Σ, ∅)) and
φ ∈ SenPA(Σ):

M ′ |=MA αΣ(φ) iff β(Σ,∅)(M ′) |=PA φ (1.2)
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By the definition of β, for any Ψ(Σ, ∅)-multialgebra M ′, the Σ-partial algebra
β(M ′) has the same carrier, |M | = |β(M ′)|. Thus for the nonempty sorts of
|M | is every assignment ν′ : X → M ′ is also an assignment ν′ : X → β(M ′),
and vice versa. If sM = ∅ is it exact one assignment for sM and there are no
assignment for sβ(M ′). Given a partial algebra signature Σ = (S,Ω), Ψ(Σ, ∅)
adds one axiom y

.= y, y ≺ ω(x) → ω(x) .= ω(x), for every ω ∈ Ω – thus for any
ground term t ∈ TΣ, Ψ(t) = t will be interpreted as an element or the empty
set in every Ψ(Σ, ∅)-multialgebra M ′.

We show that for every simple formula (X; a) ∈ SenPA(Σ) and for any
assignment ν : X → |M ′|:

M ′|=MAναΣ(X; a) iff β(Σ,∅)(M ′)|=PAν(X; a) (1.3)

Let M ′ ∈ ModMA(Ψ(Σ, ∅)) : as ≡ {x1, . . . , xk}; t e= t′: We have two cases:

1. No variables over empty carrier

M ′ |=ν α({x1, . . . , xk}; t e= t′)
⇐⇒{ def. α}

M ′ |=ν x1
.= x1, . . . , xk

.= xk → t
.= t′

⇐⇒{ satisfaction (no variables over empty carrier)}
ν(t)M ′

= ν(t′)M ′
= e, e ∈ |M ′|

⇐⇒{ def. β}
ν(t)β(M ′) = ν(t′)β(M ′) = e ∈ |β(M ′)|

⇐⇒{ satisfaction}
β(M ′) |=ν t

e= t′

2. Variables over empty carrier
β(M ′)|=PAν(X; a), since there is no assignment to a empty carrier. On the
other hand is there a variable x ∈ X over empty carrier hence M ′ 6|= x

.= x,
and M ′|=MAναΣ(X; a).

The general statement (1.2) follows easily from the above fact (1.3). ¤
We also have an immediate consequence of the above proof:

Fact 1.4.12 For a PA theory (Σ,Γ), the functor β(Σ,Γ) is an equivalence (in
fact, an isomorphism) of categories ModMA(Ψ(Σ,Γ)) and ModPA(Σ,Γ).

Proof. The inverse functor β−(Σ,Γ) sends a partial algebra P ∈ ModPA(Σ, Γ)
onto a multialgebra M ′ ∈ ModMA(Ψ(Σ, Γ)) such that β(M ′) = P , i.e., it is β−

from definition 1.4.9. One verifies easily the isomorphism condition. ¤
As Mossakowski showed in [38] PA allows to specify exactly the finitely locally
presentable categories [1], i.e. we have identified the sub-institution of MA
allowing to specify these classes of models. Given a partial algebra specification
SP , we call Ψ(SP ) a multialgebra specification of partial form and denote this
sub-institution MAPA. It’s well known that the finitely locally presentable
categories have initial models, see [1].
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1.4.2 Membership algebras and multialgebras

We start by recalling the basic concepts from membership algebras and show,
in subsection 1.4.2, that institution of membership algebras can be embedded
into MA. Membership algebras were introduced by Meseguer in [37]. We will
use notation corresponding to the notation used elsewhere in the thesis, which
slightly differs from the notation used in [37].

Definition 1.4.13 (Membership signature) A (membership) signature Σ is a
quadruple Σ = (S, Ω, P, π), where S is the set of sort names and Ω the set
of operation names for the S × S indexed operations. P is a set of sub-sort
predicate names. π is a function π : P → S which for each sub-sort predicate
p ∈ P assigns a corresponding sort s ∈ S. By Ps one denotes the sub-sort
predicates of sort s i.e. {π−1(s) : s ∈ S}.

The function π labels sub-sort predicate symbols by sort – its intention is to
identify a predicate p with π(p) = s as a sub-sort of sort s.

Definition 1.4.14 A signature morphism between two membership signatures
Σ = (S, Ω, P, π) and Σ′ = (S′, Ω′, P ′, π′) is a triple µ = (µP , µS, µΩ), where
µP : P → P ′ and µS : S → S′ are functions such that the following diagram

P

π

²²

µP // P ′

π′

²²
S µS

// S′

commutes, and there exists an ω′ for each ω ∈ Ω such that:

µΩ(ω : s → s) = ω′ : µS(s) → µS(s).

Definition 1.4.15 (Membership algebra) A membership algebra for a signature
Σ is:

• a many sorted (S, Ω) algebra A

• together with an assignment of a subset pA ⊆ π(p)A for each predicate p.

Definition 1.4.16 (Homomorphism) A Homomorphism h : A → B is an ordi-
nary total homomorphism which, in addition, satisfies: hπ(p)(pA) ⊆ pB

Definition 1.4.17 The axioms used for specifying classes of membership alge-
bras are of the following form

• atomic formulas:
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1. equations of the form t = t′ where t, t′ ∈ TΣ,Xs, terms of the same
sort s.

2. membership assertions of the form t : p, p ∈ P and t ∈ TΣ,Xπ(p).

• universally quantified Horn clauses over atomic formulae, i.e. they have
form:

1. X;u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : p1 ∧ . . . ∧ wk : pk → t = t′ or

2. X;u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : p1 ∧ . . . ∧ wk : pk → t : p

The assignments of values to variables are as usual. Then one defines satisfaction
of formulae.

Definition 1.4.18 (Satisfaction of formulae)

1. A |=α (X; t = t′) iff α(t) = α(t′)

2. A |=α (X; t : p) iff α(t) ∈ pA

3. A |=α (X; a1 ∧ . . . ∧ an → a) iff ∃i : 1 ≤ i ≤ n : A 6|=α ai or A |=α a

4. A |= (X; ϕ) iff A |=α (X;ϕ) ∀α
It is shown in [37] that the membership algebras with above formulae and satis-
faction form a liberal institution MEMB. Moreover there exists an embedding
of institutions both ways between MEMB and the institution of many sorted
Horn logic with predicates and equalities, i.e. this two institutions can be viewed
as sub-logics of each other. Note that if there are no ground terms included in a
predicate then the predicate is represented by the empty set in the initial model.

Embedding MEMB into MA
The embedding is based on the fact that nondeterministic constants play the
same role as unary predicates. Hence the membership relation t : p is naturally
translated as t ≺ p. Making, in addition, all operations deterministic, one
obtains the straightforward translation of MEMB specifications into MA.

Example 1.4.19 A membership algebra specification of (a part of) natural
numbers and the corresponding multialgebra specification using only nondeter-
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ministic constants:

specNatMEMB =
S : Nat
Π : π(nat) = Nat

π(pos) = Nat
Ω : zero :→ Nat

succ : Nat → Nat
pred : Nat → Nat

ax :
zero : nat
{x}; x : pos → x : nat
{x}; x : nat → pred(succ(x)) = x
{x}; x : pos → pred(x) : nat
{x}; x : nat → succ(x) : pos

specNatMA =
S′ : Nat
Ω′ : nat :→ Nat

pos :→ Nat
zero :→ Nat
succ : Nat → Nat
pred : Nat → Nat

ax : zero
.
= zero

succ
.
= succ

pred
.
= pred

zero ≺ nat
x

.
= x ∧ x ≺ pos → x ≺ nat

x
.
= x ∧ x ≺ nat → pred(succ(x))

.
= x

x
.
= x ∧ x ≺ pos → pred(x) ≺ nat

x
.
= x ∧ x ≺ nat → succ(x) ≺ pos

The only difference is that the multialgebra specification needs to ensure deter-
minacy of all the operations corresponding the the operations Ω from the mem-
bership specification (but not of the constants corresponding to the predicates
Π).

Both of the above specifications will have the same initial model and, as a
matter of fact, the same model class.

As the above example suggests, we can translate a membership algebra specifi-
cation to a multialgebra specification, which will possess the same models.

Proposition 1.4.20 There is an embedding (Φ, α, β) of institutions from
MEMB to MA; the embedding is a simple map of institutions.

Proof.

• The functor Φ : SignMEMB → ThMA is given by: Φ(S, Ω,Π) is the
theory (S, Ω ] Π′, ∅Σ), for each p ∈ Π there is a corresponding constant
p :→ π(p) in Π′ and where ∅Σ contains an axiom ω(x) .= ω(x), for each
operation ω ∈ Ω. Φ(µS , µΩ, µP ) is the signature morphism (µS , µΩ ] µP )

• The natural transformation α : SenMEMB → SenMA ◦ Φ is given by:

1. α(t : p) ≡ t ≺ p auxilary definition for atoms t : p

2. α(t = t′) ≡ t
.= t′ auxilary definition for atoms t = t′

3. α({x1, . . . , xk}; a1∧ · · ·∧an → a) ≡ x1
.= x1∧ . . .∧xk

.= xk ∧α(a1)∧
· · · ∧ α(an) → α(a)
for each Horn clause a1 ∧ · · · ∧ an → a

Φ is extended to a functor Φ : Th0MEMB → Th0MA by:
Φ(Σ, Γ) = (Σ, ∅Σ ∪ αΣ(Γ)).
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• The natural transformation β : ModMA ◦Φop → ModMEMB is essentially
the identity on models and homomorphisms. For any multialgebra
M ′ ∈ ModMA(Φ(Σ, Γ))

– |β(M ′)| = |M ′|
– f(x1, . . . , xn)β(M ′) = x such that f(x1, . . . , xn)M ′

= {x}
– pβ(M ′) = pM ′

For any homomorphisms: h : M ′ → B′ ∈ ModMA(Φ(Σ, Γ)), we let β(h) =
h.

We verify the “truth” condition: for every M ′ ∈ ModMA(Φ(Σ, ∅)) and φ ∈
SenMEMB(Σ):

M ′ |=MA αΣ(φ) iff β(Σ,∅)(M ′) |=MEMB φ (1.4)

By the definition of β, for any Φ(Σ, ∅)-multialgebra M ′, the Σ-membership
algebra β(M ′) has the same carrier, |M | = |β(M ′)|. Thus if sM ′

is nonempty
we have that every assignment ν′ : X → M ′ is also an assignment ν′ : X →
β(M ′), and vice versa. If sM ′

= ∅ there is only one assignment ν′ : X → M ′
s

for the multialgebra M ′, the assignment sending all x’s to the emptyset, and
for the membership algebra β(M ′) there are no assignments since there are
no nonempty functions to the emptyset, i.e. β(Σ,∅)(M ′) |=MEMB

ν (X; φ), for
any formula φ with variables ranging over empty sort, on the other hand will
M ′ |=MA

ν αΣ(X;φ) since there is at least one x ∈ X, ranging over a empty sort
and α adds x

.= x to the premiss of φ.
Given a membership signature Σ = (S, Ω, Π), Φ(Σ, ∅) adds an axiom ω(x) .=

ω(x), for every ω ∈ Ω – thus for any ground term t ∈ T (Ω), Φ(t) = t will be
interpreted as an element in every Φ(Σ, ∅)-multialgebra M ′. We show that for
every atom a ∈ SenMEMB(Σ), with variables ranging over nonempty sorts, and
for any assignment ν : X → |M ′|:

M ′ |=MA
ν αΣ(X; a) iff β(Σ,∅)(M ′) |=MEMB

ν (X; a) (1.5)

Let M ′ ∈ ModMA(Φ(Σ, ∅)) – we have two possible atoms:

1. a ≡ s = t:

M ′ |=ν α({x1, . . . , xk}; s = t)
⇐⇒{ def. α}

M ′ |=ν x1
.= x1 ∧ . . . ∧ xk

.= xk → s
.= t

⇐⇒{ satisfaction (no variables over empty sort)}
ν(s)M ′

= ν(t)M ′
= {e}, e ∈ |M ′|

⇐⇒{ def. β}
ν(s)β(M ′) = ν(t)β(M ′) = e ∈ |β(M ′)|

⇐⇒{ satisfaction}
β(M ′) |=ν (X; s = t)
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2. a ≡ t : p : We have two cases:

(a) π(p)M ′
= ∅

M ′ |=ν α(X; t : p)
⇐⇒{ π(p)M ′

= ∅ (variables over nonempty sorts)}
tM

′
= pM ′

= ∅
⇐⇒{ def. β}

tβ(M ′) = pβ(M ′) = ∅
⇐⇒{ π(p)M ′

= ∅ (variables over nonempty sorts)}
β(M ′) |=ν {X}; t : p

(b) π(p)M ′
nonempty:

M ′ |=ν α({x1, . . . , xk}; t : p)
⇐⇒{ def. α}

M ′ |=ν x1
.= x1 ∧ . . . ∧ xk

.= xk → t ≺ p

⇐⇒{ satisfaction (variables over nonempty sorts)}
ν(t)M ′ ⊆ ν(p)M ′

⇐⇒{ M ′ ∈ Mod(Φ(Σ, ∅)) and t 6∈ Π}
ν(t)M ′ ∈ ν(p)M ′

⇐⇒{ def. β}
ν(t)β(M ′) ∈ ν(p)β(M ′)

⇐⇒{ satisfaction (variables over nonempty sorts)}
β(M ′) |=ν ({x1, . . . , xk}; t : p)

The general statement (1.4) follows easily from the above fact (1.5). ¤

Fact 1.4.21 The functor β(Σ,Γ) is an equivalence (in fact, an isomorphism) of
categories ModMA(Φ(Σ,Γ)) and ModMA(Σ,Γ) for every MEMB theory (Σ,Γ).

Proof. The inverse functor β−1
(Σ,Γ) sends a membership algebra M ∈ Mod(Σ, Γ)

onto a multialgebra M ′ ∈ Mod(Φ(Σ, Γ)) such that β(M ′) = M (i.e., |M ′| =
|M |, fM ′

(x) = {fM (x)} and for p ∈ Π : pM ′
= pM .) One verifies easily the

isomorphism condition. ¤
Given a membership algebra specification SP , we will call Φ(SP ) a multi-

algebra specification of the membership form. Restricting the syntax of MA
specifications in this way, we obtain a sub-institution MAMB of MA (and
MAH).

As a consequence of the above proposition (in particular, that β(Σ,Γ) is an
equivalence), we get that the models of multialgebra specifications of mem-
bership form possess initial objects. We can verify this fact directly applying
proposition 1.3.12.
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Proposition 1.4.22 If an MA specification SP is of the membership form,
i.e., SP = Φ(SPMEMB), then T (SP )/∼= is a model of PS.

Proof.

1. We define the multialgebra D(SP ), modifying slightly the construction
used earlier (definitions 1.3.1 and 1.3.10). Let (S,Ω,Π) be the signa-
ture of the membership specification SPMEMB for which we have SP =
Φ(SPMEMB). As the carrier we take

• |D(SP )| = {t ∈ T (Ω)} ⊆ {t ∈ T (Ω ]Π) : SP |= t
.= t}, and we let

• tD(SP ) = {t}, for t ∈ T (Ω) and
• pD(SP ) = {t ∈ T (Ω) : SP |= t ≺ p}, for p ∈ Π
• for p ∈ Π, f ∈ Ω, f(p) is defined by pointwise extension:

f(p)D(SP ) =
⋃

t∈pD(SP ) f(t)D(SP ).

2. By the same argument as for T (SP ) we get that there is a unique ho-
momorphism hA : D(SP ) → A for each A ∈ Mod(SP ), so let ∼= be the
equivalence relation defined on D(SP ) by ∼= =

⋂
A∼hA (cf. 1.3.10).

3. We show now that D(SP )/∼= ∈ Mod(SP ). Let α : X → D(SP )/∼= be an
arbitrary assignment – for a term t ∈ T (Ω, X), we will denote by α(t)
a term obtained by substituting some representative s′ ∈ α(x) = [s′] for
each occurrence of x in t. Let s, t ∈ T (Ω, X), and p ∈ Π, and consider
possible axioms:

• s
.= t : then, in particular, SP |= α(s) .= α(t), and so for any A ∈

Mod(SP ) : α(s)A = α(t)A, i.e. α(s)∼=α(t), and so D(SP )/∼= |=α s
.= t

• s ≺ t : from SP |= α(s) ≺ α(p) we obtain that α(s)A ∈ α(p)A = pA

for all A ∈ Mod(SP ), and so D(SP )/∼= |=α s ≺ p.

• Horn formulae: SP |=α a1, . . . an → a, where ai, a atoms of the above
form:

(a) If A |= α(a) for all A ∈ Mod(SP ), then D(SP )/∼= |=α a, by the
above arguments.

(b) Otherwise, for some A ∈ Mod(SP ) : A 6|= α(a). Then we must
also have A 6|= α(ai) for some i. We show that this implies
D(SP )/∼= 6|=α ai – two cases:
i. ai ≡ s

.= t. It means that α(s)A 6= α(t)A, hence α(s) 6∼= α(t).
By the definition of Φ, both s′ .= s′ and t′ .= t′ are among the
axioms of SP (where s, resp. t is obtained from s′, resp. t′

by substituting some deterministic terms for some variables).
So s′ is not the same element of the carrier of A as t′, and
we have that D(SP )/∼= 6|=α s

.= t, i.e., D(SP )/∼= 6|=α ai.
ii. ai ≡ s ≺ p. By the definition of Φ, s′ .= s′ is among the

axioms. Thus α(s)A 6∈ α(p)A i.e. SP 6|= α(s) ≺ α(p), so
D(SP )/∼= 6|=α s ≺ p.
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This gives that D(SP )/∼= ∈ Mod(SP ) and by 2) that it is initial model.

4. Finally, we show that D(SP )/∼= ' T (SP )/∼=. The only difference in the
construction was that in D(SP )/∼= we excluded all p ∈ Π which would
be taken into account in constructing the carrier of T (SP )/∼=, i.e., for all
p ∈ Π : [p] 6∈ |D(SP )/∼=|. (We started with |D(SP )| = {t ∈ T (Ω)} instead
of |T (SP )| = {t ∈ T (Ω ]Π) : SP |= t

.= t}.) Since D(SP )/∼= ∈ Mod(SP ),
if SP |= p

.= p, we can conclude that there must exist a t ∈ T (Ω) (in
particular, SP |= t

.= t) such that pD(SP )/∼= = {[t]} = tD(SP )/∼= and
D(SP )/∼= |= t ≺ p. But this also means, by the construction of D(SP )/∼=,
that SP |= t ≺ p. Hence, in T (SP )/∼= we would obtain [t] = [p]. In other
words, excluding the symbols Π from the construction does not change
the result and D(SP )/∼= ' T (SP )/∼=.

¤

1.5 Concluding remarks

In this chapter we have given the formal mathematical background for the the-
sis. We have summarized the relevant notions concerning multialgebra spec-
ifications: the signature category, the logical sentence functor and the model
functor. We have showed that multialgebras form an exact institution, MA.
This result gives us the amalgamation lemma as an immediate corollary. The
amalgamation lemma is traditionally used for giving the semantics of parameter
passing for parameterized specifications and parameterized datatypes. In chap-
ter 4 we will generalize the traditional notion of semantics for parameterized
datatype specifications and we will use the amalgamation lemma to define the
semantics of actual parameter passing

It’s accepted that institutions offers the right level of abstraction to compare
and combine different specification formalisms. We have shown how the insti-
tution of partial algebras and membership algebras can be embedded into MA,
we thus suggest that the institution of multialgebras, MA, may provide an ad-
equate framework for both comparing and combining the advantages of earlier
approaches within a unified framework. Based on the embedding we transform
partial algebra specifications to MA specifications in chapter 3. The reason for
doing this is to be able to do error recovery for partial algebra specifications.
We have also summarized the known results about initial models for axiomatic
classes of multialgebras from [22]. We have given a new proof for this results,
and we have also managed to get a slightly stronger result, but the general
problem remains still open.
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Chapter 2

Logic for Multialgebras

In this chapter we give two new quantifier free logics for the institution of
multialgebras, MA, from chapter 1. There exist several logics for multialgebras
but none for the institution MA. The first reasoning system for multialgebras
was presented by Hussman in [22], the system was used for term rewriting
but it was not complete. Walicki gave the first sound and complete reasoning
system for multialgebras in his thesis [50, 53], but he didn’t allow operations to
be partial, i.e. returning the emptyset. Konikowska and BiaÃlasik developed a
sound and complete reasoning system for multialgebras with partial operations
in [5, 6]. However, their language did not include the element equality .=, and,
moreover, requires full FOL for deriving consequences of specification.

Our objective is to design a quantifier-free logic for deriving consequences of
multialgebra specifications. First, using the technique of Rasiowa-Sikorski from
[44], we design a sound and complete system R-S. This system is closely related
to the first order logic for multialgebras given by Konikowska and BiaÃlasik in
[6]. However, the element equality .= can’t be expressed in their language by
a set of formulae without the use of quantifiers, and this is related to the fact
that to express emptiness or non-emptiness of the carrier, quantified formulae
are needed. E.g., ∃x : x ≺ x expresses non-emptiness of the carrier which, in
our language, can be expressed by the quantifier-free formula x

.= x (with only
implicit quantification over possible assignments, c.f. remark 1.1.16). Finally,
and most significantly, the language from [6], unless extended to full first-order,
is not expressive enough to state non-emptiness of any result set. Consequently,
even the quantifier free tautologies have all to take into account the possibility
that any involved term may yield an empty result.

This not only yields fewer and less specific tautologies, but has also more
practical aspects. Writing specifications one certainly wants the possibility to
state that a term is deterministic. The axiom f(x) .= f(x) states that the oper-
ation f is a total function, and such statements figure naturally as assumptions
(or consequences) in the formulae one wants to prove – preferably without the
use of full first-order logic. Besides, there is the whole tradition of algebraic
specifications based on equational axioms and equational reasoning. The ele-
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ment equality, .=, present in the institution of multialgebras, given in section
1.2, makes comparison and embedding of other institutions to the institution
of multialgebras simple and straightforward, as done in section 1.4.1 and 1.4.2,
without the use of quantifiers.

Although we consider the lack of a connective corresponding to .= in [6] a
serious drawback, our development and presentation owe quite a lot to this work.
We utilize the technique of Rasiowa and Sikorski, [44], which was brought to our
attention by [6] and which is nicely summarized in [26, 25] (and recently used
also in [2]). It gives a general way for designing logics based on the semantic
properties of the atomic predicates, and we apply it to our case of multialgebraic
specifications with ≺ and .=.

In Section 2.1, we design a Rasiowa-Sikorski system, R-S, for quantifier-free
logic over ≺ and .= , and prove it’s soundness and completeness. Following the
cited works, we also define a unique deduction strategy which can be used for
implementing the logic. In Section 2.2, we address the issue of proving con-
sequences of specifications. Specifications are sets of sequents and we want to
derive their consequences, i.e., new sequents. We indicate the required transla-
tion schema and extend the R-S system with one rule needed for this purpose.
Finally, in Section 2.3, we transform the obtained system to a sound and com-
plete Gentzen calculus GS, which is more user-friendly than the R-S system for
proving theorems by hand. In order to handle proofs of consequences of theories
without any intermediary translation of the involved sequents, we replace the
axiom rule (as well as various rules for the logical connectives) by the specific
cut rules, originating from [41]. We thus obtain a system for direct reasoning
about specification, where reasoning about sequents over atomic formulae in-
volves only such sequents. Besides extension of the language with the useful
predicate .=, we consider this result an improvement – by simplification – of the
full first-order Gentzen system from [6].

2.1 The R-S calculus

We now present a quantifier free Rasiowa-Sikorski (R-S) deduction system with
set inclusion and equality for multialgebras. The R-S system illustrates a pow-
erful way of designing logical deduction systems based on semantical properties
of atomic predicates of the language, which was originally introduced in [44].
Our presentation in this section is an adaptation and extension of a similar logic
described in [6].

The R-S system processes sets of formulae (clauses). However, it allows one
also to define a specific deduction strategy in which such sets are considered as
ordered sequences of formulae without repetitions – this is the interpretation
we will be using in this and next section. Particular sequences are singled out
as axiomatic, in our case, sequences containing a formula or subsequence of the
form:

• x ≺ x for a variable x
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• φ,¬φ for a formula φ

• ¬Es, ts ≺ t′s.

The order of occurrences of such formulae in a sequence does not matter. Given
a set of formulae, we say that it satisfies the ’axiomatic sequence condition’ if
the set involves formulae from which an axiomatic sequence could be formed.

Definition 2.1.1 A structure 〈A, α〉 satisfies a sequence Γ = γ1, . . . , γn, written
〈A, α〉 |= Γ, iff 〈A,α〉 |= γi for some i.

Hence the ”,” should be viewed as a meta-disjunction.
An R-S rule has one of the following forms, where Γi are sequences:

Γ1

Γ2
,

Γ1

Γ2 | Γ3
, or

Γ1

Γ2 | Γ3 | Γ4

Both sides of the ” | ” sign have to hold for making an expression involving |
true, hence it should be viewed as a meta-conjunction.

The rules are designed so that they are invertible and one uses a strong
notion of soundness.

Definition 2.1.2 An (R-S) rule is sound when, for any structure 〈A,α〉, 〈A,α〉
satisfies the premise iff it satisfies the conclusion.

The strength of this notion lies not only in the requirement of invertibility
but also in the use of a structure – it says that the premise is satisfied iff the
conclusion is for any given assignment. (The usual notion of soundness is, of
course, implied by this one.)

In addition to axiomatic sequences, one also identifies the indecomposable
sequences – in our case, these are given by the following definition.

Definition 2.1.3 A Σ formula is indecomposable iff it has one of the following
forms:

• Es or ¬Es, s ∈ S

• x ≺ y or ¬(x ≺ y), x, y ∈ X

• x ≺ f(x1, . . . , xn) or ¬(x ≺ f(x1, . . . , xn)), x, xi ∈ X and f ∈ Ω (f is
possibly a constant).

A sequence of formulae is indecomposable iff every formula in the sequence is
indecomposable.

No rules can modify the indecomposable formulae and so if such a formula
appears in a sequence during the proof, it will not be changed by any subsequent
application of rules.

The R-S calculus has two types of rules, replacement rules and expansion
rules. The goal of the replacement rules is to transform decomposable formu-
lae leading either to axiomatic sequences or to indecomposable formulae (i.e.,
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expressions involving only variables or function application to variables). Such
rules have only one explicit formula in the premise sequence which is trans-
formed, possibly with addition of a new formula, in the conclusion. There is
exactly one decomposition rule for each case of a decomposable formula and
schemata for decomposable formulae are disjoint, i.e., precisely one decomposi-
tion rule can be applied to any decomposable formula at any stage. In particular,
we will have one rule for every positive decomposable formula, like t

.= t′, and
one rule for the corresponding negative formula, ¬(t .= t′).

The expansion rules are used to add logical consequences of the indecom-
posable formulae from the premise. They merely augment the premise sequence
with some additional formulae without changing the formula itself.

In the notation for rules, we will use the sign “*” to indicate repetition of
the active formula from the premise in the conclusion. The rule (VII–) given in
the calculus below:

Γ′,¬(t ≺ t′),Γ′′

Γ′, x ≺ t,Γ′′, ∗ | Γ′,¬(x ≺ t′),Γ′′, ∗ where t 6∈ X and x ∈ X arbitrary

should be read in the following way:

Γ′,¬(t ≺ t′),Γ′′

Γ′, x ≺ t, Γ′′,¬(t ≺ t′) and Γ′,¬(x ≺ t′), Γ′′,¬(t ≺ t′)

where t 6∈ X and x ∈ X arbitrary

Such a repetition will take place only in the implicit presence of existential
quantifier and will be needed to ensure the possibility of finding an adequate
witness. The above rule can be thus seen as:

Γ′,¬(t ≺ t′),Γ′′

∃x : Γ′, x ≺ t,Γ′′, and Γ′,¬(x ≺ t′), Γ′′,
where t 6∈ X

We include all relevant rules and axioms from the logic given in [6] (i.e., except
the replacement rules for quantifiers and the let-construction). We extended the
logic by new replacement rules for the element equality, i.e. the rules (IX+) to
(XI–).

Remember that the formula ¬Es is a logical symbol abbreviating the state-
ment that the carrier of a sort s is nonempty, i.e., xs

.= xs. Similarly, Es denotes
that the carrier of sort s is empty, i.e., ¬(xs

.= xs). The only function of the
restriction ts 6= xs in the rules (X) and (XI) is to prevent further decomposition
of such formulae.

The R-S proof system

Axiomatic sequences (order does not matter)

(I) Γ, x ≺ x, Γ′ , x ∈ X (II) Γ, γ, Γ′,¬γ, Γ′′ , γ ∈ FΣ,X ∪ {E} (III) Γ,¬Es, Γ′, ts ≺ t′s, Γ
′′
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Replacement rules (unique decomposable premise formula)

+ –

(IV)
Γ′,¬¬γ, Γ′′

Γ′, γ, Γ′′

(V)
Γ′, γ ∨ φ, Γ′′

Γ′, γ, φ, Γ′′
Γ′,¬(γ ∨ φ), Γ′′

Γ′,¬γ, Γ′′ | Γ′,¬φ, Γ′′

(VI)
Γ′, γ ∧ φ, Γ′′

Γ′, γ, Γ′′ | Γ′, φ, Γ′′
Γ′,¬(γ ∧ φ), Γ′′

Γ′,¬γ,¬φ, Γ′′

(VII)

Γ′, t ≺ t′, Γ′′

Γ′,¬(x ≺ t), x ≺ t′, Γ′′

where t 6∈ X, and x ∈ X is fresh

Γ′,¬(t ≺ t′), Γ′′

Γ′, x ≺ t, Γ′′, ∗ | Γ′,¬(x ≺ t′), Γ′′, ∗
where t 6∈ X and x ∈ X arbitrary

(VIII)

Γ′, x ≺ f(. . . , t, . . .),Γ′′

Γ′, y ≺ t,Γ′′, ∗ | Γ′, x ≺ f(. . . , y, . . .),Γ′′, ∗
where y ∈ X arbitrary and t 6∈ X

Γ′,¬(x ≺ f(. . . , t, . . .)), Γ′′

Γ′,¬(y ≺ t),¬(x ≺ f(. . . , y, . . .)),Γ′′

where y ∈ X is fresh and t 6∈ X

(IX)

Γ′, t .= t′, Γ′′

Γ′, t .= x, Γ′′, ∗ | Γ′, t′ .= x, Γ′′, ∗
where t, t′ 6∈ X and x ∈ X arbi-
trary

Γ′,¬(t .= t′), Γ′′

Γ′,¬(t .= x),¬(t′ .= x), Γ′′

where t, t′ 6∈ X and x ∈ X is fresh

(X)

Γ′, ts
.= xs, Γ′′

Γ′, ts ≺ xs, Γ′′ | Γ′, xs ≺ ts, Γ′′ | Γ′,¬Es,Γ′′

where xs ∈ X and ts 6= xs

Γ′,¬(ts
.= xs), Γ′′

Γ′, Es,¬(xs ≺ ts),¬(ts ≺ xs),Γ′′

where xs ∈ X and ts 6= xs

(XI)

Γ′, xs
.= ts, Γ′′

Γ′, ts ≺ xs, Γ′′ | Γ′, xs ≺ ts, Γ′′ | Γ′,¬Es,Γ′′

where xs ∈ X and ts 6= xs

Γ′,¬(xs
.= ts), Γ′′

Γ′, Es,¬(xs ≺ ts),¬(ts ≺ xs),Γ′′

where xs ∈ X and ts 6= xs

Expansion rules (indecomposable premise formulae)

(XII)
Γ′,¬(x ≺ y), Γ′′

Γ′,¬(x ≺ y),¬(y ≺ x),Γ′′

(XIII)
Γ′,¬(y ≺ x), Γ′′,¬(x ≺ z), Γ′′′

Γ′,¬(y ≺ x), Γ′′,¬(x ≺ z),¬(y ≺ z), Γ′′′
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(XIV)
Γ′,¬(y ≺ x), Γ′′,¬(x ≺ f(z)), Γ′′′

Γ′,¬(y ≺ x), Γ′′,¬(x ≺ f(z)),¬(y ≺ f(z)), Γ′′′
f is possibly a constant

(XV)
Γ′,¬(y ≺ z),Γ′′,¬(x ≺ f(. . . , z, . . .)), Γ′′′

Γ′,¬(y ≺ z), Γ′′,¬(x ≺ f(. . . , z, . . .)),¬(x ≺ f(. . . , y, . . .)),Γ′′′

f is possibly a constant

(XVI)
Γ′,¬Es, Γ′′,¬(xs′ ≺ f(. . . , ys, . . .)), Γ′′′

Γ′,¬Es,Γ′′,¬(xs′ ≺ f(. . . , ys, . . .)),¬Es′ ,Γ′′′
f is possibly a constant

Example 2.1.4 We illustrate use of the logic by proving the tautology: c
.=

c, c ≺ x → x ≺ c, i.e: ¬(c .= c),¬(c ≺ x), x ≺ c. We mark the active formulae
by boldface. Similarly, the variable introduced in the conclusion is in boldface. If
a branch terminates, the axiomatic subsequences are underlined. We drop sort
subscripts.

¬(c .= c),¬(c ≺ x), x ≺ c

¬(c .= y),¬(c ≺ x), x ≺ c
(IX–)

¬(c .= y),¬(c ≺ x), x ≺ c

E ,¬(y ≺ c),¬(c ≺ y),¬(c ≺ x), x ≺ c
(X–)

E ,¬(y ≺ c),¬(c ≺ y),¬(c ≺ x), x ≺ c

E ,¬(y ≺ c), (y ≺ c),¬(c ≺ x), x ≺ c, ∗ | i)
(VII–)

i) = E ,¬(y ≺ c),¬(y ≺ y),¬(c ≺ x), x ≺ c,¬(c ≺ y)
E ,¬(y ≺ c),¬(y ≺ y),y ≺ c, x ≺ c,¬(c ≺ y), ∗ | ii)

(VII–)

ii) = E ,¬(y ≺ c),¬(y ≺ y),¬(y ≺ x), x ≺ c,¬(c ≺ y),¬(c ≺ x)
¬(y ≺ c), E ,¬(y ≺ y),¬(y ≺ x),¬(x ≺ y), x ≺ c,¬(c ≺ y),¬(c ≺ x)

(XII)

E ,¬(y ≺ c),¬(y ≺ y),¬(y ≺ x),¬(x ≺ y), x ≺ c,¬(c ≺ y),¬(c ≺ x)
E ,¬(y ≺ c),¬(y ≺ y),¬(y ≺ x),¬(x ≺ y),¬(x ≺ c), x ≺ c,¬(c ≺ y),¬(c ≺ x)

(XIV)

2.1.1 Construction of a unique deduction tree

Before proving soundness and completeness of the calculus, we show first that for
a given sequence Γ = γ1, . . . , γn one can choose a unique, canonical deduction
tree. This fact will be used in the proof of completeness, but it is also of
independent importance since it suggests the way of possible implementation of
the logic.

The strategy was illustrated in the above example 2.1.4. We start with the
first formula γ1. If it is decomposable, we apply the appropriate rule, (IX–). We
now check whether the obtained indecomposable formulae (“to the left” of the
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“active position” in the obtained sequence1) can be used in any expansion rule
and if they can, we apply the rule. This was not possible in the example, so we
repeated the application of a decomposition rule in the second step. After this
step, still no expansion rule was applicable to the obtained formulae E ,¬(y ≺ c)
– so we consider the next formula to the right to which we could apply a decom-
position rule, (VII–). Left branch gets closed and in the right we consider all
indecomposable formulae obtained so far (“to the left” of the “active position”).
Transitivity rule (XIV) applied to ¬(y ≺ c),¬(y ≺ y) yields a repetition, so it
is not applied. The first possibility is application of the symmetry rule (XII)
to ¬(x ≺ y), after which an application of (XIV) yields an axiomatic sequence.
The following definition captures the above strategy.

Definition 2.1.5 An R-S rule ρ is correctly applicable to a sequence Γ iff one
of the following conditions is satisfied:

1. ρ is an R-S rule which augments Γ by some new formula or

2. there is no rule with the above property that can be applied to a formula
or pair of formulae that lies to the left of the (active) formula or pair of
formulae to which ρ is applicable.

The first point refers exclusively to the expansion rules. In the second point,
ρ may be a replacement rule in which case it is applied to the leftmost decom-
posable formula, so that no expansion rule can be applied “to the left” of it. If,
in this second case, ρ turns out to be an expansion rule, we see that first we
have to apply the rule with one premise formula, i.e., (XII) or else the rule with
two premise formulae which, together, lie as far “to the left” as possible. Since
we only can use one replacement rule for a formula at any time and point 2
in 2.1.5 uniquely defines the expansion rule that is correctly applicable, we get
that there is at most one R-S rule that is correctly applicable to any sequence
Γ at any time.

By a deduction tree for a sequence Γ we mean a tree with Γ labelling the
root, where the number and labelling of the children of each node originates
from the application of some rule to the (sequence labelling the) node itself.
Such a tree is a proof if all leaves are labelled by axiomatic sequences. The
above definition and remarks allow us to define a unique decomposition tree for
any sequence.2 We identify vertex v with its label Π.

Definition 2.1.6 A decomposition tree DT (Γ) for a sequence Γ is a ternary
tree with vertices being (or labelled by) sequences of formulae defined inductively
by:

1Indexing formulae in a sequence as γ1, γ2, . . . , γn, by “γi lying to the left of γj” we mean
simply that i ≤ j. The “active position” is the index of the explicit formula from the premise
– the one which has been processed by the rule.

2We assume, in general, the the set X of all variables is countable. More generally, here we
only need the assumption that it is well ordered, so that we can choose the first variable not
present in a sequence for a fresh variable and we choose ”the next variable in the ordering”
for an arbitrary variable (for each formula which is processed repeatedly, i.e., inherited as
indicated by *).
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1. The root of DT (Γ) is Γ.

2. If a vertex Π is either:

(a) an axiomatic sequence or

(b) an indecomposable sequence to which no expansion rule is correctly
applicable

then Π is a leaf.

3. Otherwise the vertex Π has:

(a) A single child Π′, if the unique rule correctly applicable to Π has a
single conclusion.

(b) Two children Π′,Π′′, if the unique rule correctly applicable to Π has
two conclusions.

(c) Three children Π′,Π′′, Π′′′, if the unique rule correctly applicable to
Π has three conclusions.

We thus obtain

Lemma 2.1.7 For any sequence Γ one can choose a unique decomposition tree,
DT (Γ).

This fact can be used in implementation of the logic. We will use it in the
proof of completeness, where also the following, obvious property will be of
importance.

Lemma 2.1.8 Assume that B = Π1, Π2,Π3, . . . is an infinite branch in DT (Γ)
and let ΓB be the set of all formulae occurring on the vertices of B. Then:

1. ΓB is closed under all expansion rules.

2. If γi ∈ ΓB is decomposable, then there exists a vertex Πi ∈ B such that
Πi = Γ′, γi, Γ′′, where Γ′ is indecomposable (possibly empty) and closed
under all expansion rules. The vertex Πi+1, following Πi in B, is (one
of) the conclusion(s) Γ′, γi+1, Γ′′ obtained by the correct application of the
appropriate decomposition rule to Πi.

2.1.2 Soundness

Theorem 2.1.9 The R-S system is sound.

Proof. We only have to prove that the replacement rules involving .= are sound,
i.e. the rules (IX+) to (XI–). The axiomatic sequences and the remaining rules
were proved sound in [6]. We consider an arbitrary structure 〈A,α〉. We drop
sort subscript assuming that we always address only the relevant sort. We
consider only the cases when a sequence is satisfied because the explicit (active)
formulae are satisfied, since the other cases are trivial.
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1. (IX+)

Γ′, t .= t′,Γ′′

Γ′, t .= x, Γ′′, ∗ | Γ′, t′ .= x, Γ′′, ∗ where t, t′ 6∈ X and x ∈ X arbitrary

⇓ If 〈A,α〉 |= t
.= t′, then 〈A,α〉 trivially satisfies both conclusions since

t
.= t′ is repeated on each side of the conjunction sign.

⇑ If 〈A,α〉 |= t
.= x and 〈A,α〉 |= t′ .= x, then α(t) = α(x) = e = α(x) =

α(t′), where e ∈ |A|, so 〈A,α〉 |= t
.= t′.

2. (IX–)

Γ′,¬(t .= t′), Γ′′

Γ′,¬(t .= x),¬(t′ .= x), Γ′′
where t, t′ 6∈ X and x ∈ X is a new variable

⇓ When 〈A,α〉 |= ¬(t .= t′), we have two cases:

(a) |A| = ∅ then α(x) = ∅ = α(t), so 〈A,α〉 |= ¬(t .= x) and the conclu-
sion holds.

(b) |A| 6= ∅, we have the following subcases:

• α(t) = ∅, then 〈A,α〉 |= ¬(t .= x) and the conclusion holds.
Similarly if α(t′) = ∅.

• |α(t)| > 1, then 〈A, α〉 |= ¬(t .= x) and the conclusion holds.
Similarly if |α(t′)| > 1.

• α(t) = e 6= e′ = α(t′), then we must have either 〈A,α〉 |= ¬(t′ .=
x) or 〈A,α〉 |= ¬(t′ .= x) since α(x) can’t be equal to both e and
e′.

⇑ Suppose that the conclusion holds. We have two cases:

(a) |A| = ∅ then α(t) = ∅ = α(t′), i.e., 〈A,α〉 |= ¬(t .= t′) and the
premise holds.

(b) |A| 6= ∅, so if 〈A,α〉 |= t
.= x, then for the conclusion to hold we

must have 〈A, α〉 |= ¬(t′ .= x), i.e, 〈A,α〉 |= ¬(t .= t′). Similarly if
〈A,α〉 |= t

.= x.

3. (X+)

Γ′, t .= x,Γ′′

Γ′, t ≺ x, Γ′′ | Γ′, x ≺ t, Γ′′ | Γ′,¬E , Γ′′
where x ∈ X and t 6= x

⇓ Suppose 〈A,α〉 |= t
.= x then:

α(x) = α(t) = e ∈ |A|, so |A| is nonempty i.e 〈A,α〉 |= ¬E and
〈A, α〉 |= t ≺ x and 〈A,α〉 |= x ≺ t.
⇑ Suppose 〈A,α〉 |= t ≺ x and 〈A, α〉 |= x ≺ t and 〈A,α〉 |= ¬E then:
e = α(x) ⊆ α(t) ⊆ α(x) = e, i.e e = α(x) = α(t), so 〈A,α〉 |= t

.= x.
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4. (X–)
Γ′,¬(t .= x), Γ′′

Γ′, E ,¬(x ≺ t),¬(t ≺ x), Γ′′
where x ∈ X and t 6= x

⇓ Suppose that 〈A,α〉 |= ¬(t .= x), two cases:

(a) |A| = ∅ then 〈A,α〉 |= E .

(b) |A| 6= ∅, two possibilities:

i. There exists an element e ∈ α(t) such that e 6= α(x), then
〈A,α〉 |= ¬(t ≺ x), or

ii. α(x) = e′ and e′ 6∈ α(t), so 〈A,α〉 |= ¬(x ≺ t)

⇑ Three cases:

(a) 〈A,α〉 |= E , then 〈A, α〉 |= ¬(t .= x)

(b) 〈A,α〉 |= ¬(t ≺ x), then there exists an element e such that e ∈ α(t)
and e 6∈ α(x) so 〈A,α〉 |= ¬(t .= x)

(c) 〈A,α〉 |= ¬(x ≺ t), then there exists an element e such that α(x) = e
and e 6∈ α(t) so 〈A,α〉 |= ¬(t .= x)

5. (XI+)

Γ′, xs
.= ts,Γ′′

Γ′, ts ≺ xs, Γ′′ | Γ′, xs ≺ ts, Γ′′ | Γ′,¬Es,Γ′′
where x ∈ X and t 6= x

The proof of this rule is analogous to the proof of (X+).

6. (XI–)

Γ′,¬(xs
.= ts), Γ′′

Γ′, Es,¬(xs ≺ ts),¬(ts ≺ xs),Γ′′
where x ∈ X and t 6= x

—– The proof of this rule is analogous to the proof of (X–).

¤

2.1.3 Completeness

We first show a lemma which gives the main part of the proof of completeness.

Lemma 2.1.10 Given a set of indecomposable formulae, Γind, that is closed
under all expansion rules and that does not satisfy the axiomatic sequence con-
dition (from section 2.1), there exist a structure MC = 〈AC , αC〉, such that
MC 6|= γ, for every formula γ ∈ Γind, i.e. MC is a counter-model for Γind.
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Proof. Given such a Γind, we define the relation ∼ on the set X of variables
by:3

x ∼ y ⇐⇒ ¬(y ≺ x) ∈ Γind

Closure under expansion rules implies that ∼ is symmetric, rule (XII), and
transitive, rule (XIII).

The relation ³ is the reflexive closure of ∼, i.e.:

x ³ y = ∼ ∪ {(x, x) : x ∈ X}

Again, closure under expansion rules implies that ³ is a congruence wrt. func-
tion applications: given x ³ y then if ¬(x ≺ f(z)) ∈ Γind, then also ¬(y ≺
f(z)) ∈ Γind, by rule (XIV), and if ¬(z ≺ f(x)) ∈ Γind, then also ¬(z ≺ f(y)) ∈
Γind, by rule (XV).

We now define the counter-model MC = 〈AC , αC〉 for Γind as follows:

1. Carrier sets:

(a) |AC |s = ∅ iff ¬Es ∈ Γind

(b) |AC |s = Xs/³ – otherwise

2. Operations: for f : s1 × . . .× sn → sn+1, we define:

(a) f([x])AC = ∅, if |AC |si = ∅ for some 1 ≤ i ≤ n + 1

(b) f([x])AC = {[y] : ¬(y ≺ f(x)) ∈ Γind} – otherwise

3. Assignment:

(a) αC(x) = ∅ iff ¬Es ∈ Γind

(b) αC(x) = [x] – otherwise

We prove that MC is indeed a counter-model for Γind, i.e., MC 6|= γ, for every
formula γ ∈ Γind. We prove the statement for each type of indecomposable
formula.

1. γ = Es ∈ Γind, since Γind is non-axiomatic it means that ¬Es 6∈ Γind,
hence: |AC |s = X/³ 6= ∅, so MC 6|= Es.

2. γ = ¬Es ∈ Γind, so |AC |s = ∅, and we have that MC 6|= ¬Es

3. γ = xs ≺ ys ∈ Γind, then ¬Es 6∈ Γind (otherwise Γind would be axiomatic)
and so |AC |s = Xs/³ and αC(x) = [x] 6= ∅ 6= [y] = αC(y). Then MC |=
x ≺ y ⇐⇒ [x] ⊆ [y], but this holds only if [x] = [y], i.e., only if
¬(xs ≺ ys) ∈ Γind, which is not the case since Γind is not axiomatic.

4. γ = ¬(xs ≺ ys) ∈ Γind, then we have the following subcases:

(a) |AC |s = ∅ then αC(x) = ∅ = αC(y), so MC 6|= ¬(xs ≺ ys)
3We assume, in general, that the set X of all variables is countable. If it is not, we choose

here only the variables which occur in some formula in Γind.
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(b) |AC |s = X/³, then αC(x) = [x] 6= ∅ 6= [y] = αC(y). Then MC |=
x ≺ y ⇐⇒ [x] ⊆ [y], but this holds since ¬(xs ≺ ys) ∈ Γind, i.e.
MC 6|= ¬(xs ≺ ys).

5. γ = xs ≺ fs(x1, . . . , xn) ∈ Γind, since Γind is non-axiomatic we have
¬Es 6∈ Γind, and |AC |s = X/³. We have the following subcases:

(a) αC(xi) = ∅ for some 1 ≤ i ≤ n, then |AC |si
= ∅ by definition of

assignment, (and also ¬Esi
∈ Γind by definition of MC 1a). But then

fMC (x1, . . . , xn) = ∅ by 2a, while αC(x) = [x] 6= ∅, so MC 6|= xs ≺
fs(x1, . . . , xn).

(b) For all 1 ≤ i ≤ n : |AC |si
6= ∅. Then [x] ∈ f([x1], . . . , [xn]) iff

¬(x ≺ f(x1, . . . , xn)) ∈ Γind, but this is a contradiction since Γind is
non-axiomatic, so MC 6|= xs ≺ fs(x1, . . . , xn).

6. γ = ¬(xs ≺ fs(x1, . . . , xn)) ∈ Γind, we have the following subcases:

(a) |AC |s = ∅, then fAC (x1, . . . , xn) = ∅ = αC(x), so MC 6|= ¬(xs ≺
fs(x1, . . . , xn)).

(b) |AC |s = Xs/³, we have two subcases:

i. αC(xi) = ∅ for some 1 ≤ i ≤ n, then we have for the sort si of
xi that ¬Esi ∈ Γind. Since ¬(xs ≺ fs(x1, . . . , xn)) ∈ Γind and
Γind is closed under expansion rules we get by the expansion rule
(XVI) that ¬Es ∈ Γind, this is a contradiction since ¬Es ∈ Γind

implies that |AC |s = ∅.
ii. All the carriers of the sorts of the variables xi are nonempty.

So we have [x] ∈ f([x1], . . . , [xn]) iff ¬(x ≺ f(x1, . . . , xn)) ∈
Γind, and since the latter holds we get that MC 6|= ¬(x ≺
f(x1, . . . , xn)).

¤
Using this lemma, we obtain the main completeness theorem.

Theorem 2.1.11 The R-S system is complete: if |= Γ
(i.e., ∀〈A,α〉 : 〈A, α〉 |= Γ), then ` Γ.

Proof. We show that if 6` Γ, then 6|= Γ, i.e., there exists a structure MC

with MC 6|= Γ. Let DT (Γ) be the unique decomposition tree for Γ as defined in
def. 2.1.6. There are two situations when DT (Γ) is not a proof:

I. Some leaves are labelled by non-axiomatic sequences – then such leaves
have labels containing only indecomposable formulae, or

II. The tree is infinite, which implies (by the König lemma) that there exists
an infinite branch.
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In either case we can find a set Γind of indecomposable formulae closed under
all expansion rules which is valid if Γ is valid. Thus, a counter-model MC for
Γind, which exists by lemma 2.1.10, is also a counter-model for Γ.
I. The non-axiomatic sequence labelling one of the leaves can be taken as Γind

– by definition of DT (Γ), Γind is closed under all expansion rules. Since M |= Γ
implies M |= Γind, lemma 2.1.10, giving a counter-model MC 6|= Γind, implies
that MC 6|= Γ.
II. Select an infinite branch B from DT (Γ). If an indecomposable formula
appears at some vertex of B, then it appears also at all subsequent vertices.
Let Γind be the union (infinite set) of all indecomposable formulae appearing in
the labels of the vertices on the branch B. Γind does not satisfy the axiomatic
sequence condition, for if it does, then there exists a vertex at which this axiom
occurs and which would terminate B. Also, by lemma 2.1.8, Γind is closed under
all expansion rules. Thus Γind satisfies the conditions of lemma 2.1.10, so let
MC be the counter-model as it was defined in the proof of this lemma.4 We
show that MC is a counter-model for all the formulae occurring in the labels
of the vertices of B, and since the root vertex of B is the root of DT (Γ), i.e.,
is labelled with Γ, we have that MC is a counter-model for Γ. The proof goes
by induction on the rank of a formula γ, ord(γ), which we define so that the
applications of rules never increase the rank of the formulae in the sequence
and, eventually, decrease it.

• ord(γ) = 0, if γ is indecomposable;

• otherwise:

– ord(x ≺ t) = ord(¬(x ≺ t)) = 1 (where t 6∈ X, x ∈ X)

– ord(t ≺ t′) = ord(¬(t ≺ t′)) = 2 (where t 6∈ X)

– ord(x .= t) = ord(t .= x)) = ord(¬(x .= t)) = ord(¬(t .= x)) = 2
(where t may be a variable, even x)

– ord(t .= t′) = ord(¬(t .= t′)) = 3 (where both t 6∈ X and t′ 6∈ X)

– ord(γ′ ∨ γ′′) = ord(γ′ ∧ γ′′) = max(ord(γ′), ord(γ′′)) + 1.

– ord(¬γ′) = ord(γ′) + 1, if γ′ is not any of the above cases.

Now, if MC |= Γ, then the set Γsat of all formulae γ′, appearing in one of the
vertices of B and such that MC |= γ′, is nonempty, since Γ ∩ Γsat 6= ∅. Let
γi ∈ Γsat be such that ord(γi) ≤ ord(γ′), for every γ′ ∈ Γsat. We show, by
induction on the rank of γi, that it must be indecomposable.

Suppose that γi is decomposable. By point 2. of lemma 2.1.8, there exists a
vertex Πi ∈ B such that Πi = Γ′, γi, Γ′′, where Γ′ is indecomposable (possibly
empty) and closed under all expansion rules, and Πi+1 is the vertex following
Πi in B, with the label Γ′, γi+1, Γ′′′ obtained by the correct application of a
decomposition rule. Considering the possible cases for γi, we show that there

4Here, as well as in the point I., the carrier of the counter-model MC can be constructed
only from the variables occurring in Γind.
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exists a γ′ ∈ Γsat with ord(γ′) < ord(γi), which contradicts the assumption
about γi:

1. φ ∨ µ,¬(φ ∨ µ), φ ∧ µ,¬(φ ∧ µ),¬¬φ. If γi has one of these forms, then
ord(γi+1) < ord(γi) and MC |= γi+1, which contradicts the definition of
γi.

2. ¬(t .= t′).

(a) If neither t, t′ 6∈ X, then by rule (IX–), Πi+1 = Γ′,¬(t .= x),¬(t′ .=
x),Γ′′. We then have that MC |= γ′, where γ′ is either ¬(t .= x) or
¬(t′ .= x). In either case ord(γ′) = 2 < 3 = ord(γi) which contradicts
the definition of γi.

(b) If t = x ∈ X or t′ = x ∈ X then, by rule (X–) or (XI–), Πi+1 =
Γ′,¬(t ≺ x),¬(x ≺ t),Γ′′, and if MC |= γi then MC |= γ′ where γ′ is
either ¬(t ≺ x) or ¬(x ≺ t). Hence ord(γ′) ≤ 1 < 2 = ord(γi), which
contradicts the definition of γi. (ord(γ′) < 1 when both t, t′ ∈ X.)

3. t
.= t′.

(a) If t 6∈ X and t′ 6∈ X then, by rule (IX+), γi+1 is t
.= x (if B follows

DT (Γ) along the left conclusion), or t′ .= x (if B proceeds along the
right conclusion – both cases are entirely analogous). If MC |= γi+1

then we are done, since in either case ord(γi+1) = 2 < 3 = ord(γi).
However, it may happen that MC 6|= γi+1 (because of a wrong choice
of the variable x). Then Πi+1, as well as all other vertices along B,
inherit t

.= t′ as Γ′, t .= x, Γ′′, t .= t′. 5 At some point, the trailing t
.=

t′ will be processed anew according to rule (IX+), introducing a new
variable: t

.= y (or in t′ .= y). Eventually, since MC |= t
.= t′, we will

get the appropriate variable, say z, such that MC |= t
.= z (or MC |=

t′ .= z). 6 Satisfaction of this formula contradicts the assumption
about γi = (t .= t′), since ord(t .= z) = 2 < 3 = ord(t .= t′).

(b) If t ∈ X or t′ ∈ X then γi+1 has the form t ≺ x or x ≺ t (or t′ instead
t) or ¬E (by rule (X+) or (XI+)) and hence:
ord(γi+1) ≤ 1 < 2 = ord(γi), which contradicts the definition of γi.
(ord(γi+1) = 0 if γi+1 = ¬E .)

4. ¬(t ≺ t′).

(a) If t 6∈ X then Πi+1 = Γ′, γi+1,Γ′′,¬(t ≺ t′). The argument is entirely
analogous to that in point 3a. B follows DT (Γ) either along the
left conclusion of the rule (VII–) with γi+1 = x ≺ t, or along the

5If MC |= γ′′ for some formula γ′′ ∈ Γ′′ with ord(γ′′) = 3 = ord(t
.
= t′), then γ′′ is either

of the form s
.
= s′ or ¬(s

.
= s′). The latter case was covered in point 2 and the former is the

same as the current case. (It may also be of the form φ ∧ ψ, φ ∨ ψ or ¬φ but all these cases
have been covered in point 1.)

6Since the carrier |AC | of MC is constructed as a quotient of the variable set X, the
assignment αC is surjective.
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right one with γi+1 = ¬(x ≺ t′). In either case ord(γi+1) = 1 <
2 = ord(γi), so if MC |= γi+1, we are done.7 Eventually, the trailing
¬(t ≺ t′), inherited in Πi+1 and all following vertices in B, will
be processed again and again along B according to the rule (VII–)
providing, eventually, a witness variable, say y, such that MC |= y ≺ t
– if B happens to proceed along a left conclusion, or MC |= ¬(y ≺ t′)
– if B proceeds along the right conclusion. In either case, the satisfied
formula has lower rank than γi which contradicts its definition.

(b) If t ∈ X then, as γi+1 is decomposable, t′ = f(. . . , t′′, . . .) with t′′ 6∈
X. By rule (VIII–), Πi+1 = Γ′,¬(y ≺ t′′),¬(t ≺ f(. . . , y, . . .),Γ′′,
and the assumption MC |= ¬(t ≺ t′) implies
MC |= ¬(y ≺ t′′),¬(t ≺ f(. . . , y, . . .). Before any branching of
DT (Γ), i.e., still along the branch B, the rule (VIII–) (and possibly
some expansion rules) will be applied to both these formulae until
we get only indecomposable formulae. Since MC |= γi = ¬(t ≺ t′),
we must have MC |= γ′ for one of these indecomposable formulae,
which contradicts the definition of γi.

5. t ≺ t′.

(a) If t 6∈ X then, by rule (VII+), Πi+1 = Γ′,¬(x ≺ t), x ≺ t′, Γ′′. Then
MC |= t ≺ t′ implies MC |= ¬(x ≺ t), x ≺ t′. But each of these two
formulae has rank lower than γi, which contradicts its definition.

(b) If t = x ∈ X then t′ = f(. . . , t′′, . . .) and B follows DT (Γ) either
along the left or along the right conclusion of rule (VIII+), with
γi = x ≺ f(. . . , t′′, . . .) repeated at the end of the sequence. The
argument is analogous to those in points 3a and 4a. γi+1 has the
form y ≺ t′′ (if B follows the left branch), or x ≺ f(. . . , y, . . .) (if
B follows the right branch), and in either case the rule (VIII+) is
applied until γi+1 becomes indecomposable formula. If MC satisfies
it, we get a contradiction with the definition of γi. Otherwise, the
trailing repetition of γi has to be processed again and again along B,
and the above argument leads to an indecomposable formula which
has to be satisfied, thus yielding a contradiction with the definition
of γi.

Thus we have shown that a formula γi which appears on an infinite branch
B of DT (Γ), which is satisfied, MC |= γi, and which is of lowest rank among
the formulae satisfying these two conditions, has to have rank 0, i.e., must be
indecomposable, which means that γi ∈ Γind. But then MC 6|= γi, by the
construction of MC in lemma 2.1.10, which contradicts the assumption that
MC |= γi. ¤

7If MC |= γ′′ for some γ′′ ∈ Γ′′ with ord(γ′′) = 2 = ord(γi), then γ′′ has either the form
s ≺ s′ or ¬(s ≺ s′). The former case is treated in point 5 below, while the latter is the present
case.
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Corollary 2.1.12 A sequence Γ has a proof in the R-S system iff DT (Γ) is a
proof.

Proof. The ‘if’ part is trivial and the ‘only if’ part follows from the proof of
the above theorem. If DT (Γ) is not a proof, then we have a counter-model for
Γ. Since R-S is sound, we conclude that Γ is not provable. ¤

2.2 Specifications and system R-S*

The system R-S can be used to derive only tautologies – valid sequences. But
we are really interested in proving logical consequences of specifications. (For
the purposes of this chapter, we can safely ignore the signature assuming that
all expressions are well-formed, and identify a specification with the set of its
axioms.) We are interested in proving sequents which follow logically from
specifications. In this section we extend the R-S logic to fulfill this function.
(In the following section we will return to the sequent form and transform the
R-S* logic into a sound and complete Gentzen system.)

2.2.1 Specifications

Specifications are sets of sequents from which one may derive other sequents.

Definition 2.2.1 A Σ sequent is a pair (Γ, ∆) of finite sets of formulae from
FΣ,X , written Γ → ∆.

The notation Γ → ∆ is implicitly assumed to mean the same as: γ1, . . . , γn →
δ1, . . . , δm. As a matter of fact, following earlier works, e.g. [22, 55], our specifi-
cations involve only sequents of atomic formulae (i.e., each γi, δj is terms com-
bined by either equality or inclusion), but we may occasionally need this more
general definition, allowing γi, δj to be formulae as given in definition 1.1.12.
Keep also in mind that all formulae in a sequent are quantifier free.

Definition 2.2.2 A Σ sequent Γ → ∆ is valid iff for every Σ-structure
〈A, α〉 such that 〈A,α〉 |= γ, for all γ ∈ Γ, there exists a δ ∈ ∆ such that
〈A, α〉 |= δ.

Lemma 2.2.3 A sequent Γ → ∆ is valid iff the sequence ¬Γ, ∆ is valid.

The latter notation stands for the sequence ¬γ1, . . . ,¬γn, δ1, . . . , δm, where
γ1, . . . , γn → δ1, . . . , δm is the respective sequent.

Definition 2.2.4 The function tr translates sequents to (quantifier free) for-
mulae in FΣ,X :

• tr(γ1, . . . , γn → δ1, . . . , δm) = ¬γ1 ∨ . . . ∨ ¬γn ∨ δ1 ∨ . . . ∨ δm.

• for Ψ = {ψ1, ..., ψn} : tr(Ψ) = {tr(ψ1), ..., tr(ψn)}
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With the above notation, lemma 2.2.3 can be stated as: for any structure 〈A,α〉
and sequent ψ : 〈A,α〉 |= ψ ⇐⇒ 〈A,α〉 |= tr(ψ)

The models for a specification are not structures with an assignment, but
algebras satisfying the axioms for all possible assignments:

Definition 2.2.5 Given a specification SP = (Σ, Ψ), a Σ-algebra A, and a
sequent (formula, sequence) ψ, we define the satisfaction relation for sequents
and algebras by:

1. A |= ψ ⇐⇒ A |= tr(ψ) i.e ∀α.〈A,α〉 |= tr(ψ)

2. A |= Ψ ⇐⇒ ∀ψi ∈ Ψ.A |= tr(ψi)

3. Ψ |= ψ ⇐⇒ ∀A.(A |= Ψ ⇒ A |= tr(ψ)).

Notice that in the case of tautologies the two notions of satisfiability coin-
cide.The above definition may be applied also when ψ’s are arbitrary formulae,
in which case we simply drop the applications of tr(ψ). This convention will be
applied below – ψ stands, in general, for arbitrary formula, while the notation
tr(ψ) indicates that ψ is a sequent.

2.2.2 System R-S*

We introduce the syntax for indicating nonlogical axioms, define their semantics,
and extend the system R-S with a new rule to handle such sequents.

Definition 2.2.6 An axiom ψ is written ![ψ]

The procedure for extending the R-S system is quite standard – in order to
prove a sequent ψ from a specification (set of sequents) Ψ = {ψ1, . . . , ψn}, we
perform a translation, tr, of ψ and all the sequents from Ψ into formulae, form
a sequence corresponding to (

∧

ψi∈Ψ

![tr(ψi)]) → tr(ψ), and try to prove it in the

system R-S augmented with the appropriate rule for treating axioms on the left
of ‘→’. The standard notion of satisfaction of such a formula is equivalent to
the satisfaction of a sequence

¬![tr(ψ1)], . . . ,¬![tr(ψn)], tr(ψ) (2.1)

The details concerning the corresponding Gentzen system will be given in Sec-
tion 2.3. For the time being we merely observe that in order to reason about
specifications we have to extend the R-S proof system by a new rule to handle
axiomatic formulae, i.e., the formulae with the form ¬![φ]. (Notice that in (2.1)
we do not nest axiomatic formulae, and they always occur under the negation
¬. Since specifications will only involve sequents over atomic formulae, we do
not need the full power of universal and/or existential quantifiers.) Therefore
we introduce ![ ], resp. ¬![ ] as new logical connectives which, however, are used
only at the outermost level of formulae.
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Definition 2.2.7 For a structure 〈A,α〉 and a formula ψ, we define:

• 〈A, α〉 |= ![ψ] ⇐⇒ A |= ψ (i.e., iff ∀α′.〈A,α′〉 |= ψ). Consequently:

• 〈A, α〉 |= ¬![ψ] ⇐⇒ 〈A,α〉 6|= ![ψ] ⇐⇒ A 6|= ψ
(i.e., iff ∃α′.〈A,α′〉 |= ¬ψ).

As usual, α′ matters only in so far as it differs from α on the variables occurring
in ψ.

Notice that we quantify over assignments α′ – according to definition 1.1.13
such an assignment may exist even if the carrier A is empty, in which case all
variables are assigned ∅. ![ ] does play the role of the universal closure but over
assignments and not only elements of the carrier. Similarly ¬![ ] corresponds to
existential closure over assignments.

For a formula φ, we write φ[y/x] for φ with all occurrences of the variables
from the sequence x replaced by the respective variables from the sequence y.

The R-S* system is obtained by augmenting the R-S system with the fol-
lowing rule:

(AX)
Γ′,¬![γ],Γ′′

Γ′,¬γ[y/x],Γ′′, ∗ where x are all variables in γ, and y are arbitrary

Lemma 2.2.8 The R-S* system is sound:

Proof. The R-S system is sound so it remains to prove soundness of the
new rule. We let 〈A,α〉 be an arbitrary structure. M = 〈A,α〉
⇓ If 〈A,α〉 |= ¬![γ], then 〈A, α〉 obviously satisfies the conclusion of the rule

since this formula is repeated there.

⇑ If 〈A,α〉 |= ¬γ[y/x], we let α′(x) = α(y) ∈ |A| ] {∅}, so 〈A,α′〉 |= ¬γ. By the
definitions 2.2.7 and 2.2.5 we have that:

〈A,α′〉 |= ¬γ ⇒ 〈A,α′〉 6|= γ ⇒ A 6|= γ ⇒ 〈A,α〉 |= ¬![γ]

Every other formula from the conclusion appears also in the premise, so
all these cases are trivial.

¤

Remark 2.2.9 As one could expect, the definition of satisfaction 2.2.7 makes
¬![γ] equivalent to its standard counterpart ∃α : 〈A,α〉 6|= γ. The non-standard
aspect is that such quantification over assignments does not coincide with the
quantification over elements of the carrier, since in case of empty carrier we
still admit the assignment α(x) = ∅.

Consider the following special cases, with Γ′ = ∅ = Γ′′, of the application of
rule (AX):
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1. If γ is ¬(xs
.= xs), we get:

(AX)
¬![¬(xs

.= xs)]
¬¬(ys

.= ys), ∗ xs ∈ X

Applying (IV–) to the conclusion, we obtain ys
.= ys, i.e., ¬Es. Thus the

formulae ¬![¬(xs
.= xs)] and ¬¬(xs

.= xs) ≡ ¬Es, are really equivalent,
i.e. ∃α : x

.= x is equivalent to ∃x : x
.= x. (If the carrier is empty, there

is not only no element but also no assignment making x
.= x, since ∅ does

not satisfy this equality.)

2. If γ is xs
.= xs, we get:

(AX)
¬![xs

.= xs]
Es, ∗ xs ∈ X

where Es in the conclusion corresponds to ¬(ys
.= ys), for some variable

ys substituted for xs.

Thus ¬![xs
.= xs] and ¬(xs

.= xs) ≡ Es, are equivalent, and correspond to
∃α : ¬(x .= x) which is satisfied only by the structures with empty carrier.
Note, however, that this is not equivalent to ∃x : ¬(x .= x) – this last
formula is actually a contradiction.

In earlier logics see e.g. [50, 54], one did not admit empty carrier and then x
.= x

was axiomatic. The generalization with this respect amounts to having made
this formula valid if and only if carrier is non-empty. The significant difference
with respect to [6](where empty carriers were allowed), is that our treatment
of (non-)empty carrier is essentially quantifier-free – it amounts merely to the
treatment of the formulae x

.= x (resp. ¬(x .= x)) which is carried over to the
respective axioms as shown in the remark above. In [6], this required formulae
of the form ∃x.x ≺ x (resp. ¬∃x.x ≺ x).

Lemma 2.2.10 The R-S* proof system is complete: for any sequence Γ (of
formulae from FΣ,X or, possibly, of the form (2.1)), if |= Γ then ` Γ.

Proof. The only difference from the R-S proof system is the presence of the
new kind of formulae and the new rule (AX). Note that the R-S* system has
the same axiomatic sequences and the same indecomposable formulae as the
R-S system. The proof is therefore the same as before, based on the counter-
model MC from lemma 2.1.10. We only have to consider a new possible case
of a formula γi which, occuring on the selected infinite branch B (from which
we constructed the counter-model MC), has the lowest rank such that MC |=
γi. (Lemmata 2.1.7 and 2.1.8 remain trivially true for the R-S* system. To
obtain unique decomposition tree, we would have to extend the well-ordering
of variables from footnote 2 to finite sequences of variables since rule (2.2.2)
performs uniform substitution for all variables in the processed formula.) We
define the rank of the formula ¬![γ] by:
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• ord(¬![γ]) = ord(¬γ) + 1

As in the proof of theorem 2.1.11, let Πi ∈ B be such that Πi = Γ′, γi, Γ′′,
where Γ′ is indecomposable (possibly empty), γi = ¬![γ] and Πi+1 be the vertex
following Πi in B with the label Γ′, γi+1,Γ′′′.

6. If B follows the conclusion, then, eventually, there must be a vertex Πj ∈
B, j > i, including the formula ¬γ[y/x] such that MC |= ¬γ[y/x], since
MC |= γi (and since the carrier of MC is obtained as a quotient of the
variable set X, with αC(y) = [y]). Whether this happens already for
j = i + 1 or later does not matter since in either case we have:
ord(¬γ[y/x]) = ord(¬γ) < ord(¬γ) + 1 = ord(γi).

¤
We introduce the following notational abbreviations:

Definition 2.2.11 Given a set of formulae Ψ = {ψ1, . . . , ψn} ⊆ FΣ,X and a
formula ψ ∈ FΣ,X , we write:

• Ψ ` ψ ⇐⇒ ` ¬![ψ1], . . . ,¬![ψn], ψ

• Ψ |= ψ ⇐⇒ |= ¬![ψ1], . . . ,¬![ψn], ψ

The above lemmata 2.2.8, 2.2.10 give us:

Theorem 2.2.12 For any formula φ and set of formulae Φ = {φ1, . . . , φn}:

Φ ` φ ⇐⇒ Φ |= φ

Corollary 2.2.13 For any specification Ψ and sequent ψ:

Ψ ` ψ ⇐⇒ Ψ |= ψ

Proof. By the above theorem 2.2.12, we only have to show, for any specification
Ψ and sequent ψ : Ψ |= ψ ⇐⇒ Ψ |= ψ.

We have:

Ψ |= ψ
2.2.3⇐⇒ tr(Ψ) |= tr(ψ)
2.2.11⇐⇒ |= ¬![tr(ψ1)] ∨ ... ∨ ¬![tr(ψ1)] ∨ tr(ψ)
2.2.5⇐⇒ |= ¬![tr(ψ1)] ∨ ... ∨ ¬![tr(ψ1)] ∨ tr(ψ)
⇐⇒ ∀A. A |=

∨

ψi∈Ψ

¬![tr(ψi)] ∨ tr(ψ)

And:

Ψ |= ψ
2.2.5⇐⇒ ∀A. (A |= Ψ ⇒ A |= tr(ψ))
⇐⇒ ∀A. (A |=

∧

ψi∈Ψ

tr(ψi) ⇒ A |= tr(ψ))
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We thus have to show the following equivalence:

∀A.
(
A |=

∧

ψi∈Ψ

tr(ψi) =⇒ A |= tr(ψ)
)

⇐⇒ ∀A.
(
A |=

∨

ψi∈Ψ

¬![tr(ψi)] ∨ tr(ψ)
)

⇐) Assume the RHS, and let A be arbitrary:
A |=

∧
tr(ψi)

2.2.7⇐⇒ ∀α.( 〈A,α〉 |=
∧

![tr(ψi)] )

⇐⇒ ∀α.( 〈A,α〉 6|=
∨
¬![tr(ψi)] )

RHS=⇒ ∀α.( 〈A,α〉 |= tr(ψ) )
2.2.5⇐⇒ A |= tr(ψ)

⇒) Assume LHS and choose arbitrary A and α.
If 〈A, α〉 |=

∨
¬![tr(ψi)], then RHS is satisfied. So assume the opposite, i.e.:

〈A, α〉 6|=
∨
¬![tr(ψi)] ⇐⇒ 〈A, α〉 |=

∧
![tr(ψi)]

2.2.7⇐⇒ A |=
∧

tr(ψi)

LHS=⇒ A |= tr(ψ)
2.2.5=⇒ 〈A, α〉 |= tr(ψ) ¤

We have thus obtained the sound and complete system for proving consequences
of specifications. As remarked, the system R-S*, with the unique proof strategy
described in Section 2.1.1, is well suited for implementation. It is, however, less
convenient for doing proofs by hand. In the following section we make the last
step and design a Gentzen system which provides simpler means for performing
proofs by hand – it works directly with sequents and does not require any
translation of sequents into formulae.

2.3 Gentzen calculus

We will first describe a trivial translation of the R-S* system into a Gentzen
system, GS’, and then simplify it to the system GS”, which we show to be
equivalent to GS’. The final Gentzen system GS, given in Section 2.3.1, will be
obtained by some further simplifications of GS”.

Definition 2.3.1 We say that a formula γ, in FΣ,X , or of the form,
¬![φ], φ ∈ FΣ,X , is negative if it has the form ¬γ′, and non-negative else. For
any sequence Γ we define:

• Γ+ = {γ ∈ FΣ : γ is non-negative and γ ∈ Γ}
• Γ− = {γ ∈ FΣ : ¬γ ∈ Γ}
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We can now rephrase lemma 2.2.3 in the following way:

Corollary 2.3.2 A sequence of formulae Γ is valid iff the sequent Γ− → Γ+ is
valid.

The Genzen system we will design has three fundamental differences from the
R-S system:

• The rules in Gentzen system are applied “bottom up” (hence the inversion
of the R-S rules).

• The rules in Gentzen system are not invertible – they are sound “top
down”, i.e., if the premise (above the stroke) is valid then so is the con-
clusion.

• Sequents are pairs of sets of formulae, where sequence ordering is ignored.

We use the corollary 2.3.2 on the different types of R-S rules and get the following
lemma. Π stands for the active (sub)sequence of an R-S rule and Λ for the
resulting (sub)sequence. Γ′ and Γ′′ in the R-S rules are arbitrary, so they are
replaced in Gentzen rules by arbitrary Γ’s and ∆’s.

Lemma 2.3.3 For any sound R-S rule (in the left column), the corresponding
sequent (in the right column) is sound:

R-s rule Gentzen rule
Γ′, Π, Γ′′

Γ′, Λ, Γ′′
Γ, Λ− → ∆, Λ+

Γ,Π− → ∆, Π+

Γ′, Π, Γ′′

Γ′, Λ1, Γ′′ | Γ′,Λ2, Γ′′
Γ,Λ−1 → ∆,Λ+

1 | Γ, Λ−2 → ∆,Λ+
2

Γ, Π− → ∆, Π+

Γ′, Π,Γ′′

Γ′,Λ1,Γ′′ | Γ′, Λ2, Γ′′ | Γ′,Λ3, Γ′′
Γ,Λ−1 → ∆,Λ+

1 | Γ, Λ−2 → ∆,Λ+
2 | Γ, Λ−3 → ∆, Λ+

3

Γ,Π− → ∆,Π+

Applying the translation schema from lemma 2.3.3 to all the rules and axioms
of the R-S system yields a Gentzen system GS’, to which we add one rule:

(IV +)
Γ, γ → ∆

Γ → ∆,¬γ

Theorem 2.3.4 The system GS’ is sound and complete, for any sequent ψ:

`GS′ ψ ⇐⇒ |= ψ

Proof. The system is sound by lemma 2.3.3 – soundness (and invertibility)
of the rule (IV+) is obvious and so, by completeness of the R-S system, this
rule is admissible there.

If a sequent Γ → ∆ is valid, then the corresponding R-S sequence ¬Γ, ∆ is
also valid. Since the R-S system is complete it means that ¬Γ, ∆ has a proof
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in the R-S system, i.e. a finite decomposition tree T with leaves labelled by
axiomatic sequences. We can then construct a Gentzen proof of the sequent
Γ → ∆ in GS’, by mimicking the structure of this decomposition tree T .

The construction starts at the leaves of the deduction tree T , they are la-
belled by axiomatic sequences, and the corresponding sequents are axiomatic
too. We proceed upwards in T by replacing each downward application of an
R-S rule by an upwards application of the corresponding GS’ rule.

The induction is finished at the root of T , which is labelled by the sequence
¬Γ,∆. Thus the sequent: (¬Γ,∆)− → (¬Γ, ∆)+ can be derived in GS’, but
this sequent need not be the original sequent Γ → ∆. The possible difference
concerns the negative formulae: a formula ¬φ ∈ ¬Γ, ∆, may figure in the original
sequent as φ on the left of ‘→’ or as ¬φ on the right. To obtain the original
sequent from the above one, the required transformations can be performed
using the added swapping rule (IV+) (and, possibly, (IV–)). ¤
The system GS” given below is a slightly simplified version of GS’. Each rule

has the same number as the respective rule in the R-S system from which it was
obtained.
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Axioms

(I) Γ → x ≺ x, ∆ : x ∈ X (II) Γ, γ → γ, ∆ (III) Γ, Es → ts ≺ t′s,∆

Replacement rules

+ –

(IV)
Γ, γ → ∆

Γ → ∆,¬γ

Γ → ∆, γ

Γ,¬γ → ∆

(V)
Γ → ∆, γ, φ

Γ → ∆, γ ∨ φ

Γ, γ → ∆ | Γ, φ → ∆
Γ, γ ∨ φ → ∆

(VI)
Γ → ∆, γ | Γ → ∆, φ

Γ → ∆, γ ∧ φ

Γ, γ, φ → ∆
Γ, γ ∧ φ → ∆

(VII)

Γ, x ≺ t → ∆, x ≺ t′

Γ → ∆, t ≺ t′

t 6∈ X, and x ∈ X is fresh

Γ → ∆, x ≺ t | Γ, x ≺ t′ → ∆
Γ, t ≺ t′ → ∆

t 6∈ X and x ∈ X arbitrary

(VIII)

Γ → ∆, y ≺ t | Γ → ∆, x ≺ f(. . . , y, . . .)
Γ → ∆, x ≺ f(. . . , t, . . .)

where y ∈ X arbitrary and t 6∈ X

Γ, y ≺ t, x ≺ f(. . . , y, . . .) → ∆
Γ, x ≺ f(. . . , t, . . .) → ∆

where y ∈ X is fresh and t 6∈ X

(IX)

Γ → ∆, t
.= x | Γ → ∆, t′ .= x

Γ → ∆, t
.= t′

t, t′ 6∈ X and x ∈ X arbitrary

Γ, ts
.= xs, t

′
s

.= xs → ∆
Γ, ts

.= t′s → ∆

ts, t
′
s 6∈ X and xs ∈ X is fresh

(X)

Γ → ∆, ts ≺ xs | Γ → ∆, xs ≺ ts | Γ → ∆,¬Es

Γ → ∆, ts
.= xs

where xs ∈ X and ts 6= xs

Γ, ts ≺ xs, xs ≺ ts,¬Es → ∆
Γ, ts

.= xs → ∆

where xs ∈ X and ts 6= xs

(XI)

Γ → ∆, ts ≺ xs | Γ → ∆, xs ≺ ts | Γ → ∆,¬Es

Γ → ∆, xs
.= ts

where xs ∈ X and ts 6= xs

Γ, ts ≺ xs, xs ≺ ts,¬Es → ∆
Γ, xs

.= ts → ∆

where xs ∈ X and ts 6= xs

(AX)

Γ, γ[ys/xs] → ∆
Γ, ![γ] → ∆

where ys arbitrary
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Expansion rules

(XIV)

Γ, y ≺ f(z) → ∆
Γ, y ≺ x, x ≺ f(z) → ∆

(sound for arbitrary x ∈ X)

(XII)
Γ, x ≺ y → ∆
Γ, y ≺ x → ∆

(XV)

Γ, x ≺ f(. . . , y, . . .) → ∆
Γ, y ≺ z, x ≺ f(. . . , z, . . .) → ∆

(sound for arbitrary z ∈ X)

(XIII)
Γ, y ≺ z → ∆

Γ, y ≺ x, x ≺ z → ∆

(XVI)
Γ, xs′ ≺ f(. . . , ys, . . .) → ∆,¬Es,¬Es′

Γ, xs′ ≺ f(. . . , ys, . . .) → ∆,¬Es

Theorem 2.3.5 The system GS” given above is equivalent to the system GS’,
in particular, GS” is sound and complete, i.e., for any sequent ψ :

`GS′′ ψ ⇐⇒ `GS′ ψ

Proof. The replacement rules in GS” are essentially the same as in GS’, i.e.,
are obtained directly by the translation of the respective R-S* rules. The only
difference is that the GS” rules (VII–), (VIII+), (IX+), and the axiom rule
(AX), i.e., the rules involving a choice of an arbitrary variable, do not repeat
the active formulae (from the conclusion in the premise(s)). This does not
change the power of the system since the repetition of the active formulae (in
R-S* and GS’) can be now simulated by an immediate choice (“guessing”) of
the appropriate variable.

The new replacement rule, (IV–), was commented in the proof of complete-
ness theorem 2.3.4, and is present in both systems GS’ and GS”.

The remaining expansion rules are simplified slightly in GS” by dropping
some of the formulae from the premisses. (Thus, they are not invertible, though
obviously sound.) For instance, following the translation schema from lemma 2.3.3,
the symmetry rule in GS’ looks as:

(XII ′)
Γ, x ≺ y, y ≺ x → ∆

Γ, y ≺ x → ∆
while in GS” it became:

(XII)
Γ, x ≺ y → ∆
Γ, y ≺ x → ∆

However, each is admissible given the other, given admissibility of weakening
rules (W) which follows by standard argument.

(W)+(XII’) ⇒ (XII) (XII) ⇒ (XII’)
Γ, x ≺ y → ∆ Γ, y ≺ x, x ≺ y → ∆

(W) Γ, y ≺ x, x ≺ y → ∆ Γ, y ≺ x, y ≺ x → ∆ (XII)

(XII’) Γ, y ≺ x → ∆ = Γ, y ≺ x → ∆
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Equivalence of the other expansion rules from GS’ and GS” is shown by similarly
simple and entirely analogous derivations.

Weakening rules (W) are admissible in GS’ (and in R-S*) by the standard
argument. Consider the rule

(W )
Γ → ∆

Γ, Λ → ∆

, and assume that Γ → ∆ is derivable in GS’. Each leaf of its proof tree T ,
which is an axiomatic sequent Γ′ → ∆′, can be extended with Λ to Γ′, Λ → ∆′,
yielding again an axiomatic sequent. Propagating Λ’s across the whole tree T
will give a proof for Γ, Λ → ∆. (Possibly, the names of fresh variables at some
nodes may need to be chosen differently in order not to clash with the names
of variables in Λ.) By completeness of GS’, the rule is admissible. ¤
Summarizing our results (the above theorem 2.3.5, soundness and completeness
of GS’ from theorem 2.3.4, we obtain a counterpart of the corollary 2.2.13 for
the system GS”:

Corollary 2.3.6 For any specification Ψ = {ψ1, . . . , ψn} and sequent ψ we
have that:

Ψ |= ψ ⇐⇒ `GS′′ ![tr(ψ1)], . . . , ![tr(ψn)] → tr(ψ)

2.3.1 The final Gentzen system GS

Assuming that all our sequents are as indicated in the specifications, i.e., contain
only atomic formulae, and observing that function tr (def. 2.2.4) introduces only
disjunctions, the above corollary 2.3.6 holds also when we remove from GS” both
rules (VI). We now perform a final transformation to obtain a “pure” sequent
calculus for specifications, i.e., one operating only on sequents of atomic formulae
and allowing to derive such sequents from specifications without any translation
nor axiom rules.

For the sake of example, let our specification contain only one sequent,
Ψ = {γ → δ}. To derive from it Γ → ∆, we would try to prove ![¬γ ∨ δ], Γ → ∆
which, applying the rule (AX), amounts to:

(¬γ ∨ δ)[y/x],Γ → ∆
![¬γ ∨ δ],Γ → ∆

y arbitrary (2.2)

where y’s match the respective variables x from γ → δ. Applying the rules for
disjunction (V) and for negation (IV–) in the antecedent of a sequent, we will
end up with the assumptions as indicated in the following:

δ[y/x], Γ → ∆ | Γ → ∆, γ[y/x]
![¬γ ∨ δ],Γ → ∆

y arbitrary (2.3)

All the assumptions are now sequents and this illustrates the idea of the final
step. We are interested in proving statements of the form Ψ ` ψ, where all
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involved sequents are of the simple form γ1, . . . , γn → δ1, . . . , δm, with all γi, δj

being atomic inclusions or equalities. We can thus remove the rules for treating
connectives, (IV), (V) and (VI), as well as the axiom rule (AX). We precede all
assumptions and conclusions of the rules by Ψ ` . . . and add the rules of specific
cut, [41], for each non-logical axiom γ1, . . . , γn → δ1, . . . , δm ∈ Ψ:

(SPC)
Ψ ` Γ → ∆, γ′1 | . . . | Ψ ` Γ → ∆, γ′n | Ψ ` Γ, δ′1 → ∆ | . . . | Ψ ` Γ, δ′m → ∆

Ψ ` Γ → ∆
where the primed versions denote uniform, arbitrary renaming of variables oc-
curring in the involved axiom γ1, . . . , γn → δ1, . . . , δm ∈ Ψ.

The possible simplification for the proofs by hand comes from the fact that
we now do not have to write and carry around (the translations of) all the
axioms of the specification, but can apply the rule (SPC) only for the needed
axioms. In addition, of course, we no longer need to consider any other kinds
of formulae or sequents and their translations, but only those consisting only of
atomic formulae, as prescribed by the format of specifications.

Observe that, as argued in [41], the specific cut rules are significantly more
manageable than the general cut. In fact, the “undecidability” of such rules
(applied bottom-up) is essentially of the same kind as that of the axiom rules
(AX) and concerns only the choice of the appropriate variable names.

The rules of the resulting system GS are given below. (Since we now consider
only atomic formulae in the sequents, we have moved ¬E along the “→” and
replaced it with E .) We can not claim the equivalence of GS” and GS, since the
latter does not allow any formulae with axioms. However, taking into account
the restrictions on such formulae we have put in GS” (only ¬![. . .] occurring
only at the outermost level, with the exception of one formula, corresponding
to the sequent we are proving), the above remarks make it obvious that

`GS′′ ![tr(ψ1)], . . . , ![tr(ψn)] → tr(ψ) ⇐⇒ {ψ1, . . . , ψn} `GS ψ,

for any sequents ψ1, . . . , ψn, ψ over atomic formulae. Indeed, if there is a proof
in GS” involving an application of (AX), as in (2.2), then, moving “bottom-up”,
it must split the tree into branches for separate disjuncts (of each tr(ψi)[y/x])
before processing the involved disjuncts themselves. Hence it must pass through
nodes as given in the assumptions of (2.3). Except for the superficial differences
of syntax, the rule (SPC) mimics exactly transition to such nodes. On the other
hand, the rule is obviously sound (with the interpretation of {ψ1 . . . ψn} ` ψ as
|= ![tr(ψ1)], . . . , ![tr(ψn)] → tr(ψ)), and hence it is admissible in GS”.

We thus obtain the calculus GS for deriving consequences of specifications,
which does not require any transformation of the involved sequents, and the
following theorem follows.

Theorem 2.3.7 The system GS given below is sound and complete, i.e., for
any specification Ψ and sequent ψ (involving only atomic formulae):

Ψ |= ψ ⇐⇒ Ψ `GS ψ
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Axioms

(I) Ψ ` Γ → x ≺ x, ∆ : x ∈ X (II) Ψ ` Γ, γ → γ, ∆ (III) Ψ ` Γ, Es → ts ≺ t′s,∆

Replacement rules
+ –

(VII)

Ψ ` Γ, x ≺ t → ∆, x ≺ t′

Ψ ` Γ → ∆, t ≺ t′

t 6∈ X, and x ∈ X is fresh

Ψ ` Γ → ∆, x ≺ t | Ψ ` Γ, x ≺ t′ → ∆
Ψ ` Γ, t ≺ t′ → ∆

t 6∈ X and x ∈ X arbitrary

(VIII)

Ψ ` Γ → ∆, y ≺ t | Ψ ` Γ → ∆, x ≺ f(. . . , y, . . .)
Ψ ` Γ → ∆, x ≺ f(. . . , t, . . .)

where y ∈ X arbitrary and t 6∈ X

Ψ ` Γ, y ≺ t, x ≺ f(. . . , y, . . .) → ∆
Ψ ` Γ, x ≺ f(. . . , t, . . .) → ∆

where y ∈ X is fresh and t 6∈ X

(IX)

Ψ ` Γ → ∆, t
.= x | Ψ ` Γ → ∆, t′ .= x

Ψ ` Γ → ∆, t
.= t′

t, t′ 6∈ X and x ∈ X arbitrary

Ψ ` Γ, ts
.= xs, t

′
s

.= xs → ∆
Ψ ` Γ, ts

.= t′s → ∆

ts, t
′
s 6∈ X and xs ∈ X is fresh

(X)

Ψ ` Γ → ∆, ts ≺ xs | Ψ ` Γ → ∆, xs ≺ ts | Ψ ` Γ, Es → ∆
Ψ ` Γ → ∆, ts

.= xs

where xs ∈ X and ts 6= xs

Ψ ` Γ, ts ≺ xs, xs ≺ ts → ∆, Es

Ψ ` Γ, ts
.= xs → ∆

where xs ∈ X and ts 6= xs

(XI)

Ψ ` Γ → ∆, ts ≺ xs | Ψ ` Γ → ∆, xs ≺ ts | Ψ ` Γ, Es → ∆
Ψ ` Γ → ∆, xs

.= ts

where xs ∈ X and ts 6= xs

Ψ ` Γ, ts ≺ xs, xs ≺ ts → ∆, Es

Ψ ` Γ, xs
.= ts → ∆

where xs ∈ X and ts 6= xs

Specific cut rules

(SPC)
Ψ ` Γ → ∆, γ′1 . . . Ψ ` Γ → ∆, γ′n | Ψ ` Γ, δ′1 → ∆ . . . Ψ ` Γ, δ′m → ∆

Ψ ` Γ → ∆

for each axiom γ1, . . . , γn → δ1, . . . , δm ∈ Ψ, with arbitrary renaming ′ of variables
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Expansion rules

(XIV)

Ψ ` Γ, y ≺ f(z) → ∆
Ψ ` Γ, y ≺ x, x ≺ f(z) → ∆

(sound for arbitrary x ∈ X)

(XII)
Ψ ` Γ, x ≺ y → ∆
Ψ ` Γ, y ≺ x → ∆

(XV)

Ψ ` Γ, x ≺ f(. . . , y, . . .) → ∆
Ψ ` Γ, y ≺ z, x ≺ f(. . . , z, . . .) → ∆

(sound for arbitrary z ∈ X)

(XIII)
Ψ ` Γ, y ≺ z → ∆

Ψ ` Γ, y ≺ x, x ≺ z → ∆

(XVI)
Ψ ` Γ, Es, xs′ ≺ f(. . . , ys, . . .), Es′ → ∆

Ψ ` Γ, Es, xs′ ≺ f(. . . , ys, . . .) → ∆

We finish with an example showing the simplification in proofs in GS as com-
pared to R-S*.

Example 2.3.8 Suppose that the specification Ψ has two axioms

1. f(x) ≺ c → g(x) .= d and

2. g(x) .= d → h(x) ≺ a.

We want to prove Ψ ` f(x) ≺ c → h(x) ≺ a. We first give the proof in the
Gentzen calculus:

If a branch terminates, the axiomatic subsequences are underlined. We drop
sort subscripts.

Ψ ` f(x) ≺ c, g(x)
.
= d → h(x) ≺ a, g(x)

.
= d | Ψ ` f(x) ≺ c, g(x)

.
= d, h(x) ≺ a → h(x) ≺ a

Ψ ` f(x) ≺ c, g(x)
.
= d → h(x) ≺ a

(SPC) ax.2

Ψ ` f(x) ≺ c → h(x) ≺ a, f(x) ≺ c | Ψ ` f(x) ≺ c, g(x) .= d → h(x) ≺ a

Ψ ` f(x) ≺ c → h(x) ≺ a
(SPC) ax.1

And the proof in the R-S* calculus – the active formulae are in boldface.
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![(¬(f(x) ≺ c) ∨ g(x) .= d)], ![(¬(g(x) .= d) ∨ h(x) ≺ a)],¬(f(x) ≺ c) ∨ h(x) ≺ a

¬(¬(f(x) ≺ c) ∨ g(x) .= d), ![(¬(g(x) .= d) ∨ h(x) ≺ a)],¬(f(x) ≺ c) ∨ h(x) ≺ a
(AX)

¬(¬(f(x) ≺ c) ∨ g(x) .= d), ![(¬(g(x) .= d) ∨ h(x) ≺ a)],¬(f(x) ≺ c) ∨ h(x) ≺ a

¬(¬(f(x) ≺ c) ∨ g(x) .= d),¬(¬(g(x) .= d) ∨ h(x) ≺ a),¬(f(x) ≺ c) ∨ h(x) ≺ a
(AX)

¬(¬(f(x) ≺ c) ∨ g(x) .= d),¬(¬(g(x) .= d) ∨ h(x) ≺ a),¬(f(x) ≺ c) ∨ h(x) ≺ a
¬(¬(f(x) ≺ c) ∨ g(x) .= d),¬(¬(g(x) .= d) ∨ h(x) ≺ a),¬(f(x) ≺ c), h(x) ≺ a

(V+)

¬(¬(f(x) ≺ c) ∨ g(x) .= d),¬(¬(g(x) .= d) ∨ h(x) ≺ a),¬(f(x) ≺ c), h(x) ≺ a

¬¬(f(x) ≺ c),¬(¬(g(x) .= d) ∨ h(x) ≺ a),¬(f(x) ≺ c), h(x) ≺ a

f(x) ≺ c,¬(¬(g(x) .= d) ∨ h(x) ≺ a),¬(f(x) ≺ c), h(x) ≺ a
(IV–) | i

(V–)

i = ¬g(x) .= d,¬(¬(g(x) .= d) ∨ h(x) ≺ a),¬(f(x) ≺ c), h(x) ≺ a

j | ¬g(x) .= d,¬h(x) ≺ a,¬(f(x) ≺ c), h(x) ≺ a
(V–)

j = ¬g(x) .= d,¬¬(g(x) .= d),¬(f(x) ≺ c), h(x) ≺ a

¬g(x) .= d, g(x) .= d,¬(f(x) ≺ c), h(x) ≺ a
(IV–)

2.4 Concluding remarks

We have applied the technique of Rasiowa-Sikorski [44] for designing sound,
complete and cut-free logics for reasoning about multialgebras. More details on
and applications of this technique can be found in [2, 25, 26].

As compared to the most closely related work which also used this technique,
[6], the main difference is the presence of the predicate .=, which was not included
in the language of [6]. We have argued why this predicate is relevant and
useful, especially, for writing specifications of nondeterministic data types, and
we have shown how (non-)empty carriers can be treated using this predicate
instead of quantifiers needed in [6]. Furthermore, the logic from [6] allows one to
derive only tautologies but not logical consequences of sets of given, non-logical
axioms. We have elaborated the possibility (only implicit in [6]) of extending
logic for such purpose, by providing the required translation schema. Then,
we have shown how this translation schema (as well as rules for connectives
and axioms), needed to handle non-logical axioms in the R-S* system (and in
[6]), can be removed and replaced by the specific cut rules, inspired by [41]. The
resulting system can be used directly, without any intermediary transformations,
for deriving consequences from specifications, that is, sequents from sets of
sequents, and the obtained simplifications were illustrated by an example.

The unique decomposition tree which provides a proof strategy and has been
identified for the introduced logics R-S and R-S*, following [44], is a natural can-
didate for a possible implementation and we expect that such an implementation
will become available in not too far future.
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Chapter 3

Partiality handling with
Multialgebras

This chapter presents a new way to model partial operations by use of non-
determinism: a partial operation is modelled as a nondeterministic operation
returning, possibly, any value of the carrier. We illustrate the flexibility of
the institution of multialgebras MA by examples showing uniform treatment
of strictness, non-strictness and various error handling. We present a method-
ology for specification development from an abstract specification to low level
error handling. Finally we apply institution transformations to illustrate the
possibility of reusing partial algebra specifications in the proposed framework
– a partial algebra specification can be conservatively (preserving the models)
imported to MA while the extension of the model class allows for further de-
velopment towards explicit error treatment.

The problem of partial operations is of fundamental importance in specifying
and deriving programs. At the abstract level, one would like to be able to
ignore many details related to the fact that some operations may happen to be
undefined for some particular arguments. However, at the level close to actual
implementation, it will often be mandatory to address explicitly possible error
situations and to describe the program’s behavior in such situations.

In the tradition of algebraic specifications, there are two main approaches
to describing partially defined operations: the partial algebra approach on the
one hand [8, 45, 10], and total algebras with explicit definition domains or even
error elements, on the other. This later approach comprises manifold variations,
including error-algebras [15], labelled algebras [4], order-sorted algebras [16],
techniques using predicates [37] or functions [21] to specify definition domains
of operations. A closer discussion of the traditional solutions can be found e.g.
in [39].

In partial algebras, an undefined term has no interpretation in the carrier.
During the refinement process, one makes gradually more terms defined, by
adding values for undefined terms. Terms which remain undefined until the very
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end of the specification process are then understood as errors whose handling
is left for the implementation. Partial algebras offer an abstract and user-
friendly model for partiality due to strictness assumption which releases the
specifier from the need to explicitly treat error situations On the other hand,
however, there are non-strict operations (like if then else) which then require
special treatment [9, 10]. This, however, turns out to be a drawback when the
specification approaches the implementation level and explicit error handling
becomes desirable. Strictness of all operations makes explicit error handling
very difficult, if at all possible. Possible extensions of partial algebras to handle
this level of specification are indicated in [10, 9]. Often, they suggest some form
of translation of a partial algebra specification into some total framework [10].

The approaches based on total algebras explore the possibilities of explicit
error handling, by allowing for values which can be used as error values.

The error elements solution is to add distinct elements to the carrier which
will be returned by partial operations. The problem with this solution is that
operations applied to error elements need to be explicitly specified and thus
specifications tend to include – even at an early, abstract stage – a lot of ax-
ioms for such situations. In order-sorted algebras, the sorts are arranged in a
hierarchy of subsorts and domains of operations are restricted to appropriate
subsorts. To some extent, static type checking can then take care of excluding
partial terms. On the other hand, static type checking may give unintended
consequences [10], e.g. intuitively legal terms may become ill-typed. To handle
this one introduces the dynamical concepts like retracts [20]. A retract is much
like a predicate telling if some term is defined/well-typed or not. Finally, in-
stead of subsorts one may use the predicates to specify the definition domains
of operations [37]. A partial term may remain under specified by guarding the
axioms to hold only for terms satisfying appropriate predicates.

We thus have, on the one hand, an abstract framework of partial algebras
and, on the other hand, the total algebra approaches which allow one to spec-
ify errors explicitly at a level closer to implementation but for the price of the
abstract character of partial algebras. We are proposing a single framework
capable of addressing both these aspects. We view undefinedness as nonde-
terminism – a term without a well-defined value may result in any value. At
the early stages of development, this nondeterminism expresses our ignorance
or disinterest in what exactly will happen in a given – error – situation. At
the later stages, such nondeterminism may be narrowed leading, eventually, to
explicit error values.

The fact that an operation is well-defined is represented by this operation
having a unique value. Such a unique value may be an intended “proper” value,
or else it may represent an error value after one started to introduce such error
values explicitly into specification.

The opposite, i.e., undefined situation may be represented in two ways in
multialgebras. A term may be undefined in the sense that it returns no value, i.e.
denotes the empty set. This turns out to be the exact analogue of undefinedness
in partial algebras. Other operations applied to the empty set return empty
set, and thus operations’ behavior is strict. The empty set result can also be
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understood as delegating further error treatment to the level of implementation.
On the other hand, a term may be undefined in the sense undeterminate,

we don’t know the value yet:- in this situation the term denotes a non-empty
set of values. Initially, such a set may be thought of as the possibilities of later
error recovery, or else it may model abnormal behavior of the system. In the
refinement process, the set may be narrowed to include only the relevant values
to be used in error situation. However, one may also force a term to return a
set. Such “error sets” will then include, on the one hand, some “proper” values
to be used by other operations for the recovery purposes. On the other hand,
the sets may contain error values functioning as labels and indicating particular
error situation. These error values may be then propagated by other operations
or else caught and removed – thus we obtain a model of throwing and catching
exceptions.

We will present various scenarios for the development process. The one which
we favor most, begins with a partial algebra specification which, however, in our
context has a richer class of models than the standard partial algebra models
– it contains also models where operations are non-strict. Through a simple
process of refinement, one can arrive at the level of explicit error handling, ei-
ther by introducing unique error values, or else error sets which are amenable
to further specification of errors and exceptions. On the other hand, one may
use the language of multialgebras to introduce nondeterministic constants which
are essentially the same as predicates in many total algebra approaches. Such
predicates can be used for the specification of domain definitions and specifica-
tions can be refined in the way standard total algebra specifications are. At the
technical level, we show that institutions of partial algebras and membership
alegbras can be transformed into the proposed institution of multialgebras, thus
justifying our claims about both flexibility of our approach and the possibility
of reusing the existing specifications.

In section 3.1 we show how the basic partiality problems can be addressed
in MA. Since multialgebras offer a nonstrict (or rather, not necessarily strict)
framework, we also illustrate how to deal with strictness, if it is desirable for
some reasons. In section 3.2 we present a methodology for developing specifica-
tions in MA, illustrated by examples.

The rest of the chapter presents the technical results. In section 3.3 we com-
pare MA with partial algebras, showing, firstly, a transformation of institution
of partial algebras, PA, into MA. This gives us the possibility to reuse such
specifications in a later development toward explicit error handling. To com-
plete the picture we show that membership algebra specifications also can be
transformed to multialgebras.

3.1 Partiality handling with multialgebras

The straightforward way to model partiality in a multialgebra A is to let an
operation undefined on some arguments, ωA(a1, . . . , an), be represented by
a multi-function returning the empty set when applied to these arguments,
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ωA(a1, . . . , an) = ∅. This was done, for instance, in [51] where one showed that
modelled this way, partial algebras form a full subcategory of multialgebras.

It is our contention that multialgebras can provide a framework unifying the
two extremes of partial algebras and total algebras in a single formalism. As
indicated in the introduction, besides the above solution (where partial oper-
ation returns empty set), we have the possibility to model a partial operation
by proper nondeterminism. Thus an undefined operation ωA(a1, . . . , an) may
return various results, potentially, any available element of the carrier. At the
very beginning of specification process, this nondeterminism may represent our
complete ignorance and disinterest in what particularly will happen when error
situation occur. Later it may be used to represent all potential error elements
without discriminating against any one. Finally, it may also capture possible
”totalization” when, at a later stage, one refines the earlier specification by
choosing a particular (error or not) value to be returned in an error situation.

3.1.1 Definedness and Undefinedness

Definedness

As noted above, definedness is the same as determinism in our setting. To
specify definedness we use element equalities. The axiom t

.= t holds only when
t is defined i.e. when t is deterministic. Likewise the axiom t

.= t′ specifies
both terms t and t′ to be equal and deterministic, i.e., defined. Specially, the
axiom f(x) .= f(x) specifies the operation f to be defined (deterministic) on
all arguments. Thus, since operations may be nondeterministic, to make an
ordinary total specification in MA one has to add this type of axioms for every
constant and operation.

Example 3.1.1 Here is a simple example of a specification of the natural num-
bers, with successor and predecessor, using multialgebras:

spec Nat =
S : Nat
Ω : zero :→ Nat

succ : Nat → Nat
pred : Nat → Nat

axioms : 1. zero
.= zero

2. succ(x) .= succ(x)
3. pred(succ(x)) .= x

This specification will have all the expected classical (total, as well as partial
algebras) among its models. The first two axioms make zero and succ deter-
ministic operations. The last one ensures that pred is deterministic and returns
x when applied to succ(x).

However, pred(zero) remains unspecified. In the traditional setting, this
amounts to underspecification. So does it here, only that here it opens the pos-
sibility for this term to be nondeterministic. pred(zero) may return anything.
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Consequently, although succ(x) will always return a unique value, succ(pred(0))
will be, in general, nondeterministic since it denotes all the values returned by
succ(y) where y is returned by pred(0).

Note that in this specification the succ is always defined as a consequence of
axiom 2.

Undefinedness

Since element equality, .=, holds only if both sides of the equality sign denote
same element, we have two possible situations for this equality to fail – (at
least) one side may be a set with more than one element or else it may be the
empty set. We interpret these two possibilities as two types of undefinedness in
multialgebras: nondeterminism and partiality.

Partiality corresponding to empty result set leads to strictness: if a term
t denotes an empty set, any operation applied to it will also yield empty set.
In fact, such partiality can be forced by the specification by adding a negated
axiom:-‘x ≺ t →’ requires that no x be included in t. In terms of program devel-
opment, we may interpret such axioms as requirements to handle the respective
situation, caused by t, at the implementation level. It excludes any further pos-
sibility of a more refined treatment of this situation at the specification level.

Undefinedness represented by nondeterminism, e.g., by an axiom ‘t .= t →’,
on the other hand, allows further refinement and will be the main issue in the
following. Delegation of the responsibility for error treatment to implementation
may occur at the very last steps of specification.

Using element equality .= we can only force a term to contain exactly one
value. Thus, the intuition behind our element equality .= corresponds exactly
to the existential equality e= from partial algebras: forcing a term to have a
uniquely defined value. The difference concerns the negation: if existential
equation t

e= t fails, the term t is undefined and other operations are strict; if
the element equality t

.= t fails, the term t may be undefined in the sense of
being empty set (leading to strictness of other operations), or else it may be non-
deterministic i.e. a non-empty set. The choice between these two possibilities
is left for the specifier.

Unless stated otherwise, we will in the sequel mean by “undefinedness”
proper nondeterminism and by “partiality” empty result set.

3.1.2 Predicates, order-sortedness and strictness

In the most abstract way one may say that an operation f is strict in an argu-
ment if, whenever this argument is undefined, then so is the result of the opera-
tion. This is how it is viewed in partial algebras. However, when undefinedness
is described more explicitly, typically by an explicit indication of the definition
domain, then this needs a reformulation: whenever the argument falls outside
the definition domain, then so does the result of the operation. Here “definition
domain” is understood simply as a set of designated elements of the carrier
considered as well-defined. Even more specific notion is obtained when each

78



operation obtains a specific definition domain. Then strictness means: when
the argument of the operation comes from outside of the operation’s definition
domain, then the result is undefined.

As noted in the introduction multialgebras offer a non-strict framework.
Although we believe this to be its advantage, we will now make some remarks
on how also strict operations can be specified in this framework.

Non-strictness and non-injectivity

We now start with an example of a non-strict function and then proceed to a
more detailed treatment of explicit definition domains.

Example 3.1.2 Let us extend the specification from example 3.1.1 as follows:

spec Nat1 =
S : Nat
Ω : zero :→ Nat

succ : Nat → Nat
pred : Nat → Nat
f : Nat → Nat

axioms : 1. zero
.= zero

2. succ
.= succ

3. pred(succ(x)) .= x
4. f(x) .= succ(zero)

The last axiom makes f non-strict - and non-injective. No matter what argu-
ment or set of arguments it receives, its result will always be succ(zero).

All operations are strict on the partial terms – applied to empty set, they return
empty set. Unless some axioms of the form 4. are given for some operation,
the operation will be allowed to be strict also with respect to nondeterminis-
tic undefinedness: applied to an error (nondeterministic term) it will, in some
models, result in error (nondeterminate result).

In other models, however, it may be non-strict in that it returns unique result
on undefined (nondeterministic) arguments. We think that this generosity is a
virtue rather than a sign of indefinite abstractness. One should not be forced to
make this kinds of decisions at an early stage of development – forcing strictness
damages the possibility for later error recovery, as error recovery is non strict
by nature.

Definedness predicates

Since nondeterministic constants denote a set, we can use them as predicates.
For instance, we can add definedness predicates (constants) to each sort, e.g.
dNat :→ Nat. This gives a possibility to write axioms like succ(x) ≺ dNat with
the intended meaning as succ(x) .= succ(x). This meaning, however, remains
merely “intended” since the constant dNat functions merely as a label unless
the range of its elements is explicitly specified.
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The use of definedness predicates implies closer classification of the elements
of the carrier, so it is less abstract than the mere use of element equalities.

Example 3.1.3 This following specification intends to use definedness predi-
cates to make “the same” specification of the natural numbers, with successor
and predecessor, as example 3.1.1.

spec Nat2 =
S : Nat
Ω : zero :→ Nat

succ : Nat → Nat
pred : Nat → Nat
dNat :→ Nat

axioms : 1. zero
.= zero

2. succ
.= succ

3. zero ≺ dNat

4. x ≺ dNat → succ(x) ≺ dNat

5. x ≺ dNat → pred(succ(x)) .= x
6. succ(x) ≺ dNat → x ≺ dNat

7. pred(succ(x)) .= x → x ≺ dNat

The constant dNat is intended to comprise all “defined” values of sort Nat.
Axiom 3. and 4. specify its minimal range. Axiom 5. needs then a guard,
since we do not know what may happen when operations are applied to elements
outside dNat.

Axiom 6. makes succ strict in the more specific sense than mere preservation
of nondeterminism: when its argument falls outside dNat, so does its result.
Similar effect is achieved for pred by axiom 7.

Order-sorting and predicates

The previous example illustrated the possibility to identify a subset of the carrier
as a set of “defined” elements. A more detailed treatment of undefinedness is
achieved by an explicit introduction of predicates identifying definition domains
for various operations.

Example 3.1.4 We extend the specification from example 3.1.1 with a new
constants representing subsort pos of Nat.
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spec Nat3 =
S : Nat
Ω : zero :→ Nat

succ : Nat → Nat
pred : Nat → Nat
pos :→ Nat

axioms : 1. zero
.= zero

2. succ
.= succ

3. succ(zero) ≺ pos
4. x ≺ pos → succ(x) ≺ pos
5. zero ≺ pos →
6. x ≺ pos → pred(x) .= pred(x)
7. pred(succ(x)) .= x

We have here a more detailed description of definition domain for pred: the
first two axioms include there all positive numbers and the third one excludes
from it zero. Then, according to axiom 6., if the argument of pred comes from
its definition domain pos, then the result is defined in the sense that it is deter-
ministic.

A more detailed notion of strictness than in example 3.1.3 follows now from
this more detailed specification of the definition domain pos. The above specifi-
cation is consistent with the axiom

8. pred(x) .= errorNat, x ≺ pos

i.e., the requirement that the result of pred(x) .= errorNat for some new (error)
constant, when applied to an x 6≺ pos (i.e., an x 6∈ pos).

Alternative axiom

8′. pred(x) .= pred(x) → x ≺ pos

would make pred strict with respect to pos: if the argument does not belong to
the domain pos, then the result is undefined.

If this example reminds you of order-sorted algebras [14], then it was also our in-
tention. Recasting order-sorted formalism within the present framework should
be straightforward to do. The additional power can be used, for example, to
specify exactly the relations between subsorts (similarly to axiom 3.) Notice
also, that we don’t run into the known problem with typing intuitively correct
terms: pred(pred(succ(succ(zero)))) is a correct term. The role played by re-
tracts in order-sorted approach is here overtaken by the proof obligation: to de-
cide that it is defined, one has to show that the argument pred(succ(succ(zero)))
actually yields something belonging to pos.

Definedness predicates from example 3.1.3 and subsorts from the above ex-
ample 3.1.4 reflect only methodological aspects - formally they are just con-
stants in the specification. A particular consequence of this is that they can
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be introduced in arbitrary order during development, and their relations can be
specified quite tightly. For instance, one will typically introduce first defined-
ness predicates, like dNat and later subsorts, like pos, for a tighter specification
of definition domains. Extending axioms 1.-3. from example 3.1.3 with axioms
1.-2. from example 3.1.4 and adding the axiom

x ≺ dNat → x
.= zero, x ≺ pos

will enforce the expected relation between the three constants in every model
A, namely: dA

Nat = {zeroA} ∪ posA and zeroA 6∈ posA.

Strictness

The axioms 4. in example 3.1.3 and 6. in example 3.1.4 exemplify the general
way of enforcing strictness of required operations.

Schema 3.1.5 Enforcing strictness:
1. partial function f : s1 × · · · × sn → s

2. definedness constants for each argument 1 ≤ i ≤ n (relative to the func-
tion): dfsi

:→ si

3. definedness constant for the target sort (relative to the function): dfs :→ s

4. strictness axioms: f(x1, . . . , xn) ≺ dfs → xi ≺ dfsi , for each argument xi

in which f is to be strict.

If no definition domains are specified but one merely has the definedness con-
stants for the subsets of the well-defined elements of each sort (like dNat), these
later constants will be used instead. In particular, the definedness constant 3.
will, typically, be of this kind.

This solution works in many cases but is not fully general. A function with
two (or more arguments), f : s1 × s2 → s may have a definition domain which
cannot be described as a product of some subsets of s1 and s2. (E.g. f(1, 2)
and f(2, 3) may be defined while f(1, 3) is undefined.) In such cases, one needs
a more general technique, similar to that used in guarded algebras [21]. It
introduces, for each partial function f , an explicit definition domain operation
domf as follows:

Schema 3.1.6 General way of enforcing strictness:
1. partial function f : s1 × · · · × sn → s

2. definition domain function: domf : s1 × · · · × sn → s

3. definedness constant for the target sort: ds :→ s

4. definedness axiom: domf (x1, . . . , xn) ≺ ds → f(x1, . . . , xn) ≺ ds.

It seems like we have added a lot of constants and functions to treat strictness.
Indeed, we have. To defend this wastage of ink we can say two things. Firstly,
the above schemata can be added purely mechanically having a mere indication
of a function being strict in some arguments. More importantly, one of the
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schemata is used only when a function is to be strict. We believe that, in
practice, most functions are not or, in any case, should not be. Eventually, one
wants to describe explicitly error handling. For this purpose, we find it more
natural to allow the operations to be, by default, non-strict. And in such a case,
our formalism does not force one to do any additional specification work.

Specifying evaluation strategies

We finish this section by giving a few simple examples of specifying various
evaluation strategies for boolean operations.

Example 3.1.7 Basic specification of booleans.

spec BoolMA =
include: Nat

S : Bool
Ω : dBool → Bool

true :→ Bool
false :→ Bool
not : Bool → Bool
and : Bool ×Bool → Bool
if − then − else − : Bool ×Nat×Nat → Nat

axioms : not
.= not

true
.= true

false
.= false

true ≺ dBool

false ≺ dBool

not(true) .= false
not(false) .= true
(if true then x else y) .= x
(if false then x else y) .= y

Adding axiom ‘x ≺ dBool → x
.= true, x

.= false’ would make ’true’ and ’false’
the only defined boolean values in all models. In the above specification, the
same will be the case in the initial model. The operation ’if − then − else −’
is non-strict in the second and third argument.

Example 3.1.8 Strict evaluation of ’and’ operation.

spec StrictBoolMA =
enrich: Bool by:
axioms : a. x ≺ dBool → x and true

.= x
b. x ≺ dBool → x and false

.= false
c. y ≺ dBool → true and y

.= y
d. y ≺ dBool → false and y

.= false

Note that ’and’ is under-specified outside dBool. The axioms b. and d. force
’and’ to have the expected result when the arguments come from dBool but do
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not exclude the possibility that this happens also when they do not. Strictness –
in the sense that the result of and is included in dBool only if the arguments are
– is obtained by adding two further axioms:

e. x and y ≺ dBool → x ≺ dBool

f. x and y ≺ dBool → y ≺ dBool

Example 3.1.9 Left to right evaluation of ’and’:

spec LtoRBoolMA =
enrich: Bool by:
axioms : a. true and y

.= y
b. false and y

.= false

This evaluation may be non-strict in the first argument (it is here under-specified
for first argument from outside of dBool). Left to right evaluation, strict in the
the first argument, is obtained by adding the axiom:

c. x and y ≺ dBool → x ≺ dBool

Example 3.1.10 Possibly non-strict parallel evaluation of ’and’.

spec NSPBoolMA =
extend: Bool by:
axioms : a. true and y

.= y
b. false and y

.= false
c. x and true

.= x
d. x and false

.= false

We have merely indicated the possibilities of obtaining non-strict evaluations.
Possible errors and error recovery are left for a more detailed specification of
the possible values outside dBool.

3.2 Developing partial specifications in MA
We illustrate the possibilities of development in MA from abstract specifica-
tions analogous to partial-algebra specifications, through a series of refinement
steps, to specifications with explicit error handling. At the initial, most abstract
level, error situations are not addressed at all. Operations known to be total
are specified as deterministic, while others remain under-specified which allows,
in particular, for their nondeterministic interpretation. At the next stage, error
situations are identified and we indicate several possible ways to do that. Then
one can begin explicit error handling, first by specifying the behavior of other
operations in error situations and, eventually, by introducing explicit error val-
ues. A great flexibility of error treatment is offered enabling one to introduce

84



error values, exceptions and various ways of reacting to them. It is to be re-
marked that the whole process involves merely a gradual refinement of initial
specification by extending its signature and the set of axioms.

Subsection 3.2.1 to 3.2.4 gives a simple example and discusses various alter-
natives and subsection 3.2.5 summarizes the methodological observations.

As an example of the possibilities offered by multialgebras, we discuss various
ways of developing a specification of stacks of natural numbers. The process
starts from an abstract specification quite similar to partial algebra specification
and ends with a specification with explicit error treatment.

3.2.1 Initial specification

We start with a standard development of specification not addressing any error
situations explicitly.

spec StackMA =
include Nat

S : Stack
Ω : empty :→ Stack

top : Stack → Nat
pop : Stack → Stack
push : Nat× Stack → Stack

axioms : 1. push(x, s) .= push(x, s) → top(push(x, s)) .= x
2. push(x, s) .= push(x, s) → pop(push(x, s)) .= s
3. empty

.= empty

At this abstract level, only empty is explicitly specified to be deterministic.
Axioms 1. and 2. are the “usual” stack axioms, guarded to yield well-defined
(deterministic) results only on arguments which are well-defined (deterministic).
This is the way we will do it in general – the outermost operation in a compo-
sition of functions will be guarded by a deterministic assertion. The way axiom
2. should be understood is: if a stack s′ is constructed from push(x, s) and
s′ is defined, then pop(s′) is defined and equal to s. Note that since variables
only range over individual elements, we need no additional guards of the form
s

.= s. Also, the models for the specification may display flexible behavior on
nondeterministic values resulting from push.

Notice that this specification is essentially the same as a partial algebra
specification – just replace the sign .= by e= and for any variable in the formula
add a guard x

.= x. The possibility to reuse partial algebra specifications in our
framework is discussed in section 3.3.1.
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3.2.2 Error situations

Error situations may be identified and marked by appropriate error constants:

1. spec ErrStack1MA =
enrich Stack by:

Ω : errStack :→ Stack
errNat :→ Nat

axioms : 1. pop(empty) ≺ errStack
2. top(empty) ≺ errNat

Such error constants do not have any direct influence on the semantics; they
function mainly as labels visualizing the special situations: pop(empty) may still
be deterministic or not – it has only been marked as a special term “of type”
errStack.

Instead of introducing explicit error constants, one may indicate error situ-
ations by forcing respective terms to be nondeterministic:

2. spec ErrStack2MA =
enrich Stack by:
axioms : 1. pop(empty) .= pop(empty) →

2. top(empty) .= top(empty) →
The inequalities ensure that the error terms cannot be interpreted as individual
elements of the carrier. They must be sets – possibly empty. The associated
logic from chapter 2 prevents then one from substituting such terms for variables.
This solution precludes later treatment of particular error situations by means
of deterministic error constants. Nevertheless, we will illustrate the flexibility
offered by modelling errors by sets.1

Finally, one can follow the order-sorted approach by introducing constants
for appropriate subsorts:

3. spec OsStackMA =
enrich Stack by:

Ω : nonempty :→ Stack
axioms : 1. s ≺ nonempty → top(s) .= top(s)

2. s ≺ nonempty → pop(s) .= pop(s)
3. empty ≺ nonempty →
4. push(x, s) .= push(x, s) → push(x, s) ≺ nonempty

The new constant nonempty is used here as a subsort of non-empty stacks (by
axiom 3. empty does not belong to this subsort) for which pop and top are
defined. Note that adding “strictness’ axioms like:

1Notice that here we are interpreting the result set not as a nondeterministic result but as an
actual union of the elements of the set. Every refinement of this specification – eventually, also
the implementation – must conform to this. The only difference between further specification
refinement and eventual implementation is that the former may further restrict the range
of the respective sets, while the latter may interpret elements of the set as “simultaneously
present”, e.g., as a recovery value and an error label/message. This point is illustrated further
in 3.2.4.
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pop(s) .= pop(s) → s ≺ nonempty, would preclude the possibility of determin-
istic error recovery at a later stage – the axiom forces the result of pop(empty)
to be nondeterministic (cf. ErrStack2 above).

The order-sorted approach may be naturally combined with the explicit error
constants, e.g., this specification may extend ErrStack1.

3.2.3 Behavior on errors

Error constants, like those introduced in ErrStack1, may be used for a uniform
treatment of all errors which they include:

1. spec ErrBehStack1MA =
enrich ErrStack1 by:
axioms : 1. pop(push(x, errStack)) .= empty

2. top(push(x, errStack)) .= x
3. pop(push(errNat, s)) ≺ pop(s), s ≺ errStack
4. top(push(errNat, s)) ≺ top(s), s ≺ errStack

In the first two axioms, the prescribed results are always well-defined. If the first
argument happens to be an element from errNat, axiom 1. will give empty and
axiom 2. will result in the same element errNat. The last two axioms use ≺ and
not .=. This is so because the terms on the right-hand-side of the first atom may,
possibly, be error terms (when s is empty). The alternatives give precedence
to errStack over errNat. If both arguments are err, axiom 1., respectively 2.,
will be applied – instead of axiom 3., axiom 1. will yield empty as the result of
pop. Similarly in axiom 4.

Another possibility is to treat each error situation separately. The follow-
ing specification refines ErrStack2 but it might as well be a refinement of
ErrStack1:

2. spec ErrBehStack2MA =
enrich ErrStack2 by:
axioms : 1. pop(push(x, pop(empty))) .= empty

2. top(push(x, pop(empty))) .= x
3. pop(push(top(empty), s)) ≺ pop(s), s ≺ pop(empty)
4. top(push(top(empty), s)) ≺ top(s), s ≺ pop(empty)

These two possibilities take full advantage of non-strict semantics allowing one
to describe actions to be performed in error situations. Notice that they do not
specify explicitly the value of error terms: (pop(empty) is merely labelled in
the first case and made nondeterministic in the second) – they only specify the
behavior of other operations applied to such error terms. errStack may later
be specified to be a particular value or else remain nondeterministic.

The most dramatic possibility is to delegate all responsibility for error treat-
ment to the implementation. Explicit specification which excludes further de-
scription of error makes the result of respective error terms empty (this can be
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read as a requirement of raising a run-time exception):

3. spec ErrBehStack3MA =
enrich ErrStack2 by:
axioms : 1. s ≺ pop(empty) →

2. x ≺ top(empty) →
3. s ≺ push(errNat, s′) →

Notice that this implies strictness of other operations applied to these argu-
ments, since empty argument will always lead to empty result. (For instance,
push(x, pop(empty)) will return the empty set.) Making analogous extension
of ErrStack1 is possible, though it does not seem quite purposeful – labelling
error situations will, typically, involve later their explicit treatment.

3.2.4 Error values

1. spec ErrValStack1MA =
enrich ErrBehStack1 by:
axioms : 1. pop(empty) .= empty

2. top(empty) .= errNat
3. push(errNat, s) .= s

This is apparently consistent with the intention of the specification of the be-
havior in ErrBehStack1 (according to first two axioms from ErrBehStack1,
errStack behaves as empty, and according to the last two, pushing errNat on
s behaves then as s). However, there are serious problems with this refinement.

A counter-intuitive consequence of this enrichment is that empty ≺ errStack
by axiom 1. from ErrStack1. Axiom 1. here says that, no matter what we
have previously said about the error situation pop(empty), it can be disregarded
and that we, instead, do immediate error recovery. Since pop(empty) has been
earlier identified as an error errStack, a more plausible refinement would be to
identify this error value which can take care of a possible indication of the error
situation.

Another problem might occur from making errNat deterministic. If it is a
constant introduced in this specification (as it happened in our example), this
might be ok. However, if this error constant comes from another specification
Nat, we shouldn’t force additional restrictions since these may interfere with
its specification elsewhere.

The really serious problem is caused by the last axiom. It makes
push(errNat, s) deterministic. Thus, since errNat is deterministic, we can
substitute it into axioms from Stack and may conclude that:
top(push(errNat, s)) .= errNat. However, according to ErrBehStack1, if:
s 6≺ errStack we have that top(push(errNat, s)) ≺ top(s). Thus, this may lead
to collapsing the sort of elements (here Nat).

In general, forcing some error terms to be deterministic, requires revisiting
earlier developed specifications and checking for such unintended coincidences.
The uniform way of introducing errors, which is safe, is to force errors to be sets.
The following specification makes pop(empty) a new deterministic constants
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(this is ok in this example), but illustrates this generally recommended way by
axiom 3.

2. spec ErrValStack2MA =
enrich ErrBehStack1 by:

Ω : popEmpty :→ Stack
axioms : 1. pop(empty) .= popEmpty

2. top(empty) ≺ errNat
3. push(errNat, s) .= push(errNat, s) →

We are forcing push(errNat, s) to be nondeterministic in order to avoid inter-
ference with the axioms of Stack. The axioms from ErrBehStack1 prescribe
recovery from this situation.

The last remaining question concerns now the actual values to be returned
by push(errNat, s). We are doing it by specifying the values to be included in
the set to be denoted by this term. On the one hand, we include there some
error value – it does not have any influence on the other operations. On the
other hand, we include the value which is to be used for the recovery purpose:

3. spec ErrValStack3MA =
enrich ErrValStack2 by:
Ω : pushErr :→ Stack

ax : 1. s ≺ push(errNat, s)
2. pushErr

.= pushErr
3. pushErr ≺ push(errNat, s)
4. s ≺ pop(pushErr) →
5. x ≺ top(pushErr) →
6. s ≺ push(x, pushErr) →

Together, these axioms ensure the desired behavior (as specified in ErrBehStack1).
The first axiom includes the recovery value s, the second axiom ensures that
pushErr is an error stack and the third axiom includes this error value into
pushing an error element to a stack. Thus, the results of other operations ap-
plied to push(errNat, s) will be obtained by summing up the results applied to
s and to pushErr.

The last three axioms make this later value insignificant for other operations
– it merely marks the error situation. It can be naturally interpreted as a side
effect of push(errNat, s), and can be implemented as, for instance, sending an
error message to the user. On the other hand, the presence of such an error
value in the result set can be interpreted as an exception. The axioms 3.-
5. correspond here to immediate catching this exception. Replacing, e.g., the
axiom 3. with pushErr ≺ pop(pushErr) will then correspond to throwing this
exception also from an application of pop until one arrives at a situation where
other operations ignore this error value (specified as above by the axioms 3.-5.
which correspond to catching the exception and performing the further action
only on the remaining values in the set – here on s).

At any previous development step we could have extended the stack spec-
ification to a specification of bounded stack. This can be also done now as a
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refinement of the last specification:

4. spec BoundedStackMA =
enrich ErrValStack3 by:

Ω : max :→ Nat
hgh : Stack → Nat

axioms : 1. max
.= max

2. hgh
.= hgh

3. hgh(empty) .= 0
4. push(x, s) .= push(x, s) → hgh(push(x, s)) .= succ(hgh(s))
5. hgh(s) .= max → hgh(push(x, s)) .= succ(max)
6. hgh(s) < max → push(x, s) .= push(x, s)
7. hgh(s) ≥ max → push(x, s) ≺ errStack

Notice that the last axiom makes the error resulting from exceeding the bound
behave as empty according to ErrBehStack1. If this is not desirable, one
would have to identify it as a new error type with appropriate axioms.

Also, when hgh(s) .= max, the result of push(x, s) will yield a possibly
nondeterministic errStack. Nevertheless, its height is defined uniquely and
uniformly for all such possible results by axiom 5.

3.2.5 The methodology for developing partial specifica-
tions

The above examples show the wide range of possible error treatments offered by
multialgebras and suggest the following fixed methodology for the development
of partial specifications in MA.

1. Initial specification
The first step involves the usual abstract specification which need not ad-
dress any partiality issues. The only requirement on the axioms – needed
for later error handling – is that the arguments of the outermost function
applications should be guarded by a definedness assertion, i.e., a determi-
nacy clause (like push(x, s) .= push(x, s) in axioms 1., 2. of Stack. There
is no need to guard the variables, since variables are always deterministic.
Only operations that can never possibly lead to error situations should be
explicitly specified deterministic.

At this level of abstraction the form of the specification is like a partial
algebra specification, with .= instead of e=. In fact, any partial-algebra
specification can be reused in this way (see section 3.3.1).

2. Error situations
The second step identifies error situations and, possibly, introduces order-
sorting constants. Among the possibilities here, forcing the error terms to
be a set is the solution offering most flexibility in later development, see
(ErrStack2).
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Alternatively, one may introduce labels in form of error constants, like
in (ErrStack1). We do not specify that operations are strict on error
constants at this level. The error constants work merely like syntactic
marking until we specify the errors closer at a lower level. They are not
specified here to be deterministic (later they may be) and serve merely as
negative predicates telling that some terms may yield ill-defined results.

3. Behavior on errors
The third step should specify the behavior of other significant operations
when applied to the error constants or terms – this is the stage where we
begin the error handling. Error constants may be used for a uniform error
handling; alternatively, each error term may obtain separate treatment.

Notice that here we do not introduce explicit error elements but only
specify behavior in error situations. Error recovery means here that we
specify an error term to behave as an ordinary term after use of some
operations. Strictness means that errors remain (or become other) errors
after application of operations. The most extreme case of strictness is to
delegate error handling to the implementation by explicitly specifying the
result set to be empty (as in ErrBehStack3).

4. Error values
The fourth and last step is to identify the errors with some particular error
sets/elements. In some cases, immediate error recovery can be specified
(as was the case with pop(empty), which could be made equal empty in
ErrValStack1 or popEmpty in ErrValStack2). The general error recov-
ery, however, is that exemplified by push(errNat, s) in ErrValStack3:
en error situation results in a set comprising the recovery value and an ex-
plicit error value which does not affect other operations unless it is passed
as an exception.

The first two steps are flexible with respect to error handling. After step 2
we have not taken any decision regarding (non-)strictness. So working at this
abstract level it should be possible to have compositional specification building
operations, treating the nondeterministic error constants as predicates. From
step three one actually specifies consequences of errors so strictness and error
handling may interfere with compositionality.

3.3 Reuse of specifications from other institu-
tions

In this section we formally prove the claim that we can reuse and refine specifi-
cations from other formalisms within the multialgebra setting. We start in 3.3.1
by formalizing the transformation of partial algebras specifications to multialge-
bras, for the sake of partiality handling, as argued in section 3.2.5, we mean that
this is the preferred strategy. For other reasons one may need syntax to express
predicates, so we extend the models of the institution of membership algebras,
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MEMB, allowing partial functions, and illustrates how one may transform the
obtained institution to multialgebras in 3.3.2.

3.3.1 Extending the model class of PA specifications

The intention of passing from partial algebra to multilagebra specification is, on
the one hand, to be able to reuse specifications which have been written in the
former framework and, on the other, to allow for their further development with
explicit error handling. The embedding of institutions from proposition 1.4.11
does not address this latter issue since it merely yields essentially the same
model class.

What we will do now is to merely import the partial algebra specifications
without augmenting them with the additional axioms (that prevents nondeter-
minism). This will allow us to make the desired transition: given a partial
algebra specification, we translate it trivially into a multialgebraic specification.
This transition results in a larger model class, where in addition to essentially the
same partial models, we also have the models where operations are non-strict.
Further development can now take place in the multialgebraic framework, al-
lowing one to refine the specification to the level of explicit error treatment.

The isomorphism of respective model classes stated in fact 1.4.12 gives us
the following relation called institution transformation in [35].

Proposition 3.3.1 There is an institution transformation (Ψ∗, α, β−) from
PA to MA.

Proof.

• The functor Ψ∗ : SignPA → Th0MA is given by:

Specifications: Ψ∗(S, Ω) = (S, Ω, ∅)
Morphisms: Ψ∗(µS , µΩ) is the identity

• The natural transformation α : SenPA → SenMA ◦Ψ∗ is given by:

Atoms: α(t e= t′) ≡ t
.= t′ auxilary definition for atoms

Formulae: α({x1, . . . , xk}; a1 ∧ · · · ∧ an → a) ≡ x1
.= x1 ∧ . . . ∧ xk

.=
xk ∧ α(a1) ∧ · · · ∧ α(an) → α(a), for each clause {x1, . . . , xk}; a1 ∧
· · · ∧ an → a

Ψ∗ is extended to a functor Ψ∗ : Th0PA → Th0MA by letting:
Ψ∗(Σ, Γ) = (Σ, αΣ(Γ)).

• The components of the natural transformation:
β− : ModPA → ModMA ◦ (Ψ∗)op are β− from definition 1.4.9:

From the embedding in proposition 1.4.11 above we have the “truth” condi-
tion: for every M ′ ∈ ModMA(Ψ(Σ, ∅)) and φ ∈ SenPA(Σ) (Ψ is as in proposi-
tion 1.4.11):

M ′ |=MA αΣ(X; φ) iff β(Σ,∅)(M ′) |=PA (X;φ) (3.1)
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Since β(Σ,Γ) is an isomorphism of categories (fact 1.4.12) we get that:

1. for each P ∈ ModPA(Σ, ∅) there exists an M ∈ ModMA(Ψ(Σ, ∅)), with
P = β(M) and M = β−(P ).

Now, the extension of the model class is “conservative”: for a PA specification
(Σ,Γ), Ψ∗(Σ, Γ) ⊂ Ψ(Σ, Γ) and hence ModMA(Ψ(Σ, Γ)) ⊆ ModMA(Ψ∗(Σ, Γ)).
Thus, the M existing by 1. above is actually an element of ModMA(Ψ∗(Σ, Γ)),
and we obtain the condition for the institution transformation:
for all P ∈ ModPA(Σ, ∅):

β−(Σ,∅)(P ) |=MA αΣ(φ) iff P |=PA φ (3.2)

¤
Notice that this proposition does not imply the existence of initial model for

Ψ∗(SP ). For instance, let f(t) e= s be the only axiom of SP . The initial
partial algebra model will have two elements [s] = {s, f(t)} and [t]. The latter
appears because of the underlying strictness assumption, f(t) e= s → t

e= t. The
corresponding assumption is absent in MA and the construction of the term
structure T (Ψ∗(SP ))/∼=, as given in section 1.3, will give only one element in
the carrier [s] = {s, f(t)}, which does not yield a multialgebra2.Although this
is, perhaps, bad news for the adherents of initial semantics, it seems to be the
obvious price for dropping the strictness assumption. And getting rid of this
assumption is necessary for a more detailed specification of error situations.

3.3.2 Extending the model class of MEMB specifications

We now extend the membership algebras (see section 1.4.2), by allowing func-
tions to be partial.

Definition 3.3.2 The institution PMEMB is asMEMB except that the equal-
ities are changed to existential equalities, e=, and operations are interpreted as
partial functions; to relate algebras we use weak homomorphism, i.e. the usual
weak homomorphisms from definition 1.4.4 for operations and a homomorphism
h : A → B satisfies the condition x ∈ πA

s ⇒ h(x) ∈ πB
s , for every predicate π.

This is an (obvious) sub-institution of what is called RP(R e=→ R e=) in [38]
– an institution where signatures, in addition to sort and function symbols,
may contain n-ary predicates and have a distinguished set of total function
symbols. There are embeddings both ways between RP(R e=→ R e=) and PA,
and PA is an (obvious) sub-institution of PMEMB. (All these institutions (and
many more, see [38]) specify the same categories of models, the finitely locally
presentable categories). Composition of the above embeddings is illustrated in

2In this trivial example, an initial multialgebra could be obtained by adding the axiom
t

.
= t. This, however, is an option left to the specifier.
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the following diagram:

RP(R e=→ R e=)� _

²²

PMEMB
% �

33ggggggggggggggggggg

PAY9

kkWWWWWWWWWWWWWWWWWWWWWWWW

Fact 3.3.3 There is a simple embedding (Φ∗, α, β) from PMEMB to MA.
Moreover, each component of β is an isomorphism of model categories.

• Φ∗ : SignPMEMB → ThMA is given by: Φ∗(S, Ω, Π) = (S, Ω ] Π′, ∅Σ),
where

– for each p ∈ Π there is a corresponding constant p :→ π(p) in Π′

– ∅Σ contains an axiom y
.= y, y ≺ ω(x) → ω(x) .= ω(x), for each

operation ω ∈ Ω

– Φ∗(µS , µΩ, µP ) is the signature morphism (µS , µΩ ] µP )

• The natural transformation α : SenPMEMB → SenMA ◦ Φ∗ is given by:

1. α(t : c) ≡ t ≺ c auxiliary definition for atoms

2. α(t e= t′) ≡ t
.= t′ auxiliary definition for atoms

3. α({x1, . . . , xk}; a1∧· · ·∧an → a) ≡ x1
.= x1∧ . . .∧xk

.=, xk∧α(a1)∧
· · · ∧ α(an) → α(a), for Horn clause {x1, . . . , xk}; a1 ∧ · · · ∧ an → a

Φ∗ is extended to a functor Φ∗ :
Th0PMEMB → Th0MA by Φ∗(Σ, Γ) = (Σ, ∅Σ ∪ αΣ(Γ)).

• The components of natural transformation β : ModMA◦Φ∗op → ModPMEMB
are essentially the identities on models and homomorphisms (cf. β in def-
inition 1.4.9). For an M ∈ ModMA(Φ∗(Σ,Γ))

– |βΣ(M)| = |M |

– f(x1, . . . , xn)βΣ(M) =





x − such that f(x1, . . . , xn)M = {x}
if it exists

undefined − otherwise

– pβΣ(M) = pM for all p ∈ Π

For any homomorphisms: h : M → B ∈ Mod(Φ∗(Σ, Γ)), we let β(h) = h.

Using this fact we can construct an institution transformation from PMEMB
to MA conservatively extending the model-class of PMEMB in the same way
as we did in proposition 3.3.1 for PA. This means that we can use the syntax
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of membership algebra specifications directly in a multialgebra specification
and introduce additional “partiality” axioms (corresponding to ∅Σ above) at
an appropriate stage. Notice also that a “totality” axiom ω(x) .= ω(x) is a
strengthening of the respective “partiality” axiom – thus a “totalization” of
partial operation is always possible as a simple refinement step. In particular,
one can obtain a membership algebra from a partial (membership) algebra by
simply adding such a totality axiom (for each operation). As the embedding
between partial algebras (as in the diagram above and in [38]) show, predicates
do not extend the specification power of partial algebras. Using predicates leads,
however, to a more natural presentation.

3.4 Concluding remarks

We have presented a multialgebra based approach to developing specifications
with partial operations. The novelty of the proposed framework lies in think-
ing about and modelling undefined operations by nondeterministic ones – an
operation applied to an argument outside its definition domain may result in
an unexpected and initially unknown value. This view leads actually to the
combination of various features of several earlier approaches. It allows one to
start with high level specifications, where error situations can be dealt with at
the same level of abstraction as in partial algebras. Narrowing the range of
nondeterminism modelling undefinedness, one can refine such specifications to
a low level error handling. We have illustrated by examples a wide range of
possibilities for error handling admitted by the proposed framework. In partic-
ular, utilizing sets to model error situations allows a function to return both a
marking that such a situation occurred and relevant recovery values.

From the methodological perspective, based on institution transformation
we have shown the possibility of reusing partial algebra specifications without
the necessity to perform any translation (except for the trivial replacement of
e= by .= and adding guards for variables in the variable context of a formula.)
Thus, we believe the proposed framework may be more useful, and in any case
easier to apply, when extending partial algebra specifications to explicit error
handling, than the frameworks based on translation of such specifications into
deterministic specifications with predicates.
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Chapter 4

Parameterized datatypes

The need for modularization techniques in software development is well moti-
vated by large software projects. At the implementation stage of such a large
project, it is possible to identify subtasks of the whole system as parameter
programs. By stepwise identification of subtasks, the whole system can be im-
plemented by composition of parameterized programs.

The important distinction between parameterized specifications and specifi-
cations of parameterized programs has been originally pointed out in [46]. The
major difference concerns the objects which are reused.

Parameterized specification, “PSP”, offers means to combine and reuse spec-
ification texts. This makes PSPs applicable for structuring the problem domain
at the analysis stage of a software project.

A specification of a parameterized data type, “PDT” [47, 46], on the other
hand, requires a reusable implementation of a program. Thus PDTs offer for-
malism to reuse program pieces, i.e. to structure programs in a modular way.
E.g., specification of a data type stack parameterized by elements, Stack[El]
requires an implementation of a data type with a parameter, i.e., one capa-
ble of taking any implementation of El and resulting in an implementation of
Stack[El]. The model class of such a specification is seen as consisting of some
– perhaps all – functors sending models of the formal parameter specification
X to models of the parameterized specification P[X] :

FMod(P[X]) ⊆ {F : Mod(X) → Mod(P[X])}. (4.1)

Our semantic requirements on such functors is motivated by preservation of
the parameter program combined with the possibility to extend the parameter
program with new functionality and new data.

Study of PSPs has long tended in the direction of PDTs [11, 49, 12, 13, 42,
43, 19, 24]. One of the problems is that, while PSPs continued the tradition of
working with classes axiomatized by (possibly conditional) equations, the PDTs
require a precise grasp on individual algebras (which, for modelling purposes,
are identified with programs). Now, a program P taking as a parameter an-
other program X cannot change X - X functions in the context of P, that is
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in P[X], in the same way as it would in isolation. This intuition of ”preserv-
ing actual parameter” has been identified as one of the semantic requirements,
namely, persistency of the functors from 4.1, see e.g. [13, 49, 12]. This require-
ment is, however, very restrictive forbidding, in general, extension of the data
types from the parameter program with new elements. However, in the purely
equational context, there was hardly any syntactic counterpart of this seman-
tic requirement. Thus, no syntactic/logical means were available for reasoning
about correctness of such implementations.

Even worse, persistency turns out to be all too strong a requirement eliminat-
ing many interesting examples of PDTs as illegitimate. For instance, a functor
which takes an El-algebra of elements and adds a new element (intended, e.g.,
as the “error value” resulting from inspecting the top of an empty stack in the
specification Stack[El]) is not persistent. In general, most free functors are not
persistent, since these involve, typically, generation of new elements. Partial
algebras admit more free functors than the total ones, since “error” elements
remain simply undefined, but they still exclude the possibility of adding new
elements and, in particular, as pointed out in chapter 3 of explicit error treat-
ment.

We introduce a more adequate framework for specifying PDTs. The first
thing is a generalization of the classical concept of persistent functors, so that
our semantic functors can add new elements to the parameter algebras. This
idea, which is the main aspect of our approach, goes actually back to [42, 43].
However, it was there used only in the limited context of order-sorted algebras
and was restricted to admitting only new errors elements. Our approach cap-
tures these aspects but, in addition, allows one also to extend parameter algebra
with ”regular” elements (e.g. extend a monoid to a grup by adding inverse el-
ements), and to choose whether the axioms from the parameter specification
shall apply to the new elements or not.

We also introduce the notion of refinement and present results about compo-
sition of PDT’s. We discuss refinement of PDTs in relation to the classical con-
cept of implementation as model class inclusion. The main difference concerns
our view of PDTs as design specifications, i.e., rather low level specifications
which prescribe not only some desired functionality but also a specific structure
to the program. Refinement amounts then to introduction of additional struc-
ture and exemplifies the idea of “constructor specifications” from [47]. We also
present results about vertical and horizontal composition of PDTs which, in
fact, provide examples of refinement. Their relation to the respective classical
concepts is also discussed.

Although the definition of the desirable semantic functors for PDTs is simple,
a lot of book-keeping is required on the side of the syntax. Section 4.1 begins
by introducing the syntactic preliminaries needed for specification of PDTs, and
then defines the syntax and semantics of PDTs. Section 4.2 discusses syntax and
semantics of actual parameter passing. Section 4.3 shows the counterparts of the
classical, vertical and horizontal composition theorems. In this connection, we
also encounter the concept of refinement of PDTs. Since PDTs correspond more
to the design-, and not only to the requirement-specifications, their refinement

97



reflects more specific design decisions. Unlike the classical concept of model class
inclusion, refinement of PDTs amounts to introduction of additional structure.
For instance, identifying a part of a flat specification as a parameter, amounts
to requiring a structured, i.e., parameterized rather than a flat implementation.
This section leads to a general concept of such a refinement, exemplifying the
idea of “constructor specifications” from [47], which is summarized in section
4.4. Section 4.5 contains some concluding remarks.

4.1 Specifications of parameterized data types

To specify parameterized data types we will use a restricted syntax for specifi-
cations. All specifications can be naturally viewed as standard multialgebraic
specifications. Also, all semantic constructions take place in the category of
standard multialgebras. Subsection 4.1.3 introduces merely convenient syntac-
tic abbreviations.

4.1.1 Signatures with sort constants

We start by modifying the concept of signature and specification. The idea
is that each signature may have, in addition to the standard set of sort and
operation symbols, a (possibly empty) set of distinguished constant symbols
S? = ? ∪ C?. The set ? contains constant symbols ?s for various sort symbols
s – the intention of ?s is to denote all the elements of the respective sort s. The
set C? may contain additional constants which will represent various subsorts
– the constants from this set are called “subsort constants”. 1

Definition 4.1.1 A signature with sort constants, Σ?, is a triple Σ? = (S,Ω, S?),
where Σ = (S,Ω) is an ordinary signature and S? = ?∪C? is a (possibly empty)
set of additional constants, satisfying: S? ∩ Ω = ∅ and ? ∩ C? = ∅.
Signatures with sort constants will be used merely as a syntactic representation
of ordinary signatures. This is possible in multialgebraic setting since constants
may denote sets of elements. 2

We allow the set S? to be empty. Also, we allow the set ? to contain several
distinct constants of the same sort although their intended meaning will be the
same. The technical reasons for that come up in relating construction of co-
limits (proposition 4.1.6, especially, lemma 4.1.9) and, in particular, pushouts
(subsection 4.2.1). For the most, we think of the set ? as containing one constant
for each sort, i.e., as ? = {?s :→ s : s ∈ S}. Most relevant constructions will
involve and yield such signatures. 3

1Usually, the distinction between ? and C? does not matter and then we will write
“(sub)sort constants”.

2In a more traditional setting, one would have to represent the sort constants, for instance,
by predicates or (sub)sort symbols.

3In general, we use the symbol ?s for an arbitrary constant from ? of sort s, e.g., for a
signature morphism µ, µ(c) 6= ?s means the same as µ(c) 6∈ ?.
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We will use the following operations relating the signatures with sort con-
stants to ordinary signatures.

Definition 4.1.2 Given a signature with sort constants Σ? = (S, Ω, S?) we let:

1. Σ? = (S, Ω ∪ S?) i.e. (S,Ω ∪ ? ∪ C?) – the underlying signature

2. Σ− = (S, Ω, C?) i.e. Σ? \ ? – the reduced signature

3. Σ = (S, Ω) i.e. (Σ? \ S?) – the standard (part of the) signature

Conversely, given an ordinary signature Σ = (S, Ω), we let

4. Σ? = (S, Ω,?) , where ? = {?s :→ s : s ∈ S} and ? ∩ Ω = ∅
– the corresponding signature with sort constants.

5. Σ↑ = (S, Ω, ∅) , – the included signature (with sort constants).

Unless stated otherwise, the signatures considered in this chapter will always be
signatures with sort constants.

Definition 4.1.3 A morphism between signatures with sort constants:
µ : Σ? → Σ′? is a signature morphism between the underlying signatures:
µ : Σ? → Σ′?, sending S? to S?′ and Σ to Σ′.

In other words, the ?-constants need not be sent to ?′-constants but may be
mapped to subsort constants C?′, as well.

Fact 4.1.4 The signatures with sort constants form a category Sign?, with the
identity function as identity and function composition as composition.

Since the signatures with sort constants essentially use underlying signature
morphism, the transformation from the former to the latter (point 4 of def. 4.1.2)
can be extended to a functor:

− : Sign? → Sign (4.2)

, which is the pointwise identity on the signature morphisms.
The other way around the inclusion of signatures (point 5 of def. 4.1.2) can

also be extended to a functor:

↑ : Sign → Sign? (4.3)

, which sends Σ to Σ↑ and is the identity on morphisms. The following fact says
that Sign can be treated as a full subcategory of Sign?.

Fact 4.1.5 ↑ : Sign → Sign? is full and faithful.
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We have that for any Σ ∈ Sign : Σ = (Σ↑) but, in general, for Σ? ∈
Sign? : Σ? 6' (Σ?)↑. This is because for an isomorphism in Sign? we must have
isomorphism between the respective sets of (sub)sort constants, but while S? in
Σ? may be non-empty, it is always empty in (Σ?)↑.

The following proposition shows that finite co-limits in Sign? can be ob-
tained from the respective co-limits in Sign.

Proposition 4.1.6 The functor − : Sign? → Sign reflects and preserves finite
co-limits.

To prove the proposition we show that the functor reflects and preserves initial
object, sums and co-equalizers.

Lemma 4.1.7 The functor reflects and preserves initial objects.

Proof. The empty signature Σ∅ = (∅, ∅) is the initial object in Sign, and the
empty signature (Σ∅)↑ = (∅, ∅, ∅) is the initial object in Sign?. But Σ∅ = Σ↑∅,
so initial object is both reflected and preserved. ¤

Lemma 4.1.8 The functor reflects and preserves sums (binary co-products).

Proof. Let Σ?1 = (S1, Ω1, S
?
1 ) and Σ?2 = (S2, Ω2, S

?
2 ) be Sign? objects and T

be a co-cone in Sign? as in the left diagram. Assume that its image T (as in
the right diagram) is a co-limit (sum) in Sign. We have to show that T is a
sum in Sign?.

T Σ? T Σ? ' Σ?1 + Σ?2

Σ?1

ι1

??~~~~~~
Σ?2

ι2

__@@@@@@
Σ?1

ι1

88ppppppppp
Σ?2

ι2

ffNNNNNNNNN

By the standard construction in Sign: Σ? ' Σ?1+Σ?2, where the latter denotes
disjoint union (of sort and operation symbols from both signatures). To simplify
the notation, let us assume, without loss of generality, that we have equality
here. Then both ιi’s are injections,

Let C be any co-cone µ1 : Σ?1 → Σ′?, µ2 : Σ?2 → Σ′? in Sign?. Since
T is a sum, we have a unique mediator to C, uµ1,µ2 : Σ? → Σ′?, such that
µi = ιi; uµ1,µ2 for i ∈ {1, 2}. It is given by: for any symbol x ∈ Σ? :

uµ1,µ2(x) =
{

µ1(x) if x ∈ Σ?1

µ2(x) if x ∈ Σ?2
.

C Σ′? C Σ′?

Σ?

uµ1,µ2

OO

Σ?1 + Σ?2

uµ1,µ2

OO

Σ?1

ι1

??ÄÄÄÄÄÄÄÄ

µ1

33

Σ?2

ι2

__@@@@@@@@

µ2

kk

Σ?1

ι1

::uuuuuuuuu

µ1

22

Σ?2

ι2

ddIIIIIIIII

µ2

ll
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The claim is that there is also a unique mediator uµ1,µ2 : Σ? → Σ′?. Indeed, let
it be given by uµ1,µ2(x) = uµ1,µ2(x) for all x ∈ Σ? (then uµ1,µ2 = uµ1,µ2). It
obviously makes µi = ιi; uµ1,µ2 , for i ∈ {1, 2}.

It is also a Sign? morphism because all ιi’s and µi’s are: the (sub)sort
constants S?

1 , S?
2 from Σ?1, Σ?2, respectively, are mapped by ι1, ι2 to (sub)sort

constants S? in Σ?. Their ιi images are also all the (sub)sort constants S?,
since the other symbols in Σ? are images of Σ1, resp., Σ2 symbols (i.e., of those
symbols from Σ?1, Σ?2 which are not (sub)sort constants). Then, since also all
the images under µi of (sub)sort constants from Σ?i are (sub)sort constants in
Σ′?, it follows from the definition of uµ1,µ2 that it, too, maps (sub)sort constants
– of the form c = ιi(c) – to (sub)sort constants, since uµ1,µ2(c) = µi(c), for
respective i’s.

Finally, this uµ1,µ2 is unique making µi = ιi; uµ1,µ2 . For if there is another
u 6= uµ1,µ2 , such that µi = ιi; u, then it would also be the case that u 6= uµ1,µ2

and, furthermore, that µi = ιi;u, contradicting the uniqueness of uµ1,µ2 .
Preservation of sums follows now easily. A sum Σ?1 + Σ?2 in Sign? must

be isomorphic to a sum as given above, i.e., a disjoint union of all the symbols
from both signatures: Σ?1 + Σ?2 ' (S1 ] S2, Ω1 ] Ω2, S

?
1 ] S?

2 ) where also
(Ω1 ] Ω2) ∩ (S?

1 ] S?
2 ) = ∅.

But then Σ?1 + Σ?2 ' (S1 ] S2, (Ω1 ∪ S?
1 ) ] (Ω2 ∪ S?

2 )) ' Σ?1 + Σ?2. ¤

Lemma 4.1.9 The functor reflects and preserves co-equalizers.

Proof. Let Σ? = (S, Ω, S?), Σ′? = (S′, Ω′, S?′), Σ′′? = (S′′, Ω′′, S?′′) be objects
in Sign? and suppose that we have a co-cone in Sign? as on the left diagram
(with µ1;σ = µ2;σ), and that its image (on the right diagram) is a co-limit
(co-equalizer) in Sign. We have to show that the original co-cone (on the left)
is a co-limit in Sign?.

Σ?

µ1 //
µ1

// Σ′?
σ // Σ′′? Σ?

µ1 //
µ1

// Σ′?
σ // Σ′′? ' Σ′?/≈

By the standard construction in Sign, we have an isomorphism Σ′′? ' Σ′?/≈,
where Σ′?/≈ = (S′/≈, Ω′/≈), is the standard choice of co-equalizer i.e. the quo-
tient by the least equivalence ≈ on Σ′? induced by the relation with the following
components:

1. Sorts: ≈S′= {〈µ1(s), µ2(s)〉 : s ∈ S},
2. Operations: ≈Ω′∪S?′= {〈µ1(ω), µ2(ω)〉 : ω ∈ Ω ∪ S?}

To simplify the notation we will assume, without loss of generality, that, in fact,
Σ′′? = Σ′?/≈.

Since µ1, µ2 are Sign?-morphisms, the equivalence ≈ above can be viewed (is
the same) as the least equivalence ∼ on Σ′? induced by the following components:

3. Sorts: ∼S′= {〈µ1(s), µ2(s)〉 : s ∈ S},
4. Operations: ∼Ω′= {〈µ1(ω), µ2(ω)〉 : ω ∈ Ω}
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5. (sub)sort constants: ∼S?′= {〈µ1(c), µ2(c)〉 : c ∈ S?}.
We then have Σ′?/∼ = Σ′?/≈, so we let Σ′′? = Σ′?/∼.

Let µ1, µ2, γ be an arbitrary co-cone as shown on the left diagram.

Σ?

µ1 //
µ1

// Σ′?
σ //

γ
&&MMMMMMMMMMM Σ′′? = Σ′?/∼

uγ

²²

Σ?

µ1 //
µ1

// Σ′?
σ //

γ
$$IIIIIIIII Σ′?/≈

uγ

²²
Σ′′′? Σ′′′?

Since the image σ, Σ′′? = Σ′?/∼ = Σ′?/≈ is co-equalizer, we have a unique media-
tor uγ making γ = σ;uγ . We show that uγ : Σ′′? → Σ′′′? , given by uγ(x) = uγ(x)
for all symbols x ∈ Σ′′? (in particular, uγ = uγ) is a unique mediator in Sign?.
It obviously makes γ = σ; uγ .

It is also a morphism in Sign?. Since both σ, γ are morphisms in Sign?

they send (sub)sort constants S?′ to the (sub)sort constants S?′′, respectively,
S?′′′. Since σ is surjective, then so is σ, and thus the (sub)sort constants in Σ′′?
are exactly the σ-images of (sub)sort constants S?′ from Σ′?. By definition of
uγ and the fact that γ = σ;uγ , this means that for every (sub)sort constant
σ(c) = [c] ∈ S?′′, uγ([c]) = γ(c) ∈ S?′′′.

Finally, uγ is a unique mediator. For if there was another u 6= uγ making
γ = σ; u, then we would also have u 6= uγ and γ = σ;u, contradicting the
uniqueness of uγ .

The fact that co-equalizers are also preserved by the functor follows now
easily. A co-equalizer of µ1, µ2 must be isomorphic to the quotient Σ′?/∼, with ∼
defined by the points 3.-5. above. But then its image Σ′?/∼ is trivially isomorphic
to the co-equalizer Σ′?/≈ in Sign. ¤
Since we can create all finite co-limits by initial objects, sums and co-equalizers
the proposition 4.1.6 follows from the above lemmata. In the following we will
be interested in constructing co-limits in Sign?. The concrete way of doing this
is to construct a co-limit in Sign and then make an appropriate choice of the
(sub)sort constants, according to the prescriptions given in the proofs above.

4.1.2 Guarded specifications

To write specifications of parameterized data types we will use guarded axioms.
In general, one only requires that the axioms from the parameter specification
hold only for the ”old” elements (from the parameter algebras), and guards are
needed to mark these elements.

Definition 4.1.10 Given a signature Σ? with sort constants S?:
1. a guard γ is an atom of the form x ≺ c, where x is a variable and c ∈ S?;
2. a (fully) guarded formula is of the form φ? = γ∗, a → b where:

• a, b are sequences of Σ− atoms and
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• γ∗ is sequence of guards γi = xi ≺ ci for each (and only) variable xi

occurring in the atoms a, b
γi’s in such conditional formulae are called local guards;

The only places where ? may occur are in guards – for conditional axioms in the
premises. We will also allow unconditional axioms of form 1.Note that guards
with sort constants, x ≺ ? are only special cases of guards – in general, x ≺ c,
where c ∈ S?, is a guard.

A formula containing only ground Σ? terms (a ground Σ? formula) is a fully
guarded formula, according to point 2.

We will use only a restricted form of the specifications, namely, guarded
specifications.

Definition 4.1.11 A guarded specification is a triple SP? = (Σ?, Φ?, ΓΣ) where:
• Σ? is a signature with sort constants
• Each φ? ∈ Φ? is a (fully) guarded formula
• ΓΣ = {x ≺ ?s : ?s ∈ ?} is the set of axioms called global guards (with

appropriately sorted variables as indicated by the subscript).

Note that all the local guards of the form x ≺ ? → ... in a guarded specifica-
tion are trivially satisfied due to the presence of the global guards Γ. Yet, this
apparently redundant syntactic form will be of importance for defining the con-
structions on specifications. All such constructions will assume that the involved
specifications are guarded.

Example 4.1.12 Guarded specification of the natural numbers.
spec Nat? =
S : Nat
Ω : zero : → Nat

succ : Nat → Nat
pred : Nat → Nat

S? : ?Nat : → Nat
Φ : 1. zero

.= zero
2. x ≺ ?Nat → succ(x) .= succ(x)
3. x ≺ ?Nat → pred(succ(x)) .= x

Γ : 4. x ≺ ?Nat

Obviously, there is no real difference between this and the usual specification
of Nat (except for the constant ?Nat which comprises all the elements of sort
Nat.)

Definition 4.1.13 Given a guarded specification SP? = (Σ?, Φ?, ΓΣ),

1. its weakening is a specification SP− = (Σ?, Φ?).

2. its underlying specification is SP? = (Σ?, Φ? ∪ ΓΣ).
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Conversely, for an ordinary specification SP = ((S, Ω), Φ), SP? denotes the
guarded specification (Σ?, Φ?, ΓΣ), where ? is as in def. 4.1.2, Σ? = (S,Ω,?)
and ΓΣ = {x ≺ ?s : ?s ∈ ?}, and Φcons contains fully guarded versions of all
axioms Φ, i.e. with the premise x ≺ ?s for each variable occurring in an axiom.

As for formulae, SP? denotes, in general, a guarded specification.
Keep also in mind that, given a specification SP? with signature Σ?, the

signature of its weakened version SP− is still Σ? and not Σ−.
As models for guarded specifications we use ordinary multialgebras.

Definition 4.1.14 The model class of a guarded specification SP? is the model
class of its underlying specification: Mod(SP?) = Mod(SP?).

In particular, for a given ordinary specification SP, there is obvious equivalence
of model categories between the unguarded Mod(SP) and guarded Mod(SP?).
Also, for a given guarded specification SP? there is the obvious inclusion functor:

id− : Mod(SP?) → Mod(SP−) (4.4)

which sends each algebra in the first class to itself.

4.1.3 Specification of parameterized data types

Definition 4.1.15 A parameterized data type specification (a PDT) is a quadru-
ple (µ,X?,P[X]?, δ), where

1. X? = (Σ?, Φ?, ΓΣ), P[X]? = (Σ′?,Φ′?, Γ′Σ′) are guarded specs,
2. Σ? = (S, Ω,?, C?) ⊆ (S′,Ω′,?′, C?′) = Σ′? are signatures,
3. µ : ?→ ?′ ∪ C?′ is called the parameterization morphism
4. δ : ?→ ?′ ∪ C?′ is called the local guard mapping
5. the two mappings, µ and δ are such that:

(a) for every axiom φ? ∈ Φ? : δ(φ?) ∈ Φ′?.

(b) if µ(?s) 6= δ(?s) 6= ?s then µ(?s) ≺ δ(?s) ∈ Φ′?

For convenience, we treat µ and δ as signature morphisms Σ? → Σ′? which
are identities on all symbols except (possibly) some of ? – this is reflected in
point 5a, which means that if the respective axioms do not involove ?, they are
simply included in P[X]?. We write δ at the end of the tuple because in many
constructions it plays no role, and then it may be dropped from the notation.
For all practical purposes we can think of the syntax as given by µ and δ with
δ(?s) = µ(?s) or else δ(?s) = ?s (see below). This covers most natural situations
and will be the case in all our examples.

5a stated in more detail says: for each guarded axiom φ? ∈ Φ? ::

φ? = x1 ≺ ?1, . . . , xm ≺ ?m, xm+1 ≺ pm+1, . . . , xz ≺ pz, a ⇒ b
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with all the local guards explicitly listed and ?i ∈ ? (and a, b sequences of Σ−
atoms), the corresponding axiom δ(φ?) ∈ Φ′?, where:

δ(φ?) = x1 ≺ δ(?1), . . . , xm ≺ δ(?m), xm+1 ≺ pm+1, . . . , xz ≺ pz, a ⇒ b

Axioms of the form 5b are needed to ensure that the guarded axioms from
the parameter specification will still apply, at least, to the elements originating
from the parameter algebras. (We do not include the axiom µ(?) ≺ δ(?) when
δ(?) = ? to conform to the format from Def. 4.1.11 (and 4.1.10), but then it will
be satisfied due to the global guards in P[X]?).

The image under µ : ?→ S?′ can be twofold and could be marked with the
keywords:

1) non-extending the carrier s:
This is the case when µ(?s) = ?s, and it corresponds to the classical case
of persistency.

2) extending carrier s:
Is the case when µ(?s) 6= ?s, we have introduced a distinction between the
elements of sort s originating from the parameter, µ(?s), and the possibly
new ones ?s.

The mapping δ allows more flexibility in PDTs. If the carrier of sort s is
not extended, case 1) above, δ has no effect – according to 5b, it has to be
δ(?s) = µ(?s) = ?s.4 But if the carrier of s is extended, case 2) above, δ allows
to either
2a) restrict the local guards from the formal parameter, when δ(?s) =

µ(?s) – in this case the axioms from the parameter specification are re-
quired to hold only for the elements from the parameter algebra,

2b) or else extend the local guards – in which case the axioms from the
parameter specification have to hold also for possibly new elements from
δ(?s); the presence of axioms 5b, µ(?s) ≺ δ(?s), ensures that the old
axioms still hold at least for the old elements.

Again this keywords may be added to the specification language, as the respec-
tive effect can be then obtained automatically.

The case 2a) applies typically in situations when the carrier of a data type is
extended with special kind of elements (like “error” values), the typical exam-
ple being stacks parameterized by elements, where pop(empty) requires a new
“error” element. 2b) applies in situations when the added elements are “es-
sentially” of the same kind (e.g., group parameterized by monoid may require
adding new, but “standard”, inverse elements).

Example 4.1.16 Specification of groups parameterized by monoids.
First, we take a standard deterministic multialgebraic specification of groups,

with multiplication ·, unit e and inverse ( )−:
4In general, δ(?s) may be equal to another subsort constant p. But then 5b forces P[X]? |=

?s ≺ p which, together with the global guard x ≺ ?s says that the two constants, ?s and p,
denote the same set, i.e., the whole carrier of sort s.
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spec Group =
S′ : S
Ω′ : · : S × S → S

e : → S
( )− : S → S

Φ′ : 1. e · x .= x · e
2. e · x .= x
3. x · (y · z) .= (x · y) · z
4. e

.= e
5. x · y .= x · y
6. x · x− .= e
7. x− .= x−

This does not conform to the required format – we add the sort constant ?S,
a global guard x ≺ ?S, and then a new constant mono to mark the elements
originating from the monoid specification. The result is the PDT on the right,
with the formal parameter on the left:
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spec Monoid? =
S : S
Ω : · : S × S → S

e : → S
S? : ?S : → S
Φ : 1. e · x .= x · e

2. e · x .= x
3. x · (y · z) .= (x · y) · z
4. e

.= e
5. x · y .= x · y

Γ : 6. x ≺ ?S

µ(?S) = mono

δ(?S) = ?S

¿¿
spec Group[Monoid]? =
S′ : S
Ω′ : · : S × S → S

e : → S
( )− : S → S

S?′ : ?S : → S
mono : → S

Φ′ : 1. e · x .= x · e
2. e · x .= x
3. x · (y · z) .= (x · y) · z
4. e

.= e
5. x · y .= x · y
6. x · x− .= e
7. x− .= x−

Γ′ : 8. x ≺ ?S

The parameterization morphism sends µ(?S) = mono. This is so because con-
structing a Group-algebra out of a given Monoid-algebra, one may need to
add new elements, extending carrier, of sort S. The constant mono keeps the
track of the old elements.

On the other hand, even if new elements appear in the resulting algebra, we
certainly want the Monoid-axioms to hold not only for the old but also for these
new elements. Therefore, we let δ(?S) = ?S.

In the presentation above, we have dropped all the local guards x ≺ ?S → ...
in both specifications, since they will be trivially satisfied due to the presence
of the global guards Γ, resp. Γ′. We have also dropped the axiom mono ≺ ?S

(required by definition 4.1.15, point 5b), since it follows from the global guard Γ′.
The respective specifications are equivalent (i.e., isomorphic in ThMA). We will
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often use such abbreviations in order to simplify the examples. (The syntactic
presence of all guards will be of significance first in considering composition in
section 4.3.)

It should be observed that the flexibility offered by δ is highly desirable –
in many other situations, one would like to restrict the local guards from the
formal parameter to hold only for the elements originating from it but not for
the new ones added by the parameterized specification. The classical example
of such a situation is introduction of error elements.

Example 4.1.17 As in the previous example, we drop the local guards s ≺
?Stack and the axiom ok ≺ ?El from Stack[El]?.

spec El? =
S : El

S? : ?El :→ El
Γ : x ≺ ?EL

µ(?El) = ok

δ(?El) = ok
##

spec Stack[El]? =
S′ : Stack, El
Ω′ : empty : → Stack

top : Stack → El
pop : Stack → Stack

push : El × Stack → Stack
S?′ : ?El : → El

?Stack : → Stack
ok : → El

Φ′ : 1. empty
.= empty

2. x ≺ ok → top(push(x, s)) .= x
3. x ≺ ok → pop(push(x, s)) .= s

Γ′ : 4. x ≺ ?EL

5. s ≺ ?Stack

The parameterization morphism with µ(?El) = ok, allows extending carrier
of sort El. The local guard mapping δ coincides here with µ, i.e., δ(?El) = ok,
thus restricting (local) guards of sort El – the potentially new elements of
sort El arising in Stack, like top(empty), are not intended to behave as the
“ordinary” elements from the actual parameter sort but to function merely as,
say, “error” elements.

The effect of δ may be little visible in the above example since the parameter
El? does not contain any proper axioms. However, it should be clear that a
PDT where the local guards in Stack[El]? axioms 2. and 3. were replaced by
x ≺ ?El would be very different. Also, it should be easy to imagine replacing
the formal parameter El? with, say Nat? from example 4.1.12, in which axioms
should be guarded. For instance, the axiom x ≺ ?Nat → pred(succ(x)) .= x
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from Nat? would correspond to x ≺ ok → pred(succ(x)) .= x in Stack[Nat]?,
since we do not necessarily want this axiom to apply to the result of top(empty).

We register a simple fact about the parameterization morphisms:

Fact 4.1.18 If (µ,X?,P[X]?, δ) is a PDT then:

1. µ : X? → P[X]? may not be a specification morphism, but

2. µ : X− → P[X]− is a specification morphism, and hence also

3. µ : X− → P[X]? is a specification morphism.

Proof.

1. A trivial counter-example is given by X? with the only global guard axiom
x ≺ ?, P[X]? with a subsort constant c and the only global guard axiom
x ≺ ?, and µ(?) = δ(?) = c. Obviously P[X]? 6|= µ(x ≺ ?) = x ≺ c.

2. follows from definition 4.1.15. µ-translations of all unguarded axioms from
X− are included in P[X]? by point 5a. For any guarded axiom xi ≺ ?i, a →
b from X−, the corresponding axiom xi ≺ δ(?i), a → b is in P[X]?. But
then we also have the axioms µ(?i) ≺ δ(?i) in P[X]?, and these together
imply that P[X]? |= xi ≺ µ(?i), a → b, i.e., P[X]? |= µ(xi ≺ ?i, a → b).

3. follows from 2., since P[X]? |= P[X]−.

¤

4.1.4 Semantics of parameterized data type specification

It is, of course, possible to use ordinary (loose) semantics for our PDTs, i.e.,
to treat them as simple parameterized specifications. But the trouble we have
taken with the syntactic operations and restrictions on the specifications was
meant to provide the possibility to define the semantics as parameterized data
types, i.e., data types consisting of algebras parameterized by algebras. It seems
to us satisfying that PDTs can be seen as more specific, special cases of param-
eterized specifications.

To define the semantics for PDTs we will use a special case of the general
(weak) homomorphisms of multialgebras.

Definition 4.1.19 A tight homomorphism h : A → B is a homomorphism
satisfying:

h(ωA(x1, . . . , xn)) = ωB(h(x1), . . . , h(xn))

The following results only appear as technical arguments in some proofs later on,
hence the reader may move forward and continue reading directly after proposi-
tion 4.1.22. The tight homomorphisms and, in particular, tight monomorphisms
have a logical counterpart, which will be useful in some proofs and which we
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now establish in proposition 4.1.22. Note that for multialgebras corresponds
the tight homomorphisms exactly to the injective homomorphism. To prove the
result we need the following lemma:

Lemma 4.1.20 Let A,B ∈ Mod(Σ?), ι : A → B be a tight Σ?-homomorphism,
t(x1, . . . , xn) be a Σ? term, and α : {x1, . . . , xn} → |A| an assignment. Then:

ι(tA(α(x1), . . . , α(xn))) = tB(ι(α(x1)), . . . , ι(α(xn)))

Proof. For any constant c we have ι(cA) = cB by definition. We drop multi-
ple arguments to simplify notation. For any operation ω, we have ι(ωA(α(x))) =
ωB(ι(α(x))). The result for any term t follows trivially by induction. ¤

Corollary 4.1.21 With the notation from the previous lemma, let ι be a tight
monomorphism.

• For any assignment α : X → |A|, let β : X → |B| be given by β = α; ι.

• Conversely, for any assignment β : X → |B|, such that:
∀x ∈ X : β(x) ∈ ι[A], let α : X → |A| be given by α = β; ι−.

Then for any atomic formula a : A |=α a ⇐⇒ B |=β a.

Proof. To simplify the notation, we write only a single argument/variable
X = {x}.

1. If A |=α s(x) ¹ t(x) (where ¹ stands for ≺ or .=), then by 4.1.20:

sB(ι(α(x))) = ι(sA(α(x))) ¹ ι(tA(α(x))) = tB(ι(α(x)))

, i.e. B |=β s(x) ¹ t(x).

Conversely, if B |=β s(x) .= t(x), i.e., if sB(ι(α(x))) = tB(ι(α(x))) = e ∈
|B|, then by 4.1.20, ι(sA(α(x))) = ι(tA(α(x))) = e ∈ |B|. But since ι is
mono (i.e., injective, [51]), this means that sA(α(x)) = tA(α(x)) = e′ ∈ |A|
, i.e., A |=α s(x) .= t(x).

If B |=β s(x) ≺ t(x), i.e., sB(ι(α(x))) ⊆ tB(ι(α(x))) then, by the same
argument (in particular, injectivity of ι), we get sA(α(x))) ⊆ tA(α(x))),
i.e., A |=α s(x) ≺ t(x).

2. Notice, that since ι is a monomorphism, α = β; ι− in point 2. is well
defined. But then, α; ι = β and the result follows by point 1.

¤

Proposition 4.1.22 With the notation from lemma 4.1.20 and the above corol-
lary, let ι be a tight monomorphism and let φ be an arbitrary, fully guarded
formula. Then:

A |= φ ⇐⇒ B |= φ
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Proof. Again, to simplify the notation, we write only a single argument/variable
X = {x}. Let φ be x ≺ c, a1, . . . , am → am+1, . . . , an.

Assume that A |= φ and let β : X → |B| be arbitrary assignment. If
β(x) 6∈ cB , then B |=β φ. If, on the other hand, β(x) ∈ cB , then we can define
α : X → |A|, as in point 2. of corollary 4.1.21. But then we get that for all
ai : A |=α ai ⇐⇒ B |=β ai, i.e., : A |=α φ ⇐⇒ B |=β φ. Since β was arbitrary,
it follows that B |= φ.

So assume that A 6|= φ, and let α : X → |A| be an assignment falsifying φ.
Defining β as in point 1. of corollary 4.1.21, we get B 6|=β φ, i.e., B 6|= φ. ¤

Now, given a PDT (µ,X?,P[X]?) and a functor F : Mod(X?) → Mod(P[X]?),
we obtain two functors:

• id− : Mod(X?) → Mod(X−) defined in equation (4.4) at the end of sec-
tion 4.1.2, and

• the composition F; |µ : Mod(X?) → Mod(X−).

The latter has the target Mod(X−) and not Mod(X?) because, in the case when
µ(?s) = c 6= ?s for some s, the reduct A|µ of an algebra A ∈ Mod(P[X]?) may
contain more elements in the sort sA|µ than those in ?

A|µ
s , i.e., it may fail to

satisfy the global guard x ≺ ?s. This captures the intention that the param-
eterized algebra may actually add new elements to the sorts of the parameter
algebra. We define (loose) semantics of parameterized data type specifications
by putting some restrictions on the functors F : Mod(X?) → Mod(P[X]?). No-
tice that the effects of δ are present in the actual axioms of both specifications,
so that we do not have to consider δ explicitly here.

Definition 4.1.23 The semantics of the PDT P = (µ,X?,P[X]?) is the class
of all functors F : Mod(X?) → Mod(P[X]?), such that there exists a natural
transformation ι : id− =⇒ F; |µ, where for each A ∈ Mod(X?) the component
ιA is a tight Σ(X?)-monomorphism.

A functor with this property is called a semantic functor for the PDT P, and
PMod(P) will denote the class of all semantic functors for a parameterized data
type.

First, let us observe that although this semantics PMod(P) is rather liberal,
it does capture the structuring aspect at least in the sense that the algebras
which may result from it are not all possible models of the flat specification.
More precisely, a PDT P = (µ,X?,P[X]?) can be seen as defining two classes
of algebras:

1. the one is simply the model class Mod(P[X]?) with P[X]? viewed as a flat
specification, and

2. the other is obtained from the semantic functors of the PDT, namely, the
class FMod(P) = {F(X) : X ∈ Mod(X?),F ∈ PMod(P)} of all P[X]?
algebras which can be obtained as an image of some X? algebra under
some semantic functor F.
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Obviously, the latter class is contained in the former.

Fact 4.1.24 In general FMod(P) 6= Mod(P[X]?).

Proof. Consider following specification P = (µ,X?,P[X]?):

spec X? =
S : s
Ω : c : → s

S? : ?s : → s
Γ : 1. x ≺ ?s

µ(?s)=d //

spec P[X]? =
S′ : s
Ω′ : c : → s

S?′ : d, ?s : → s
Γ′ : 1. x ≺ ?s

The algebra A given by: carrier |A| = {c} and cA = ?A
s = c, dA = ∅, is in

Mod(P[X]?). However, the reduct A|µ has no tight Σ?-subalgebra in Mod(X?),
because ?

A|µ
s = ∅ while cA|µ = c. Hence FMod(X) 6= Mod(P[X]). ¤

The following fact is an alternative formulation of the above definition 4.1.23.

Fact 4.1.25 A functor F : Mod(X?) → Mod(P[X]?) is a semantic functor of a
parameterized data type specification (µ,X?,P[X]?) iff:

1. there exists a functor ι : Mod(X?) → Mod(X−) such that for every algebra
A ∈ Mod(X?) there is a tight Σ?-monomorphism ιA : A → ι(A).

2. For every A ∈ Mod(X?) : ι(A) = (F(A))|µ, i.e., the following diagram
commutes: 5

Mod(X?)
F //

ι

&&MMMMMMMMMM
Mod(P[X]?)

|µ

wwooooooooooo

Mod(X−)

3. For any Σ?-homomorphism h : A → B, F satisfies F; |µ(h) = h.

The requirement of ιA being a monomorphism implies that ιA must be injec-
tive [51]. The tightness requirement ensures that ιA(?A) = µ(?)F(A)|µ , i.e.,
the carrier sA = ?A

s is injectively embedded into the carrier sF(A) as the sub-
set µ(?s)F(A). Together, the requirements mean that A is a (tight) subalgebra
of F(A)|µ and the carrier of this subobject corresponds bijectively in F(A) to
µ(?s)F(A) – thus ensuring protection of the parameter algebra. This is a gener-
alization of the requirement that F has to be a persistent functor. The classical
case of persistency is obtained as the special case when µ(?s) = ?s, for all s.

Example 4.1.26 For the specification of stacks from example 4.1.17 we may,
for instance, define the following semantic functor:
F : Mod(El?) → Mod(Stack[El]?):

5Although the ι here is not the same as the ι in definition 4.1.23, it’s role is essentially the
same and there is no real danger in confusing the two.
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• objects: A ∈ Mod(El?) is mapped to F(A) ∈ Mod(Stack[El]?) given by:

– ElF(A) = ElA ∪ {⊥}, where ⊥ 6∈ ElA, and
– StackF(A) = (ElA)∗ – finite strings of elements from A

– emptyF(A) = ε – the empty string

– pushF(A)(x, s) =
{

s if x = ⊥
xs otherwise

– popF(A)(xs) = s and popF(A)(ε) = ε

– topF(A)(xs) = x and topF(A)(ε) = ⊥
– okF(A) = ElA, ?

F(A)
El = ElF(A) and ?

F(A)
Stack = StackF(A).

• morphisms: h : A → B is mapped to F(h) : F(A) → F(B) given by:

– for x ∈ ElF(A) : F(h)(x) =
{

h(x) if x 6= ⊥
⊥ otherwise

– for s ∈ StackF(A) : F(h)(s) is the pointwise application of F(h)(x) to
successive x’s in s.

Of course, one might attempt a more specific error treatment but we are here
merely illustrating the basic idea. We check that F satisfies definition 4.1.23 by
verifying the conditions of fact 4.1.25.

The functor ι : Mod(El?) → Mod(El−) is given by ι(A) = F(A)|µ, which
obviously makes the diagram in point 2. (fact 4.1.25) commute. For each
A ∈ Mod(El?), ιA is the embedding of A into F(A)|µ (∀x ∈ |A| : ιA(x) = x),
i.e., it is monomorphism. It is tight because we have that:
ιA(?A) = ElA = (okF(A))|µ = µ(?)F(A)|µ . To obtain this last equality it is
essential that the target is required merely to be a model of EL− and not of El?.
Verification of tightness for other operations is easy. Thus, although the reduct
F(A)|µ contains the additional element ⊥ in its carrier, this element does not
interfere with the requirement of A being a tight subalgebra of this reduct. (F
trivially satisfies point 3 of Fact 4.1.25.)

Notice that, thanks to the local guards x ≺ ok → . . . in axioms 2. and 3. from
Stack[El]?, we can actually obtain extension of the carrier with a new Element
⊥, and yet ignore it when pushing on stacks. The above functor illustrates just
one possibility of the functor semantics from definition 4.1.23. There are, of
course, more.

A functor sending each El? algebra A to the standard stack algebra where
top(empty) returns the empty set would be another possibility. This would
be, in fact, the solution analogous to the free-persistent functor semantics with
partial algebras (the local guards x ≺ ok could then be dropped in axioms 2. and
3. in Stack[El]?). It is known that partial algebras admit more free persistent
functors than the total algebras do, and we can capture this extensions since
undefinedness of partial algebra terms can be modelled using empty set (as done
in chapter 3).

But our extension is much more powerful since, in general, it will admit
free functor semantics whenever P[X]? does not force any new identifications
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of X? elements that aren’t already forced by X?. The example illustrates the
possibility of extending the carrier of parameter algebra. If our specifications are
deterministic (or, more generally, allow free extensions), we can always choose
the free functor semantics (as long as no new identifications are implied). Such a
functor can be chosen as the semantics of the specification from example 4.1.16.
This cannot be done with partial algebras alone as long as one uses the classical
definition of persistent functor.

Of course, the definition 4.1.15 of the syntax of PDT does not guarantee
the existence of a semantic functor. As in the case of persistency, we would
have to show that the parameterized theory P[X]? is a conservative extension
of the parameter X−, and this problem is undecidable. It is a possible topic for
further work to identify syntactic restrictions on the specifications ensuring the
existence of a semantic functor.

4.2 Actual parameter passing

Since we specify PDTs, it might seem that passing an actual parameter amounts
merely to applying a semantic functor to the actual (parameter) algebra in order
to obtain a new algebra. This, however, is only what happens at the level of
programs implementing our specifications. Remaining still at the specification
level, we want to allow passing other specifications as actual parameters to
a specification of parameterized data type – such an operation should yield a
specification of a new PDT. That is, instantiating the formal parameter of a PDT
by a specification allows one to reuse the PDTs. This will be addressed mostly
by the syntactic considerations below and in subsection 4.2.1. In subsection 4.2.2
we will show that instantiation at the level of specifications can be reflected at
the level of semantic functors. In fact, given a semantic functor F for a PDT
(µ,X?,P[X]?) and an instantiation of the formal parameter X? by an actual
parameter Y?, we can actually construct a semantic functor for the resulting
specification in a canonical way. As in the classical approach to PDTs based on
free-persistent functor semantics, this implies the possibility of reusing not only
specifications of PDTs but also their actual implementations.

We start with an example of the intended construction. We use the specifi-
cation of stacks parameterized by elements from example 4.1.17. As the actual
parameter we want to pass the specification of natural numbers from exam-
ple 4.1.12. (Keep in mind that all our constructions presuppose fully guarded
specifications and that, given a standard specification Nat, we can obtain the
desired form Nat? by applying the syntactic operation ? from definition 4.1.13.)

Let the actual parameter passing morphism – a specification morphism ν :
El? → Nat? – be given by ν(El) = Nat and ν(?El) = ?Nat. The result of
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instantiation is the following specification

spec Stack[Nat]? =
S : Stack, Nat
Ω : empty : → Stack

top : Stack → Nat
pop : Stack → Stack

push : Nat× Stack → Stack
zero : → Nat
succ : Nat → Nat

S? : ?Nat : → Nat
?Stack : → Stack

ok : → Nat
Φ : 1. zero

.= zero
2. x ≺ ok → succ(x) .= succ(x)
3. x ≺ ok → pred(succ(x)) .= x
4. empty

.= empty
5. x ≺ ok → top(push(x, s)) .= x
6. x ≺ ok → pop(push(x, s)) .= s

Γ : 7. x ≺ ?Nat

8. s ≺ ?Stack

The first three axioms come from Nat?. The thing to observe is that the guards
x ≺ ?Nat in axioms 2. and 3. from Nat? have changed to x ≺ ok. This hap-
pens because the parameterization morphism was defined by µ(?El) = ok, and
δ(?El) = ok prescribed restricting (local) guards. The above specification is
obtained as a pushout (in the category of multialgebraic specifications ThMA
– see section 1.1.4) of µ and ν:

El−
µ //

ν

²²

Stack[El]?

ν′

²²
Nat−

µ′
// Stack[Nat]?

(4.5)

Notice that the formal and actual parameter specifications in this diagram are
weakened (to El−, resp. Nat−) by removing their global guards. The intention
of this weakening is to remove the translation x ≺ ok of the global guard:
x ≺ ?Nat along µ′ from the resulting specification – we want to keep this global
guard there, and not the stronger (but not intended) x ≺ µ′(?Nat) = ok. The
global guard x ≺ ?Nat enters the result along ν′ from Stack[El]?.

The result is a (new) PDT (µ′,Nat?,Stack[Nat]?, δ′), where µ′ and δ′ are
identities except for:

• µ′(?Nat) = ok
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• δ′(?Nat) = ok.

The latter reflects restricting (local) guards in the axioms from Nat− (2.,
3.) according to µ.

4.2.1 Syntax of actual parameter passing

In order to ensure the existence of the pushout as illustrated in diagram (4.5)
above, we have to ensure that the involved morphisms µ and ν from El− are
actually specification morphisms. The former is so by fact 4.1.18.3. As to the
latter, we have to take into account a more general situation than in diagram
(4.5), namely, the possibility that the actual parameter passing morphism is not
surjective on the sorts, i.e., the actual parameter contains sorts which are not
in the image of ν.

The global guards of sorts s′ which are in the image of ν should be dropped
(and not translated by µ′!). But if the actual parameter Y? contains a sort
s which is not in the image of ν, its global guard x ≺ ?s should be preserved
in P[Y]?, while the local ones left unchanged (since parameterization does not
affect these sorts at all). The treatment of global guards in these two cases calls
for the definition 4.2.1 of weakening a specification Y? not to Y− but only to
Yν(−) by removing only the global guards which are in the image of a given
(signature) morphism ν.

Definition 4.2.1 Given signatures Σ? = (S, Ω, ?) and Σ′ = (S′, Ω′, ?′), guarded
specifications SP? = (Σ?, Φ?, ΓΣ), SP′? = (Σ′?, Φ

′
?, Γ

′
Σ′) and a signature mor-

phism ν : Σ? → Σ′?, the weakening of SP′? along ν is the specification:
SP′ν(−) = (Σ′?, Φ

′
?, Γ

′
Σ′ \ {x ≺ ν(?s) : s ∈ S}).

This weakening removes only these global guards from the target specification
which are in the image of global guards from the source specification. In par-
ticular, if ν(?s) 6= ?ν(s), the global guard x ≺ ?ν(s) will not be removed, but
x ≺ ν(?s) will be. This definition will be used only in conjunction with the next
one.

Definition 4.2.2 An actual parameter passing is a specification morphism: ν :
X− → Yν(−) satisfying ν(?s) = ?ν(s), for all s ∈ Σ(X−).

The intuition behind the extra requirement ν(?s) = ?ν(s) should be clear: ?s in
the formal parameter stands for all elements of the carrier of sort s and ?ν(s)

does the same with respect to the elements of the carrier ν(s) in the actual
parameter. Thus ν should identify the two – the restrictions induced on and
expressed using ?s should now be transferred to ?ν(s).

We register the following simple fact to be of relevance for defining semantics
of instantiation and composition.

Lemma 4.2.3 Given specifications X? and Y?, if ν : X− → Yν(−) is an actual
parameter passing, then ν : X? → Y? is a specification morphism.
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Proof. Let X− = (Σ,Φ?), Yν(−) = (Σ′, Φ′?, Γ
′
−), and ν : X− → Yν(−) be an

actual parameter passing. Suppose that A ∈ Mod(Y?). Then
1. First, A ∈ Mod(Yν(−)) since Yν(−) ⊆ Y?. Then, since ν : X− → Yν(−)

is a specification morphism we get that A|ν ∈ Mod(X−), so A|ν |= Φ?.
2. Since A ∈ Mod(Y?), we have that A |= x ≺ ?s′ for all s′ ∈ Σ′, in particular,

A |= x ≺ ?ν(s) for all s ∈ Σ. Since ν(?s) = ?ν(s), we obtain A|ν |= x ≺ ?s

for all s ∈ Σ, i.e., A|ν |= ΓΣ.

1. and 2. mean that A|ν ∈ Mod(X?), and since A was arbitrary, the claim
follows. ¤

Definition 4.2.4 Given a PDT (µ,X?,P[X]?, δ) and an actual parameter pass-
ing ν : X− → Yν(−), the result of instantiation (the actual parameter passing)
is a specification P[Y]? obtained by pushout in ThMA of ν and µ:

X−
µ

δ
//

ν

²²

P[X]?

ν′

²²
Yν(−)

µ′

δ′
// P[Y]?

Now, it is not clear that the result will be a PDT. In fact, since pushout is
defined only up to isomorphism, this need not be the case. To ensure that it is,
we will make a canonical choice of the pushout object.

The canonical pushout object

The examples and technicalities in this subsection culminate in lemma 4.2.8 and
proposition 4.2.9. Impatient reader may only register these facts and continue
reading at section 4.2.2.

In the definition 4.1.15 of PDT we demand that the parameterization mor-
phism be an inclusion on the reduced signature of the formal parameter. Thus
µ′ has to be the identity on Σ−(Yν(−)), so the names in the pushout object
P[Y]? should be chosen appropriately.

A more intricate question concerns the choice of the sets ? and C? in the
resulting specification. Since morphisms in Sign? are the same as in Sign, we
may have two different signatures Σ? 6= Σ′?, with Σ? = Σ = Σ′?, which differ
merely by the fact that a constant c in Σ? belongs to C? while in Σ′? to ?′. We
want the resulting specification to possess sort constant ?s for each sort symbol
s (assuming that the parameterized specification and the actual parameter do),
and also to be fully guarded (assuming that the parameterized specification and
the actual parameter are). The idea here is to include among the sort constants
?P[Y]? of the resulting specification all the (sub)sort constants c, such that the
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specification contains also the respective global guard x ≺ c. We illustrate it by
the following examples.

Example 4.2.5 Let X? contain two sorts s1, s2 and µ send the respective µ(?i) =
ci in P[X]?. Let ν identify these two sorts, i.e., ν(s1) = ν(s2) = s. The resulting
pushout P[Y]? is shown in the rightmost bottom corner:

X−

ν

²²

s1 : ?1

··*
**

**
**

**
**

**
**

µ // c1

­­··
··
··
··
··
··
··
·

?1

©©³³
³³
³³
³³
³³
³³
³³
³

x1 ≺ ?1

¦¦

P[X]?

ν′

²²

s2 : ?2
µ //

²²

c2

²²

?2

§§±±
±±
±±
±±
±

x2 ≺ ?2

²²
Yν(−) s : ?

µ′ // c ?2 ?1 x ≺ ?1 x ≺ ?2 P[Y]?

The resulting specification P[Y]? contains two constants ?1 and ?2, both of the
same sort s and it also contains both global guards x ≺ ?1 and x ≺ ?2 originating
from the global guards in P[X]?.

The example indicates the reason for allowing the set ? to contain more than
one constant ? of each sort. Of course, trivial and automatic manipulation may
be performed to remove such redundant duplicates, but its result, although in a
strong sense equivalent, 6 won’t be isomorphic to the pushout specification due
to the difference in the signatures.

Example 4.2.6 Let X? contain again two sorts s1, s2 which are identified by
ν, i.e., ν(s1) = ν(s2) = s. But now let µ send µ(?1) = c1 while µ(?2) = ?2 in
P[X]?. The resulting pushout P[Y]? is shown in the rightmost bottom corner:

X−

ν

²²

s1 : ?1

¸+̧
++

++
++

++
++

++
++

µ // c1

ªª¶¶
¶¶
¶¶
¶¶
¶¶
¶¶
¶¶
¶

?1

¨¨²²
²²
²²
²²
²²
²²
²²
²

x1 ≺ ?1

¦¦

P[X]?

ν′

²²

s2 : ?2
µ //

²²

?2

²²

x2 ≺ ?2

²²
Yν(−) s : ?

µ′ // ? ?1 x ≺ ?1 x ≺ ? P[Y]?

The resulting specification P[Y]? contains again two constants ?1 and ?, both of
the same sort s, with the respective global guards x ≺ ?1 and x ≺ ? originating
from the global guards in P[X]?. The point now is that ν′ is sending ν′(c1) =
? or, in other words, that µ′(?) is actually a sort constant ? ∈ ?P[Y]? and
not merely a subsort constant c ∈ C?

P[Y]?
. This is because µ(?2) = ?2 which

“overrides” the fact that µ(?1) = c1.

6due to the global guards, the respective model categories are not only equivalent but
contain “essentially” the same objects

118



The examples illustrate the motivation for the following definition of the canon-
ical choice of the pushout specification and, in particular, its signature.

Definition 4.2.7 In definition 4.2.4 we choose the (signature for the) pushout
object P[Y]? in the following canonical way.

Given a pushout signature Σ(P[Y]?) of µ and ν in Sign, we choose as the
names in Σ(P[Y]?) all the names coming from Σ(Y?) – the rest of the names
are “inherited” from P[X]?. (When several subsort constants from P[X]? get
identified (like in example 4.2.5), just choose a fresh name for the resulting
subsort constant.)

As the resulting set of sort constants, ?P[Y]? , we take the images of all
constants c ∈ S?

Y?
∪ S?

P[X]?
for which we also have a global guard x ≺ c. These

are the images under ν′ of all ?P[X]? and those ?Y?
which are not in the image

of ν – cf. example 4.2.6.
The subsort constants are all the remaining images of subsort constants from

Y? and P[X]?, i.e.,

C?
P[Y]?

= (ν′[S?
P[X]?

] ∪ µ′[S?
Y?

]) \ ?P[Y]? .

Finally, as the axioms we take the union of the axioms from Yν(−) translated
along µ′ and P[X]? translated along ν′.

With this choice, we can now state two facts which will be used in the sequel.

Lemma 4.2.8 Given a PDT (µ,X?,P[X]?) with an actual parameter passing
ν : X− → Yν(−), the pushout diagram as in the definition 4.2.4 and the canon-
ical pushout object from definition 4.2.7: then ν′ : P[X]− → P[Y]ν(−) is an
actual parameter passing.

Proof. Let P[X]? = (Σ′?,Φ′?, Γ′Σ′?). That ν′(?s′) = ?ν′(s′) for all s′ ∈ Σ′? follows
from the pushout properties, since if:
?s′ = µ(?s), then ν′(?s′) = ν(?s) = ?ν(s) (since ν is an actual parameter pass-
ing), and otherwise ν′(?s) = ?ν′(s′). Furthermore, ν′ is a specification morphism,
i.e., P[Y]ν(−) |= P[X]−, since for every formula:
φ? ∈ P[X]− : ν′(φ?) ∈ P[Y]ν(−), by the canonical pushout construction. ¤

Proposition 4.2.9 With P[Y]? and µ′ from definition 4.2.7, (µ′,Y?,P[Y]?, µ′)
is a PDT.

Proof. All global guards from Yν(−) get included in P[Y]?. Translations along
µ (and then ν′) of global guards ΓΣ(X?) originating from X? are “forgotten”
(by starting from X−), but the global guards themselves are passed from P[X]?
along ν′. Thus P[Y]? is globally guarded (if Y? and P[X]? are). Also, if Y?

and P[X]? are fully guarded, then so is P[Y]?.
µ′ is identity by the choice of the names in P[Y]?, possibly with the exception

of some ? ∈ ?Y? , which are in the image of ?X? and are mapped along µ
(example 4.2.5). But these are then mapped to fresh constants, either as by µ,
or by the choice of the canonical P[Y]?.

119



The local guard mapping δ′ = µ′ makes inclusion of the axioms:
µ′(?s′) ≺ δ′(?s′) unnecessary.

Finally, by the canonical pushout construction for all the axioms φ? ∈ Yν(−)

(i.e., except some global guards), we have µ′(φ?) ∈ P[Y]?, so that the point 5
of definition 4.1.15 is satisfied. ¤
The importance of this fact is that we always can see the result of instantiation
as a PDT. However, in some cases, it might seem more natural to choose δ′ in
a more specific way.

Example 4.2.10 Assume that µ(?) = c 6= ? = δ(?) and ν is an actual param-
eter passing in virtue of being simply an inclusion (translation) of the axioms:

X− x ≺ ?, . . . → . . .
µ(?)=c

δ(?)=?
//

ν(?)=?

²²

x ≺ ?, . . . → . . .

ν′(?)=?

²²

P[X]?

Yν(−) x ≺ ?, . . . → . . . µ′(?)=c

δ′(?)=?

//
x ≺ ?, . . . → . . .
x ≺ c, . . . → . . . P[Y]?

Since the PDT allows extension of the carrier (µ(?) = c) and, at the same time,
stipulates the old axioms to remain valid for the new elements (δ(?) = ?), we
might in this case expect the δ′ to do the same. Indeed, in this special case, it
may be natural to define δ′ corresponding to µ′ by

δ′(?s′) =
{

ν′(δ(?s)) if for some s ∈ Σ(X?) : ν(s) = s′

?s′ otherwise

Remember that both specifications on the right (P[X]? and P[Y]?) have all global
guards, i.e., x ≺ ?. The µ′ translation of the axiom yields a weaker guard
(x ≺ c . . .) than the ν′ inclusion of the respective axiom from P[X]?. Indeed,
the former is redundant in the presence of the latter – an isomorphic specifica-
tion would be obtained by just dropping the µ′ translation. Thus, in this case,
we could safely use the above definition of δ′ instead of the general one from
proposition 4.2.9, since pushout is defined up to isomorphism.

However, the above example illustrates only a special case. This definition
of δ′ would not work in a more general situation.

Example 4.2.11 Let (µ,X?,P[X]?, δ) be a PDT and ν : X− → Y− be an
actual parameter passing (signature inclusion) as shown below (we only write
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relevant axioms):

X− x ≺ ? → f(x) .= g(x)
µ(?)=c

δ(?)=?
//

ν(?)=?

²²

x ≺ ? → f(x) .= g(x)

ν′(?)=?

²²

P[X]?

Y− x ≺ ? → f(x) .= a
x ≺ ? → a

.= g(x)

µ′(?)=c

δ′(?)=?

//
x ≺ ? → f(x) .= g(x)

x ≺ c → f(x) .= a
x ≺ c → a

.= g(x)
P[Y]?

If we replaced the local guards x ≺ c, . . . in the resulting P[Y]? by x ≺ ?, . . .,
i.e., applied δ′ as defined in the above example 4.2.10, we would obtain a PDT
P[Y]′? but it would not be a pushout object in ThMA!

There is, of course, a canonical construction which replaces the local guards
x ≺ c → . . . in the specification P[Y]? resulting from the pushout construction,
by x ≺ ? → . . ., leading to another specification P[Y]′?. There is also an obvious
specification morphism from the former to the latter (since, in the presence of
global guard x ≺ ?, we have (x ≺ ?, a → b) |= (x ≺ c, a → b), for any (sub)sort
constant c). And finally, the specification (µ′,Y?,P[Y]′?, δ′), where δ′ is as in
example 4.2.10, is a PDT.

Thus, we expect that one can obtain more flexibility in passing actual pa-
rameters, but the details of that need to be postponed to a future work. For the
moment, we are satisfied with the proposition 4.2.9, and ignore the details and
possibility of more specific choices of the PDTs resulting from instantiation.

4.2.2 Semantics of actual parameter passing

The first aspect of the semantics of instantiation is expressed in proposition 4.2.9
– it gives a specification of a new parameterized data type. That is, we can reuse
PDTs for constructing new PDTs by instantiating the formal parameter.

There is, however, another semantic aspect which will be called “actualiza-
tion”. Given a functor F : Mod(X?) → Mod(P[X]?) defining semantics of a pa-
rameterized data type specification according to definition 4.1.23 and an actual
parameter passing ν : X− → Yν(−) we want to define the way of transforming
Y? algebras into P[Y]? algebras, i.e., a functor F′ : Mod(Y?) → Mod(P[Y]?)
which is induced by F. In addition, we want this functor to satisfy the conditions
corresponding to those imposed on the semantics of parameterized data type
specifications (fact 4.1.25).

Let us return to the example of parameterized specification of stacks from
example 4.1.17, the chosen semantic functor F : Mod(El?) → Mod(Stack[El]?
from example 4.1.26 and the actual parameter passing ν : El− → Nat− from
the beginning of this section 4.2. Let N be the standard Nat? algebra (i.e., the
standard Nat algebra with ?N

Nat being all the natural numbers). The functor
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F′ will simply embed N into F′(N) and mimic the action of F with respect to
constructing the rest of Stack[Nat]? algebra F′(N).

The important point is that such an actualization of functor F to a functor
F′ can be done canonically given a semantic functor F with the corresponding ι :
Mod(X?) → Mod(X−). This corresponds to the classical case of free-persistent
functor semantics of parameterization in the presence of amalgamation lemma.
Notice, however, that our result is far more general, since we show it for any
functor satisfying definition 4.1.23. Thus we do not require persistency (but
allow extension of the carrier) and, furthermore, the extension need not be free,
i.e., free functors are only special cases. To show this, we will need the following
definition.

Definition 4.2.12 Given a PDT (µ,X?,P[X]?), the semantic functor:
F : X? → P[X]?, with corresponding ι and an actual parameter passing mor-
phism ν− : X− → Yν(−). A functor ι′ : Mod(Y?) → Mod(Yν(−)) is induced by
ι iff for all Y ∈ Mod(Y?):

1. there is a tight monomorphism ι′Y : Y → ι′(Y ), and
2. ι(Y |ν) = ι′(Y )|ν .

The second point uses overloaded notion of ν which is admissible by lemma 4.2.3.
It means the commutativity of the leftmost square (2.) in the diagram below.
The rest of the diagram is referred to in the following definition.

Mod(X?)

ι

²²

F

))TTTTTTTTTTTTTTTTTTTTT

Mod(Y?)

ι′

²²

F′

**UUUUUUUUUUUUUUUUUUUUUUU

|ν
88qqqqqqqqqqqqqq

Mod(X−)
1.

Mod(P[X]?)
|µoo

Mod(Yν(−))

|ν

88rrrrrrrrrrrrrr

2.

Mod(P[Y]?)|µ′
oo

|ν′

::uuuuuuuuuuuuu

3.

Notice that the lower triangle of this diagram is actually a more specific case of
the general requirement, namely, that ι′ is a functor ι′ : Mod(Y?) → Mod(Y−),
since Mod(Yν(−)) ⊆ Mod(Y−). It corresponds to the fact that carrier of any
sort s from Y?, which is not in the image of ν, is not extended in the models of
P[Y]? (or else, that µ′ maps its ?s and the respective global guard to the same
?s and global guard in P[Y]?).

Definition 4.2.13 Let F, ι be as in the previous definition (4.2.12) and ι′ be
induced by ι. The induced actualization functor F′ : Mod(Y?) → Mod(P[Y]?)
is then defined by:

• objects: F′(Y ) = ι′(Y )⊕ι′(Y )|ν F(Y |ν)
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• homomorphisms: F′(h) = ι′(h)⊕ι′(h)|ν F(h|ν)

The notation Y ⊕X Z denotes the amalgamated sum of Y and Z with respect
to the common reduct X (cf. section 1.1.4).

F′ is well-defined since, by commutativity of 1. and 2. in the diagram above,
ι′(Y )|ν = (F(Y |ν))|µ and ι′(h)|ν = (F(h|ν))|µ. With this definition of F′, all the
loops in the diagram above commute.

By the continuity of the Mod-functor from MA, proposition 1.2.12 in sec-
tion 1.2.1, the square 3. is a pullback diagram, since the corresponding spec-
ification was constructed as pushout according to definition 4.2.4. Hence, by
amalgamation property, F′(Y ) is indeed guaranteed to belong to Mod(P[Y]?).

We thus have the construction of the desired induced actualization functor
provided that we have a functor ι′ induced by ι. The following proposition
shows that such an induced functor can always be obtained providing also a
way to construct it.

Proposition 4.2.14 Given a functor ι : Mod(X?) → Mod(X−) associated
with the semantic functor for the parameterized data type specification and an
actual parameter passing morphism ν : X− → Yν(−), there exists a functor
ι′ : Mod(Y?) → Mod(Yν(−)) induced by ι.

Proof. Let the formal parameter specification be X? = ((S, Ω), Φ, ΓS) and the
actual parameter specification:

Y? = ((ν(S) ∪ S′, ν(Ω) ∪ Ω′), ν(Φ) ∪ Φ′, ν(ΓS) ∪ Γ′S′)

(where ν(S) ∩ S′ = ν(Ω) ∩ Ω′ = ν(ΓS) ∩ Γ′S′ = ∅). We let ?’s to be included in
respective Ω’s, since they do not require separate treatment here. s/ω range over
symbols from S/Ω and s′/ω′ from S′/Ω′. The algebra V = ι′(Y ) is constructed
by inheriting the sorts and operations which are not in the image of ν directly
from Y , while those which are in the image of ν from ι(Y |ν). We define ι′ on:

• algebras: for every Y ∈ Mod(Y?) we let ι′(Y ) = V ∈ Mod(Yν(−)) be the
following algebra:

1. sorts:

(a) for s ∈ S : ν(s)V = sι(Y |ν)

(b) for s′ ∈ S′ : s′V = s′Y

2. operations:

(a) for ω ∈ Ω : ν(ω)V = ωι(Y |ν),

(b) for ω′ ∈ Ω′ : ω′(y)V =
{

ω′(y)Y if all y ∈ |Y |
∅ otherwise (if some y 6∈ |Y |)

• homomorphisms, essentially as identity: ι′(h) = h′, where:

h′s′ =
{

hν(s) if s′ = ν(s)
hs′ if s′ ∈ S′
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We ignore possible renaming (i.e. let ι′(y) = y) and show that ι′ satisfies
definition 4.2.12. This defining equation makes it trivially a monomorphism. It
is, indeed, a tight Σ(Y?)-homomorphism because: for all ω ∈ Ω, i.e., ν(ω) ∈
ν(Ω), and all y ∈ |Y | : ν(ω)(y)V 2a= ω(y)ι(Y |ν) = ω(y)Y |ν = ω(y)Y , where
the middle equality holds since ι is tight homomorphism, and the last one by
the definition of reduct (1.2.1). For the remaining operations ω′ ∈ Ω′ and
y ∈ |Y | : ω′(y)V 2b= ω′(y)Y . Furthermore, we have that V |ν = ι(Y |ν), by
construction.

By construction, i.e., by 1b, V satisfies all the global guards in ΓS′ . By
proposition 4.1.22, it also satisfies all the fully guarded axioms of Y?, since ι′ is
a tight mono. Thus V ∈ Mod(Yν(−)). ¤
We have thus shown the possibility of reusing specifications of parameterized

data types not only by syntactic instantiation (def. 4.2.4) but also by providing
the above actualisation construction where we obtain a canonical canditate for
the semantics of parameter instantiation.

In the final example of the whole setting, we use also the possibility offered
by multialgebras to model nondeterminism.

Example 4.2.15 We specify a generic extension of a deterministic data type
with a (binary) nondeterministic choice: we give a generic PDT and instantiate
it for a more specific data type.

We do not extend carrier, i.e., µ(?El) = ?El.

spec El? =
S : El
Ω : ?El : → El

Γ : 1.x ≺ ?El

µ(?El) = ?El

δ(?El) = ?El

//

spec t[El]? =
S′ : El
Ω′ : t : El × El → El

?El : → El
Φ′ : 1. x ≺ x t y

2. y ≺ x t y
3. z ≺ x t y → z

.= x, z
.= y

Γ′ : 4. x ≺ ?El

As the semantic functor we take the free functor F : Mod(El?) → Mod(t[El]?),
i.e. for an El? algebra A, F(A) is given by:

• |F(A)| = |A|
• x tF(A) y = {x, y} (and generally, for subsets S, T ∈ P(|A|) : S tF(A) T =

S ∪ T )

In particular, when applied to a deterministic algebra A, F will build a
nondeterministic multialgebra structure on top of it, by assigning minimal set-
semantics to t. Any instantiation can now be associated with an actualization
of this functor. Using a specification of natural numbers as actual parameter we
get the specification of natural numbers with binary choice as the result. The
corresponding semantic functor (induced by F and the obvious parameter passing
ν(El) = Nat), F′ : Mod(Nat?) → Mod(t[Nat]?), will embed an arbitrary Nat?

algebra A into F′(A) by
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• |F(A)| = |A|
• x tF(A) y = {x, y}
• ωF(A) = ωA – for all operation symbols ω ∈ Σ(Nat?).

One should keep in mind that although syntax and semantics of the instantiated
specification are obtained from the parameterized specification itself, the two
represent specifications of two distinct – and, as a mater of fact, unrelated –
(parameterized) data types.

One could probably think of a more general means of specifying instantia-
tion mechanisms at the algebra (program) level, that is, mechanisms of taking
a PDT and matching an actual parameter algebra in order to obtain a new data
type (and not merely, as we have now, a PDT which can be applied to actual
parameter algebras coming only from the model class of the parameter specifi-
cation). The actualization mechanism described above would be a special case
of such a more general instantiation in that the “matching” of actual parameter
algebras here is expressed by the reduct functor from Mod(Y?) to Mod(X?).
This would require a closer look at the possibilities of describing the semantic
functors and we have to leave such considerations for future work.

4.3 Composition of PDTs

We will now review various ways of composing specifications of parameterized
data types. We will discuss the classical vertical and horizontal composition,
showing the counterparts of the standard compositionality theorems. The main
difference will concern the fact that, in general, stepwise application of construc-
tions will not yield the same result as a direct construction along the respective
composition, but a refinement of the latter. Subsections 4.3.1 and 4.3.2 discuss
vertical, and 4.3.3 and 4.3.4 horizontal composition. Section 4.4 will summarize
the concept of refinement which emerges from this section.

We recall that, given a parameter passing diagram (like 1. below in Fig-
ure 4.1), by proposition 4.2.9, µ′ : Yν(−) → P[Y]? is a parameterization mor-
phism, and hence, in particular (by fact 4.1.18), µ′ : Y− → P[Y]? is a specifi-
cation morphism.

4.3.1 Vertical composition

Given two actual parameter passing morphisms:

ν : X− → Yν(−) and ρ : Y− → Zρ(−)

, (as indicated in the diagrams 1. and 2. in Figure 4.1), we would like to compose
them vertically, i.e., we want to show that also: (ν; ρ) : X− → Z(ν;ρ)(−) is an
actual parameter passing.
The notation from this figure will be used throughout this and next subsections
(4.3.1, 4.3.2).
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X−
µ //

ν

²²

ν;ρ

½½

1.

P[X]?

ν′

²²

(ν;ρ)′

¥¥

Yν(−)
µ′ // P[Y]?

Y−
µ′ //

ρ

²²
2.

P[Y]?

ρ′

²²
Zρ(−)

µ′′ // P[Z]?

Z(ν;ρ)(−)
µ′′′ // P[Z]′?

Figure 4.1:

In general, the specifications Zρ(−) and Z(ν;ρ)(−) need not be the same – the
latter may have more global guards than the former.

Fact 4.3.1 Given a PDT (µ,X?,P[X]?) and actual parameter passing ν and ρ
as in the Figure 4.1:

1. Z(ν;ρ)(−) |= Zρ(−).
2. If ν is surjective on the sorts, then Zρ(−) |= Z(ν;ρ)(−).
3. If ν is surjective on the sorts, then Z(ν;ρ)(−) ' Zρ(−).

Proof. Direct from definition 4.2.1. Obviously, both specifications have isomor-
phic signatures (so, for simplicity, we assume that they are equal). Also, all the
axioms except, possibly, some global guards, are involved in both pushout con-
structions and will be satisfied by both specifications. The only difference may
concern absence in Zρ(−) of some global guards which are present in Z(ν;ρ)(−).

1. All sorts which are in the image of (ν; ρ) are also in the image of ρ, so the
global guards dropped in Z(ν;ρ)(−) are also dropped in Zρ(−).

2. If ν is surjective on the sorts then if a sort is in the image of ρ it will also
be in the image of (ν; ρ). Hence all global guards from Z(ν;ρ)(−) will also
be present in Zρ(−).

3. If ν is surjective on the sorts, then the isomorphism follows from the two
points above.

¤
Notice that, in points 2. and 3., ν’s surjectivity on sorts is sufficient but not

necessary condition. It is sufficient and necessary that for any sort s ∈ Σ(Y)
which is not in the image of ν, there is a sort s′ ∈ Σ(Y) which is in the image
of ν and such that ρ(s) = ρ(s′).
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Proposition 4.3.2 If ν : X− → Yν(−) and ρ : Y− → Zρ(−) are actual param-
eter passing morphisms, then so is (ν; ρ) : X− → Z(ν;ρ)(−) (see the diagram in
Figure 4.1).

Proof. We have both ν(?s) = ?ν(s) and ρ(?s′) = ?ρ(s′) for all sort symbols
s ∈ Σ(X) and s′ ∈ Σ(Y), and thus (ν; ρ)(?s) = ?(ν;ρ)(s). We show that:
(ν; ρ) : X− → Z(ν;ρ)(−) is a specification morphism, i.e., Z(ν;ρ)(−) |= (ν; ρ)(X−).

fact 4.3.1 : ⇒ Z(ν;ρ)(−) |= Zρ(−)

ρ is a specification morphism : ⇒ Zρ(−) |= ρ(Y−)
⇒ Z(ν;ρ)(−) |= ρ(Y−)

Now, the axioms of Yν(−) = (Φ, Γ′), where Γ′ is the subset of global guards
from Y? which (whose sort symbols) are not in the image of ν. To complete
the proof we have to show that Z(ν;ρ)(−) |= ρ(Γ′). But this follows directly from
definition 4.2.1. For any global guard γ ∈ Γ′ is not in the image of ν and hence
it will not be in the image of ν; ρ. Consequently, if γ ∈ Γ′ then ρ(γ) ∈ Z(ν;ρ)(−)

(though not necessarily ρ(γ) ∈ Zρ(−)!!).
Thus Z(ν;ρ)(−) |= ρ(Γ′) which together with (4.3.1) yields

Z(ν;ρ)(−) |= ρ(Yν(−)). (4.6)

In diagram 1. ν is a parameter passing, so Yν(−) |= ν(X−) which implies
ρ(Yν(−)) |= (ν; ρ)(X−). This, together with (4.6) give the conclusion:
Z(ν;ρ)(−) |= (ν; ρ)(X−)). ¤
In general, the specifications P[Z]? and P[Z]′?, in figure 4.1, may be differ-

ent. In the classical case, this is merely a consequence of their definition by
pushout (which is unique only up to isomorphism). In our case, however, the
difference may be more significant, since we also may drop and/or add some
global guards on the way. As in fact 4.3.1, the only difference may concern the
presence/absence of global guards (since all other axioms are involved in the
pushout construction), so these are the only axioms we mention in the following
example.

Example 4.3.3 Consider first two instantiations:

ν : X− → Yν(−) and ρ : Y− → Zρ(−)

(Two lines in Yν(−), Y−, etc. represent two distinct sorts which are identified
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by the second instantiation ρ.)

X−

ν

²²

?
µ //

²²

c

²²

?

²²

x ≺ ?

²²

P[X]?

ν′

²²
Yν(−) ?

µ′ // c ? x ≺ ? P[Y]?

y ≺ ?1 ?1
µ′ // ?1 y ≺ ?1

Y−

ρ

²²

?1

½½4
44

44
44

44
44

44
4

µ′ // ?1

ªª¶¶
¶¶
¶¶
¶¶
¶¶
¶¶

y ≺ ?1

²²

P[Y]?

ρ′

²²

?

ρ

²²

µ′
// c

²²

?

²²

x ≺ ?

²²
Zρ(−) ?′

µ′′ // ?′ ? y ≺ ?′ x ≺ ? P[Z]?

And now a direct instantiation along ν; ρ:

X−

(ν;ρ)

²²

?

²²

µ // c

²²

?

²²

x ≺ ?

²²

P[X]?

(ν;ρ)′

²²
Z(ν;ρ)(−) ?′

µ′′′ // ?′ ? x ≺ ? P[Z]′?

The significant difference consists in that P[Z]? has the global guard for µ′′(?),
namely y ≺ ?′ originating from P[Y]?. Thus here ? = {?, ?′} and C? = ∅. In
P[Z]′?, on the other hand, this guard is not present, so here ?′ = {?}, while
C?′ = {?′}.

Thus, the PDT (µ′′,Z?,P[Z]?) would forbid extending the carrier of ?′, while
(µ′′′,Z?,P[Z]′?) would not.

So, in general, P[Z]? and P[Z]′? are not isomorphic. We have the following fact:

Fact 4.3.4 With the notation from Figure 4.1 and example 4.3.3:
1. P[Z]? |= P[Z]′?.
2. if P[Z]′? 6|= P[Z]?, then it is only because for some sort constant(s) c :

P[Z]? |= x ≺ c and P[Z]′? 6|= x ≺ c.

Proof. The signatures of both specifications will be isomorphic, so we assume
that they are identical. All axioms except global guards are involved in the
pushout constructions, so their presence (or satisfaction) follows from the stan-
dard isomorphism of pushout objects. The difference may concern only some
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constants which are in ? but not in ?′ (only in C?′, as in the example 4.3.3).
This justifies point 2. For point 1. we show that if ? ∈ ?′ then ? ∈ ?, that is if
P[Z]′? |= x ≺ ? then P[Z]? |= x ≺ ?, which will yield the conclusion.

This follows trivially. Any global guard x ≺ ? in P[Z]′? is an image of a
respective global guard either from Z(ν;ρ)(−) or from P[X]?. In the latter case,
it will also be present in P[Y]? and hence also in P[Z]?.

In the former case, if this guard is also in Zρ(−) it will be present in P[Z]?.
If it does not belong to Zρ(−), this means that it (its sort) is in the image of ρ
(and therefore was dropped). But then, its ρ pre-image must be in Y?, that is,
must be present in P[Y]?. But then it is also present in P[Z]? as the result of
pushout construction. ¤
This fact that stepwise instantiation along ν and then along ρ leading to P[Z]?
yields a different result than the direct instantiation along ν; ρ leading to P[Z]′?)
may look like a severe weakness of our setting. After all, equality of these two
indicates the desirable compositionality which would be expected by anybody
familiar with the traditional, pushout based theory of parameterized specifica-
tions.

However, we are not developing a theory of parameterized specifications but
of specification of parameterized data types. This means, we are interested in
constructions allowing us to obtain new data types (algebras) from others. In
this setting, performing different series of constructions or, as in the case of ver-
tical composition, performing constructions in different ways, may be expected
to yield different results.

Our point is that stepwise instantiation, first along ν and then along ρ repre-
sents a slightly different construction than the direct instantiation along η = ν; ρ.
In fact, we suggest to think of the former as a refinement of the latter. The lat-
ter is a one step construction along η. In this sense, splitting this construction
in two steps, first along ν and then ρ, is a more detailed, refined construction
which may introduce new aspects. We certainly want the result of this refined
construction to be “compatible” with the results prescribed by the more rough,
one step construction. This is the meaning of one construction refining another
which corresponds to the classical concept of refinement by model class inclu-
sion. This is indicated by 1. in fact 4.3.4 and we now proceed to illustrate the
semantic aspect of this refinement.

4.3.2 Vertical composition – semantics

As noted in section 4.2.2, we can view the semantics of instantiation from two
angles: on the one hand, as a new PDT with a class of its semantic functors
and, on the other hand, as an actualization: a functor for the resulting PDT
induced by a particular functor for the instantiated PDT. We now apply this
distinction in the discussion of the semantics of vertical composition.
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Vertical composition as a refinement of PDT

We postpone the general definition of refinement to section 4.4 and for the
moment take it intuitively to mean: a PDT P = (µ,X?,P[X]?, δ) is a refinement
of a PDT P′ = (µ′,X′

?,P[X]′?, δ
′), P′ Ã P, if any semantic functor for P can

be used for obtaining a semantic functor for P′.
A trivial, though by no means only, example of such a refinement is when

P[X]′? Ã P[X]?, i.e., Mod(P[X]′?) ⊇ Mod(P[X]?), while other components are
equal. This is, in fact, the case with the results of vertical composition. If
we view P[Z]? and P[Z]′? as two independent PDTs (i.e., “forget” that they
both originate from instantiation of the same PDT), we see that, by fact 4.3.4,
P[Z]? |= P[Z]′?, i.e., we have an inclusion (functor):

i : Mod(P[Z]?) ⊆ Mod(P[Z]′?)

Thus any semantic functor F for P = (µ′′,Z?,P[Z]?, δ′′) gives a semantic functor
for P′ = (µ′′′,Z?,P[Z]′?, δ

′′′), simply by composing F; i. The other components
of both PDTs are (essentially) the same, and so we get

Fact 4.3.5 Given P = (µ′′,Z?,P[Z]?, δ′′) and P′ = (µ′′′,Z?,P[Z]′?, δ
′′′) (as in

Figure 4.1), P′ Ã P.

Refinement amounts in this case to the situation illustrated in example 4.3.3,
namely, that while P′ may allow extension of some carriers (corresponding to
?′ in the example), P may forbid it by introducing additional global guards.
Thus, in general, all semantic functors for P are also semantic functors for P′,
but there may be some functors for P′ which are not valid semantic functors
for P.

The classical concept of vertical composition is different but, neverthe-
less, follows from the above. With reference to Fig. 4.1, one considers there
PY = (µ′,Y?,P[Y]?) to be an implementation of: PX = (µ,X?,P[X]?) and
also PZ = (µ′′,Z?,P[Z]?) to be an implementation of PY. The statement is
that then PZ is also an implementation of PX. The concept of implementa-
tion, however, does not coincide with our notion of refinement of PDTs because
it allows restrictions of the source as well as target categories. This will be a
special case of the semantic counterpart of the diagram from Fig. 4.1, when ν
and ρ induce the respective reduct functors which are inclusions. We then get
that any semantic functor for the resulting PDT PZ has a source and target
included in, respectively, the source and target of the semantic functors for PX.

Vertical composition as an actualization of a particular semantic func-
tor

There is, however, a more specific relation between the stepwise instantiation
and the direct one. According to proposition 4.2.14, any semantic functor FX for
(µ,X?,P[X]?, δ) induces a semantic functor FY for any instantiation of formal
parameter X? by an actual parameter Y?. If we now consider the results of
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respective actualizations, i.e., functors FZ (obtained by stepwise actualization
through Y? first along ν and then ρ) and F′Z (obtained by direct actualization
along (ν; ρ)) which are both induced starting from the same, given FX , then it
turns out that the semantics is fully compositional, i.e., both functors are equal.

We discuss it in more detail. The semantic counterpart of the diagram from
Figure 4.1 is shown below.

Mod(X?)

FX

$$IIIIIIIIIII

ιX

²²
Mod(Y?)

FY

$$IIIIIIIIIIII

ιY 1

²²

|ν
::uuuuuuuuuuuu

=

Mod(X−) Mod(P[X]?)
|µoo

Mod(Y?)

F′Y
$$HH

HH
HH

HH
HH

HH

ιY

²²

Mod(Yν(−))

|ν ::uuuuuuuuuuu

lL

zz

Mod(P[Y]?)|µ′
oo

|ν′
::uuuuuuuuuuuu

=

Mod(Z?)

|ρ
;;vvvvvvvvvvv

ιZ

²²
FZ

$$HHHHHHHHHHH
Mod(Y−) Mod(P[Y]?)

|µ′oo

Mod(Z?)

ιZ1

²²
F′Z
$$JJJJJJJJJJJJ

=

|(ν;ρ)

33

Mod(Zρ(−))

|ρ ;;vvvvvvvvvvv
Mod(P[Z]?)|µ′′

oo

|ρ′

::vvvvvvvvvvvv

lL

i
{{

Mod(Z(ν;ρ)(−))
, �

::

Mod(P[Z]′?)|µ′′′
oo

|(ν;ρ)′

EE

Given a semantic functor FX in the uppermost diagram, proposition 4.2.14
allows us to construct a functor FY , and similarly, an FZ can be constructed
given an arbitrary F′Y . Thus, using FY obtained from the actualization along ν
for F′Y , we can construct an FZ from a given FX . Notice that the associated ιZ
guarantees the image of Mod(Z?) to be included in Mod(Zρ(−)).

For the direct actualization, we can obtain F′Z from a given FX by proposi-
tion 4.2.14. On the other hand, by fact 4.3.4, we also have the inclusion functor
i : Mod(P[Z]?) ⊆ Mod(P[Z]′?). Hence, composing we obtain:

FZ ; i : Mod(Z?) → Mod(P[Z]′?)

, which gives a possible semantic functor F′Z for the PDT P′ = (µ′′′,Z?,P[Z]′?, δ′′′).
Compositionality of actualization is expressed in the following proposition.

Proposition 4.3.6 With the notation from the diagram above, where all func-
tors are induced by FX (in particular, FY = F′Y and ιY = ιY 1), then: FZ ; i = F′Z .
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Proof. The discussion above shows that FZ ; i is a possible semantic functor for
P′. To show the equality to F′Z induced by a direct actualization, there remains
a couple of tedious details.

1. Firstly, ιZ1, associated with the functor F′Z obtained from the direct actu-
alization, will include Mod(Z?) in Mod(Z(ν;ρ)(−)), while ιZ associated with
FZ obtained through the stepwise actualization guarantees only inclusion
in Mod(Zρ(−)). We show that FZ actually is a special case of a functor
obtained from a direct actualization, i.e., that actually:
FZ ; |µ′′ : Mod(Z?) → Mod(Z(ν;ρ)(−)), i.e., the lowest square (with two
inclusions and reducts) commutes.

(a) This is unproblematic when Zρ(−) = Z(ν;ρ)(−), so let us consider the
case when they are not equal. Then there is a global guard x ≺ cs (of
sort s) which is included in Z(ν;ρ)(−) but not in Zρ(−). This means
that for any algebra A ∈ Mod(Z?), (F′Z(A))|µ′′′ |= x ≺ c – in other
words, F′Z does not extend the carrier of s.

(b) In principle, from the diagram, it might look that FZ might extend
this carrier since we may have x ≺ cs 6∈ Zρ(−). However, this last
fact holds only if s is in the image of ρ (which makes the respective
global guards disappear from Zρ(−)). At the same time, since the
guard is present in Z(ν;ρ)(−), it means that s is not in the image of
(ν; ρ) – hence its ρ pre-image s′ must not be in the image of ν.

(c) This means that the respective guard x ≺ cs′ ∈ Yν(−) and, by the
pushout construction, x ≺ cs′ ∈ P[Y]?. But then the respective
guard x ≺ ρ′(cs′) = cs will also appear in P[Z]?. Finally, since s′ is
not in the image of ν, we get µ′(cs′) = cs′ , which implies that also
µ′′(cs) = cs. In short FZ will not, after all, extend the carrier of sort
s, and hence (FZ(A))|µ′′ ∈ Mod(Z(ν;ρ)(−)).

2. To prove the main claim, we need to look at the details of definitions of
induced functors. What we have to show is that the following two are
equal for any A ∈ Mod(Z?) (cf. definition 4.2.13):

(a) F′Z(A) = ιZ1(A)⊕ιZ1(A)|(ν;ρ)
FX(A|(ν;ρ)) – direct actualization, and

(b) FZ(A) = ιZ(A)⊕ιZ(A)|ρ FY (A|ρ), where:
FY (A|ρ) = ιY 1(A|ρ)⊕ιY 1(A|ρ)|ν FX((A|ρ)|ν).

The problem here might possibly originate from the situation as in point
2 in fact 4.3.4 which was illustrated in example 4.3.3, i.e., that F′Z(A)
yields an algebra which does not satisfy the global guard x ≺ c satisfied
by all algebras in Mod(P[Z]?). Showing equality of 1. and 2. we show, in
particular, that such a situation does not occur.

Actually it will suffice to show that ιZ1 = ιZ , because the induced func-
tor is constructed from FX and ι (cf. def. 4.2.12, 4.2.13). This will,
in particular, imply that (ιZ1(A))|(ν;ρ) = ((ιZ(A))|ρ)|ν , for all algebras
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A ∈ Mod(Z?) – the fact which is sufficient for concluding the equality of
two functors according to def. 4.2.13. The table below lists the definitions
of (the relevant) ι’s induced by ιX :

a. ιZ1(A) b. ιZ(A) c. ιY (A|ρ)
S : 1. if s ∈ SX : if s ∈ SY : if s ∈ SX :

(ν; ρ)(s)ιZ1(A) = sιX(A|(ν;ρ)) ρ(s)ιZ(A) = sιY (A|ρ) ν(s)ιY (A|ρ) = sιx((A|ρ)|ν)

2. otherwise : sιZ1(A) = sA otherwise : sιZ(A) = sA otherwise : sιY (A|ρ) = sA|ρ

Ω : 3. if ω ∈ ΩX : if ω ∈ ΩY : if ω ∈ ΩX :
(ν; ρ)(ω)ιZ1(A) = ωιX(A|(ν;ρ)) ρ(ω)ιZ(A) = ωιY (A|ρ) ν(ω)ιY (A|ρ) = ωιX((A|ρ)|ν)

4. if ω 6∈ (ν; ρ)[ΩX ] : ω(x)ιZ1(A) if ω 6∈ ρ[ΩY ] : ω(x)ιZ(A) if ω 6∈ ν[ΩX ] : ω(x)ιY (A|ρ)

= ω(x)A, if all x ∈ |A| = ω(x)A, if all x ∈ |A| = ω(x)A|ρ , if all x ∈ |A|ρ|
= ∅, otherwise = ∅, otherwise = ∅, otherwise

For any symbol s ∈ Σ(Z?) we have three possibilities:

(a) it is not in the image of ρ (and hence not in the image of (ν; ρ) either),
or

(b) it is in the image of ρ but not of (ν; ρ), or
(c) it is in the image of (ν; ρ).

To simplify the notation, we will ignore possible renaming, e.g., in case 2)
we will assume that s = ρ(s), and similarly, in case 3) that:
s = ρ(s) = ρ(ν(s)). Justification of equations, written Rc=, refers to row
R, column c in the table above and we use Red= if something follows from
the reduct definition. We use functoriality of the reduct, i.e., the fact that
(A|ρ)|ν = A|(ν;ρ), without mentioning it. Let us first consider the sorts.

(a) sιZ1(A) 2a= sA 2b= sιZ(A)

(b) sιZ1(A) 2a= sA Red= sA|ρ 2c= sιY (A|ρ) 2b= sιZ(A)

(c) sιZ1(A) 1a= sιX(A|(ν;ρ)) = sιX((A|ρ)|ν) 1c= sιY (A|ρ) 1b= sιZ(A)

So, operations:

(a) ωιZ1(A)(x) 4a=
{

ωA(x) if x ∈ |A|
∅ otherwise

}
4b= ωιZ(A)(x).

(b) By 4a. we have ωιZ1(A) as in the previous point. Since ω is not in the

image of ν, we have ωιZ(A) 3b= ωιY (A|ρ)(x) 4c=
{

ωA|ρ(x) if x ∈ |A|ρ|
∅ otherwise

.

But for all x : x ∈ |A| ⇐⇒ x ∈ |A|ρ|, since ω, and hence all its sorts,
are in the image of ρ. Then also ωA(x) = ωA|ρ(x) which proves the
equality ωιZ1(A) = ωιZ(A) in this case.

(c) ωιZ1(A) 3a= ωιX(A|(ν;ρ)) = ωιX((A|ν)|ρ) 3c= ωιY (A|ρ) 3b= ωιZ(A)

¤
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4.3.3 Horizontal composition

Definition 4.3.7 For PDTs (µ,X?,P[X]?, δ) and (µ′,P[X]?,W[P[X]]?, δ′), we
define their horizontal composition to be ((µ; µ′),X?,W[P[X]]?, (δ; δ′)).

Proposition 4.3.8 The composition as defined in 4.3.7 is (isomorphic to) a
PDT. (In the sense that there exists a W[P[X]]′? ' W[P[X]]? such that:
((µ; µ′),X?,W[P[X]]′?, (δ; δ

′)) is a PDT).

Proof. The first 4 points of definition 4.1.15 are trivially satisfied. We have
to verify point 5.

5b If, for some ? : µ′(µ(?)) 6= δ′(δ(?)) then either:

1. µ(?) 6= δ(?) 6= ? or

2. µ′(?) 6= δ′(?).

Case 1: By 5b of definition 4.1.15, P[X]? contains the axiom µ(?) ≺ δ(?),
we have 3 subcases:

• c1 = µ(?) 6= ? 6= δ(?) = c2, then this axiom is actually c1 ≺ c2

and, by point 5a, µ′(c1) ≺ µ′(c2) ∈ W[P[X]]?. But then also
both δ′ and µ′ are identities on c1, c2, i.e., this last axiom is in
fact µ′(µ(?)) ≺ δ′(δ(?)).

• µ(?) = ?, then we must have that δ(?) = ? since, if µ(?) = ?,
then by the presence of µ(?) ≺ δ(?) in P[X]?, we would have to
have also δ(?) = ?, i.e. this contradicts 1.

• c = µ(?) 6= δ(?) = ?, i.e. we have c ≺ ? ∈ P[X]?. By point 5a,
we have then µ′(µ(?)) = µ′(c) ≺ µ′(?) = µ′(δ(?)) ∈ W[P[X]]?,
while by 5b, µ′(?) ≺ δ′(?) (or µ′(?) = δ′(?). But then, adding
the axiom µ′(µ(?)) ≺ δ′(δ(?)) yields an isomorphic specification.

Case 2: Having verified case 1), we can now assume that µ(?) = δ(?),
since if µ(?) = δ(?) = c 6= ?, then µ′, δ′ are identities on c, which
contradicts the assumption that µ′(µ(?)) 6= δ′(δ(?)), I.e., δ(?) =
µ(?) = ?. But then by 5b, we have µ′(?) ≺ δ′(?) ∈ W[P[X]]?, which
is the required axiom µ′(µ(?)) ≺ δ′(δ(?)).

5a Follows equally easily. Let x1 ≺ ?1, . . . , xm ≺ ?m, a → b be a fully guarded
axiom from X?. Then, by 5a, x1 ≺ δ(?1), . . . , xm ≺ δ(?m), a → b is in
P[X]?. But then, by the same point:
x1 ≺ δ′(δ(?1)), . . . , xm ≺ δ′(δ(?m)), a → b is in W[P[X]]?.

¤
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4.3.4 Horizontal composition – semantics

As was the case with vertical composition, horizontal composition of PDTs
gives us a more structured specification. According to proposition 4.3.8, com-
posing horizontally two PDTs, we obtain a new PDT with the associated class
of semantic functors. We show that semantics of a PDT obtained by a step-
wise, horizontal composition of the PDT P = (µ,X?,P[X]?, δ) and the PDT
P′ = (µ′,P[X]?,W[P[X]]?, δ′), which can be written as P;P′, is a refinement
of the semantics of the respective composed PDT ((µ; µ′),X?,W[P[X]]?, (δ; δ′))
– the former, possessing more structure in the form of the intermediary stage
P[X]?, may put additional restrictions on the admissible functors. Yet, compo-
sition of such functors will always yield a functor for the composed PDT. We
show this fact first.

Proposition 4.3.9 Given PDTs (µ,X?,P[X]?, δ) and (µ′,P[X]?,W[P[X]]?, δ′),
with the semantic functors:

FX : Mod(X?) → Mod(P[X]?)

and
FP[X] : Mod(P[X]?) → Mod(W[P[X]]?)

The composition:
FX;FP[X] : X? → W[P[X]]?

, is a semantic functor for: ((µ; µ′),X?,W[P[X]]?, (δ; δ′)).

The proposition means that all the loops in the following diagram commute:

Mod(X?)

ιX

²²
ι′

¿¿

FX

''NNNNNNNNNNNNNNN
FX;FP[X]

»»

Mod(X−)

ιP[X]|µ

²²

Mod(P[X]?)
|µoo

ιP[X]

²²

FP[X]

((PPPPPPPPPPPPPPPPP

Mod(X−) Mod(P[X]−)
|µoo Mod(W[P[X]]?)

|µ′oo

|µ;µ′

__

Proof. First notice that, by fact 4.1.18, µ is also a specification morphism
X− → P[X]−, and so |µ is also a functor Mod(P[X]−) → Mod(X−). Thus
|µ;µ′ = |µ′ ; |µ is a functor Mod(W[P[X]]?) → Mod(X−) as indicated on the
diagram.

The functor ι′ : Mod(X?) → Mod(X−) corresponding to FX;FP[X] is defined
by ι′ = ιX; (ιP[X]|µ), i.e., ι′(A) is given by:

• sι′(A) = sFX;FP[X](A), for sorts s ∈ Σ(X?)
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• ωι′(A)(x) = ωFX;FP[X](A)(x), for operations ω ∈ Σ−(X?)

• ?
ι′(A)
s = (µ; µ′)(?s)

FX;FP[X](A).

Thus, the outermost triangle commutes, i.e., for any A ∈ Mod(X?) :
(FX; FP[X](A))|µ;µ′ = ι′(A):

• sorts: s(FX;FP[X](A))|µ;µ′ = sι′(A) since µ;µ′(s) = s

• operations: ω(FX;FP[X](A))|µ;µ′ = ωι′(A) since µ; µ′(ω) = ω

• subsorts: ?
(FX;FP[X](A))|µ;µ′
s = (µ; µ′)(?s)

FX;FP[X](A) = ?
ι′(A)
s

The tight monomorphism ι′A : A → ι′(A) is defined ∀A ∈ Mod(X?) by:

ι′A = ιA; (ιP [A]|µ)

, where ιA and ιP [A] are tight monomorphisms associated with ιX (and A) and
ιP[X] (and FX(A)), respectively. Since ιP [A] is a tight monomorphism, then so is
its reduct ιP [A]|µ′ . Then, ι′A, being a composition of two tight monomorphisms,
is a tight monomorphism [51].

The conditions of fact 4.1.25 are satisfied, so we conclude that FX;FP[X] is
indeed a semantic functor for the composed PDT. ¤

Horizontal composition as a refinement of PDTs.

Again, horizontal composition gives more structure. According to Prop. 4.3.8,
composing horizontally two PDTs, we obtain a new PDT with the associated
class of semantic functors. However, the semantics of a PDT obtained by a step-
wise, horizontal composition of PDTs P and P′ is a refinement of the semantics
of the respective composed PDT P;P′.

The following example illustrates that horizontal composition, introducing
an intermediary parameter, can actually be a strict refinement of the composed
PDT, i.e., that some functors admissible as a semantics for the composed PDT
may no longer be obtained as a composition of the semantic functors for the
component PDTs.

Example 4.3.10 The following PDT P = (µ,X?,P[X]?, δ) requires extension
of the parameter algebra A with a new function f and allows extending A’s
carrier with new elements (one of which may be d).

X
?

=
S : El

S? : ? :→ El
Γ : x ≺ ?

µ(?) = ok

δ(?) = ?
//

P[X]? =
S′ : El
Ω′ : d : → El

f : El → El
S?′ : ?, ok : → El
Φ′ : 1. f(d) .= d

2. x ≺ ? → f(x) .= f(x)
3. ok ≺ ?

Γ′ : 4. x ≺ ?
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Let the semantic functor F : Mod(X?) → Mod(P[X]?) send an A ∈ Mod(X?) to
F(A) given by:

• |F(A)| = |A| ] d, i.e. d is a new element added to the carrier of A,
• fF(A)(x) = d, for all x ∈ |F(A)|,
• okF(A) = |A|, by the semantic functor requirement,
• ?F(A) = |F(A)|, by default.

Let’s now introduce W[X]? as an intermediary parameter, i.e., we now have
two PDTs P′ = (µ′,X?,W[X]?, δ′) and P′′ = (µ′′,W[X]?,P[W[X]]?, δ′′):

X?

µ′(?) = ?

δ′(?) = ?
//

W[X]? =
S′′ : El
Ω′′ : f : El → El

S?′′ : ? : → El
Φ′′ : 2. x ≺ ? → f(x) .= f(x)
Γ′′ : 4. x ≺ ?EL

µ′′(?) = ok

δ′′(?) = ?
//

P[X]?
=

P[W[X]]?

Obviously, we have that P = ((µ′; µ′′),X?,P[W[X]]?, (δ′; δ′′)). But the refine-
ment P Ã P′;P′′ is strict – e.g., the functor F for the former cannot be obtained
by composing any two functors for the latter two.

For any semantic functor F′ : Mod(X?) → Mod(W[X]?) can’t extend the
carrier of any A ∈ Mod(X?), but merely adds a deterministic function f . Fur-
thermore, any semantic functor F′′ : Mod(W[X]?) → Mod(P[W[X]]?) may add
a new element d to the carrier of a parameter algebra B ∈ Mod(W[X]?) and
force f(d) .= d. However, F′′ has to “preserve” the parameter algebra B, i.e., B
must be a tight subalgebra of F′′(B). This means that function fF′′(B) applied to
the elements from the carrier of B (i.e., from okF′′(B)) has to return elements
from the same carrier. If d is a new element, it will never be “reachable by
f” from these old elements. This illustrates the impossibility of obtaining the
original functor F as a composition of any F′ and F′′.

The following gives a more detailed and concrete example of the same idea of
refining the structure of PDT by introducing an intermediary parameter.

Example 4.3.11 We start with a specification of stacks from example 4.1.17
and refine it by introducing the intermediary parameter specification of con-
structed stacks. To do that we first refine the specification Stack[El]? Ã Stack[El]′?,
by adding the subsort constant okstack, and error constants for stacks and ele-
ments:
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spec El? =
S : El

S? : ?El :→ El
Γ : x ≺ ?EL

µ(?El) = ok

δ(?El) = ok
""

spec Stack[El]’? =
S′ : Stack, El
Ω′ : empty : → Stack

top : Stack → El
pop : Stack → Stack

push : El × Stack → Stack
errStack → Stack

errEl → El
S?′ : ?El, okEl : → El

?St, okSt : → Stack
Φ′ : 1. empty

.= empty
2. x ≺ okEl, s ≺ ?St → top(push(x, s)) .= x
3. x ≺ okEl, s ≺ ?St → pop(push(x, s)) .= s
4. pop(empty) .= errStack
5. top(empty) .= errEl

Γ′ : 6. x ≺ ?EL

7. s ≺ ?St

The intermediary parameter ConstrStack[El]? contains only the intended con-
structors for stacks::

El?

µ′(?El) = ?El

δ′(?El) = ?El

²²
spec ConstrStack[El]? =
S′ : Stack, El
Ω′ : empty : → Stack

push : El × Stack → Stack
S?′ : ?El : → El

?St : → Stack
Φ′ : 1. empty

.= empty
Γ′ : 6. x ≺ ?EL

7. s ≺ ?St

µ′′(?El) = okEl

δ′′(?El) = okEl

µ′′(?St) = okSt

δ′′(?St) = okSt

// Stack[El]′?

Let the functors: F′ : Mod(El?) → Mod(ConstrStack[El]?) and
F′′ : Mod(ConstrStack[El]?) → Mod(Stack[El]′?) be semantic functors for the
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respective PDTs. The effect of the intermediary parameter is that, in any algebra
C = F′′(F′(A)), both emptyC and all stacks obtained by pushC must belong to
okC

St.
This reflects the more structured design which need not apply to a semantic

functor of the original PDT (µ,El?,Stack[El]′?, δ), where empty could be any
element of the sort Stack, possibly errStack which could (and should) be outside
okSt.

The specification Stack[El]′? does not say anything about errStack or errEl
but these can be new elements added to the carrier of B = F′(A). (This effect
could be forced by the specification by adding the axioms: errStack ≺ okSt →,
and errEl ≺ okEl →. In general, the new error elements may be treated as
illustrated in chapter 3.)

The classical concept of horizontal composition states that: if X1 Ã X2

and P1[X1] Ã P2[X1] then P1[X1] Ã P2[X2], where all Ã represent model
class inclusions (in the opposite direction). This means that a functor for P2[X2]
may have a source Mod(X2) ⊂ Mod(X1), which makes it too specific to be used
for obtaining a semantic functor for the original PDT with the parameter X1.
Yet, this fact of “implementation commuting with parameterization” allows to
perform independent refinements on various components ensuring that their
composition will yield an implementation of the composition of the original
components.

Although this property does not reflect our notion of refinement, it still
obtains in our setting. If P1[X1]? Ã P2[X1]? then, as remarked in section 4.3.2,
we obtain the refinement of the respective PDTs. If, in addition, we have
X1? Ã X2?, then any semantic functor for (µ21,X2?,P2[X2]?) is a restriction of
the semantics of (µ1,X1?,P1[X1]?), that is, an implementation in the classical
sense in that the source and target categories of the semantic functors for the
former are subcategories of, respectively, source and target categories of the
semantic functors for the latter.

Mod(P1[X1]?)

Mod(X1?)

F1
44jjjjjjjjj

F21

// Mod(P2[X1]?)
7 W

i
jj

Mod(P1[X2]?)
?�
|ν1

OO

Mod(X2?)

F′1 44jjjjjjjjj F′21 //
?�

|ν

OO

Mod(P2[X2]?)
?�

|ν2

OO

The diagram illustrates this situation where, given an app ν : X1? → X2? such
that |ν : Mod(X2?) → Mod(X1?) is an inclusion, the |ν2 , obtained by pullback,
is an inclusion, too.

139



4.4 Refinement

We now formalize the concept of refinement of PDT. As we have emphasized,
it amounts not only to the simple model class inclusion but, primarily, to intro-
duction of additional structure on the PDTs. The following definition captures
the general concept

Definition 4.4.1 A PDT:

P′ = (µ′,X′
?,P[X]′?, δ

′)

refines a PDT:
P = (µ,X?,P[X]?, δ)

P Ã P′, if there exist two functors, the left and the right refinement functor:

RL
X : Mod(X?) → Mod(X′

?) and RR
P[X] : Mod(P[X]′?) → Mod(P[X]?)

such that for any semantic functor F′ for P′, the functor RL
X; F′;RR

P[X] is a
semantic functor for P.

The following diagram illustrates the requirement:

Mod(X?)

ι

²²

RL
X;F′;RR

P[X]

))

RL
X

zzuuuuuuuuuuuuuuu

Mod(X′
?)

ι′

²²

F′

))SSSSSSSSSSSSSSSSSSSSSSSS
Mod(X−)

1.

Mod(P[X]?)
|µoo

Mod(X′
−)

2.

Mod(P[X]′?)|µ′
oo

RR
P[X]

;;xxxxxxxxxxxxxx

The relation is trivially transitive, i.e., P Ã P′ Ã P′′ → P Ã P′′.
The contravariance of RL

X and RR
P[X] on the parameter side in the refine-

ment definition allows the refinement P′ to have less semantical functors than
the refined PDT P, i.e. refinement of PDT’s corresponds to a functorial sub-
space of semantic functors. It means that our refinement notion fits nicely with
the traditional view of refinement as a subclass relation. Note however the
difference between refinement of PDT’s and refinement of flat specifications.
Suppose that:
X? Ã X′

?, i.e., Mod(X?) ⊇ Mod(X′
?). If this refinement is strict, i.e.:

Mod(X?) ⊃ Mod(X′
?), a semantic functor F′ with source Mod(X′

?) could not, in
general, be used in places were one assumes a functor with source Mod(X?).

A simple example of refinement is when P[X]? Ã P[X]′?, i.e., when RL
X is

identity and RR
P[X] is a model class inclusion Mod(P[X]′?) ⊆ Mod(P[X]?) as

was the case of vertical composition in subsection 4.3.2.
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Other examples were 4.3.10 and 4.3.11 in section 4.3.4, where both RL
X

and RR
P[X] were identities but where intermediary parameter forced additional

requirements which did not (necessarily) follow from the original, refined PDT.
Finally, we give an example showing yet another case of refinement by adding

structure, where the formal parameter of a PDT is itself refined to a PDT.

Example 4.4.2 Let P = (µ,Set?,t[Set]?, δ) be the following PDT which ex-
tends a (deterministic) specification of sets with a nondeterministic choice op-
eration.

spec Set? =
S : Set, El
Ω : ∅ : → Set

a : El × Set → Set
S? : ?El : → El

?Set : → Set
Φ : 1. x a (y a S) .= y a (x a S)

2. x a (x a S) .= x a S
Γ : 3. x ≺ ?EL

4. S ≺ ?Set

µ(?El) = δ(?El) = okEl

µ(?Set) = δ(?Set) = ?Set

ÀÀ
t[Set]? =
S : Set, El
Ω : ∅ : → Set

a : El × Set → Set
t : Set → El

S? : ok, ?El : → El
?Set : → Set

Φ : 1. x ≺ ok, y ≺ ok → x a (y a S) .= y a (x a S)
2. x ≺ ok → x a (x a S) .= x a S
3. x ≺ ok → t(x a S) ≺ ok
4. x ≺ ok, z ≺ t(x a S) → z

.= x, z ≺ t(S)
Γ : 5. x ≺ ?EL

6. S ≺ ?Set

We admit here extending carrier El, µ(?El) = ok, which is motivated by the
possible need of a new, “error” element to be returned by t(∅).

A possible semantic functor F may send a Set? algebra A on the algebra
F(A) where, for any nonempty set S, the operation tF(A)(S) returns all the
elements of the set S. tF(A)(∅) may return a new, “error” element ⊥, added to
the carrier of A. Adding this element to a set, ⊥ aF(A) S may then result in the
empty set ∅F(A).
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Obviously, the specification Set? can be naturally parameterized by elements,
i.e., we “extract” from it a parameter (sub)specification. We obtain then:
P′ = (µ′,El?,Set[El]?, δ′), where El? contains merely the sort El and the global
guard x ≺ ?El, while Set[El]? is exactly the same as Set?. µ′ and δ′ are
identities on ?El.

The point is now that the composed PDT P′;P is a refinement of P according
to definition 4.4.1.

Mod(El?)

F′

''NNNNNNNNNNNNNN

²²

Mod(Set?)

²²

|µ′ = RL
Setoo

G

((
id

Mod(El−) Mod(Set[El]?)

²²

F

((QQQQQQQQQQQQQQQQ

|µ′oo Mod(Set−) Mod(t[Set]?)

id = RR
t[Set]

|µoo

Mod(Set[El]−) Mod(t[Set[El]]?)
|µoo

Since µ′(?El) = ?El the |µ′ reduct will, actually, return an El?-algebra (and not
only an El−-algebra).

Now, given F′ and F, the functor G can be trivially chosen to be |′µ; F′; F; id.
I.e. P Ã P′;P, where RL

Set = |µ′ and RRt[Set] = id, the identity.
However the refinement consists in requiring a more structured data type,

which consists of building first an algebra of sets over a given algebra of elements,
and then an algebra with choice (i.e., composing two functors F′; F). In this
sense, it is reasonable to call P′;P a refinement of P.

Moreover, the functor F′ will not, in general, be surjective on the objects,
i.e., it may choose only a subclass of all Set[El]? algebras. In this case, the
application of the composition to all models of El?, F′; F(Mod(El?)) may result
in fewer t[Set[El]]? algebras than F(Mod(Set[El]?)), which is another reason
for viewing this composition as a refinement of the original PDT.

There is yet another possibility of viewing the above as an example of refinement.
Suppose that we have implemented the PDT (µ,Set?,t[Set]?, δ), i.e., we have a
functor G. Then, having implemented also a functor F′, we can compose it with
G. Since F′ will not, typically, be surjective on the objects, this composition
will, in general, yield a smaller subclass of Mod(t[Set]?) than the image of G.

In any case, we can view the above process as a gradual development of a
design for the flat specification t[Set]?. In the first step, we extract from it the
parameter Set? which prescribes a more specific, structured implementation.
In the second step, we again extract the parameter El?, requiring even more
structure. Viewed in this way, our setting gives a concrete specialization of the
general concept of “constructor implementations” from [47].
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4.4.1 Parameter introduction

We now take a closer look at the introduction of the parameter El? in exam-
ple 4.4.2:

Mod(El?)

F′

''NNNNNNNNNNNNNN

²²

Mod(Set?)
|µ′ = RL

Setoo

id=RR
Set

Mod(El−) Mod(Set[El]?)
|µoo

In this case µ was a specification morphism, hence we can view the param-
eter introduction as a refinement of the ”PDT” Mod(Set?) where RL

Set = |µ′
and RR

Set = id. But as noted in fact 4.1.18 in general the parameterization
morphism may not be a specification morphism hence |µ could not be chosen
as the corresponding R. We now illustrate that parameter introduction could,
nevertheless, always be seen as a refinement.

Fact 4.4.3 Given a flat specification P we can view it as a PDT, parameterized
by the empty model category, since the empty category, ∅ is initial in Cat.

∅ ! // Mod(P[∅]?)
Hence we can view any PDT as a refinement of a flat specification in the

following way:

Fact 4.4.4 Any PDT, (µ,X?,P[X]?, δ) is a refinement of the flat specification
P[X]?, where RL = ! and RR = id i.e. we have the following diagram:

∅ ! //

!=RL
∅

²²

Mod(P[X]?)

Mod(X?)
F // Mod(P[X]?)

id=RR
P[X]

OO

Hence we can view the PDT: µ : Set? → t[Set]? as a refinement of the flat
specification t[Set]? as illustrated in the following diagram:

∅ ! //

!=RL
∅

²²

Mod(t[Set]?)

Mod(Set?)
F // Mod(t[Set]?)

id=RR
t[Set]

OO
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4.4.2 Composition of refinements

We will now illustrate that refinements can be both vertical and horizontal
composed.

Vertical composition of refinements

Fact 4.4.5 Given a PDT P = (µ,X?,P[X]?, δ), and it’s refinement P′ =
(µ′,X′

?,P[X]′?, δ
′), whit corresponding refinement P′′ = (µ′′,X′′

? ,P[X]′′? , δ′′), i.e.
given the refinements in the following diagram:

Mod(X?)
F //

RL
X

²²

Mod(P[X]?)

Mod(X′
?)

F′ //

RL
X′

²²

Mod(P[X]′?)

RR
P[X]

OO

Mod(X′′
?) F′′ // Mod(P[X]′′?)

RR
P[X]′

OO

we have that: RL
X;RL

X′ and RR
P[X]′ ;RR

P[X] is a refinement of P = (µ,X?,P[X]?, δ),
i.e. vertical composition ensures that refinements are transitive.

Horizontal composition of refinements

Example 4.4.6 On the other hand suppose that we have the PDT P = (µ,X?,P[X]?, δ),
and it’s refinement P′ = (µ′,X′

?,P[X]′?, δ′), together with the PDT Q = (ν,P[X]?,W[P[X]]?, δ)
with corresponding refinement Q′ = (ν′,Y?,W[Y]′?, δ′). I.e. given the following
diagrams:

Mod(X?)
F //

RL
X

²²

Mod(P[X]?) Mod(P[X]?)
G //

RL
P[X]

²²

Mod(W[P[X]]?)

Mod(X′
?)

F′ // Mod(P[X]′?)

RR
P[X]

OO

Mod(Y?)
G′ // Mod(W[Y]′?)

RR
W[P[X]]

OO

The two refinements of P and Q can be composed horizontally in the follow-
ing manner:
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Mod(X?)
F //

RL
X

²²

Mod(P[X]?)
G //

RL
P[X]

¾¾7
77

77
77

77
77

77
7

Mod(W[P[X]]?)

Mod(X′
?)

F′ //Mod(P[X]′?)

RR
P[X]

AA¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤
Mod(Y?)

G′ // Mod(W[Y]′?)

RR
W[P[X]]

OO

The above example illustrates the following general fact:

Fact 4.4.7 Suppose that two PDTs P and Q can be composed to a PDT P;Q
and we are given PDTs P′ and Q′, such that: P Ã P′ and Q Ã Q′, then
P;Q Ã P′; R;Q′, where R = RL ; RR of the specification that combines P and
Q.

One immediate consequence of the facts; 4.4.4, 4.4.5 and 4.4.7 is that if
we want to implement a specification we can first view it as a PDT and then
implement the PDT by introducing new parameters, moreover the sub PDTs
can be independently refined. Note that the final result of this process offers
a model of the original specification. We illustrate this by taking a closer look
at a possible implementation of the specification of sets with nondeterministic
choice, tSet?, from example 4.4.2.

Example 4.4.8 Suppose that we start with the flat specification tSet?, we first
consider it as a specification parameterized by the empty category, we then re-
fine the parameterized specification by introducing the parameter Set? and we
make a further refinement step by parameterizing Set? by El?. The refinements
corresponds to the following diagram:

∅ //

!RL
∅

²² ²² �O
�O
�O
�O
�O
�O

Mod(tSet[∅]?)

∅ ! //! //

!RL
∅

²² ²² �O
�O
�O
�O
�O
�O

Mod(Set[∅]?)
F

// Mod(t[Set]?)

Id RR
tSet[∅]

OO

Mod(El?)
F′

// Mod(Set[El]?)
F

//

Id RR
Set[∅]

OO

Mod(t[Set[El]]?)

Id

OO

Of course we could have refined the PDT: Set[El]? → t[Set[El]]? further, any-
way, this example indicates how refinements of PDTs can be used to implement
specifications by adding structure to the original specification.

In this section we have illustrated some immediate consequences of the re-
finement definition. We have seen that one gradually can introduce new param-
eters, which correspond to identification and implementation of subprograms.
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Moreover in a complex PDT could each sub PDT be refined independently, it
means that one can develop each module of a program in isolation as long as it
fulfills the refinement definition. We believe that a more detailed study of the
refinement notion may result in a concrete methodology for implementations of
PDTs, but this is left for a future work.

4.5 Concluding remarks

We have presented a framework for specifying parameterized data types. The
syntax of PDTs is defined by a series of restrictions on the syntax of param-
eterized specifications, with the additional means for indicating the possibility
of extending the carrier of the parameter algebras as well as the axioms of the
parameter specification (to apply also to the “new” elements).

Semantics of PDTs is defined by a class of functors which satisfy a gener-
alization of the classical persistency requirement – the parameter has to be a
(tight) subalgebra of its image under the semantic functor. This generalization
leads to a great flexibility in specifying PDTs which was illustrated by a series
of examples.

We have re-stated and proved the counterparts of the theorems of vertical
and horizontal composition of PDTs in our setting. An important concept
emerging from these theorems concerns refinement of PDTs. We have given a
general definition of such a refinement which is reflected in concrete examples
primarily as introduction of additional structure into the specified PDT.

We view PDTs as design specifications which put requirements not only on
the abstract (input-output) properties of the implementations but also on the
actual structure of the implementation. In this way, our PDTs give a concrete
realization of a more general concept of ‘constructor specifications’ from [47]
which has recently been included into CASL [23] as ‘architectural specifications’.
Indeed, the suggested refinement of PDTs can be naturally seen as an example
of program development based on constructor specifications where successive
stages amount to splitting the original, loose specification into smaller pieces,
according to the desired structure of the intended implementation.

Although we have presented the whole setting using the institution of multi-
algebras, it should be easy to recognize the generic aspect of our definitions and
constructions. Entirely analogous extensions can be made on the top of many
common specification frameworks, as long as they satisfies a few requirements:
they are semi-exact institutions (admit amalgamation lemma); signatures con-
tain symbols which in the model class are interpreted as unary predicates; signa-
ture morphisms respect this distinction, i.e. send such predicate symbols only on
such symbols; the model classes are concrete categories where monomorphisms
are injective. Although the list may seem rather restrictive, most commonly
used institutions do satisfy the requirements. The results, in particular 4.2.14
hold not only for MA, but also for institutions of total algebras (with predi-
cates), partial algebras (with predicates) and membership algebras. In this way,
we have quite a general way of applying our setting which vastly extends the
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specific context of order sorted algebras used in [42]. We would also maintain
that our syntactic requirements are simpler than those introduced in the above
paper.

A point which certainly requires a further study concerns reasoning about
PDTs. We expect that addition of generic axiom schemata expressing closure
of the parameter algebras (i.e., that operations applied to the “old” elements
return “old” elements) will lead to a complete axiomatization but this issue
needs to be investigated.

On the other hand, we would like to use PDTs for study and, perhaps, de-
sign of more specific structuring mechanisms at the level of implementations.
We believe that the current work can provide a useful starting point for de-
signing more detailed constructs, for instance, for architectural specifications in
languages like CASL.
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Conclusion

We have studied the concept of multialgebras as an algebraic specification for-
malism. In chapter 1 we gave the mathematical foundation for the thesis. The
main result from this chapter is that multialgebras form an exact institutions,
MA, especially this means that the amalgamation lemma holds for multialge-
bras. This result is used to define the induced actualization functor semantics
for parameterized datatypes in chapter 4. In chapter 1 we also constructed the
actual institution embedding from the institutions of membership algebras and
the institution of partial algebras to multialgebras. These results legitimate the
title of the thesis since any thing that can be specified in one of the mentioned
frameworks has an natural encoding within multialgebras. Embedding from
many other algebraic specification formalisms can be easily envisaged, following
the work of Mossakowski in [38]. In chapter 2 we gave two sound and com-
plete reasoning systems for multialgebras, one Raisowa-Sikorski type of logic
that should be well suited for implementation of a theorem prover, we also
gave a Gentzen style logic that is more convenient for doing proofs by hand.
In chapter 3 we illustrate how one can use nondeterminism and multialgebras
as a powerful tool for partiality handling; by weakening the institution embed-
ding from chapter 1 to institution transformation we also illustrate how one can
reuse partial algebra specifications within the framework of multialgebras and
develop the specifications to particular error recovery. In chapter 4 we defined
the concept of parameterized datatype specification, PDT. We have given sev-
eral results with respect to composition of PDT’s and we have also introduced
the notion of refinements of PDT’s.

We hope that the work in the thesis illustrates the specification power of
multialgebras and we propose that multialgebras migtht be used as a unify-
ing framework for algebraic specifications. As a consequence of the institution
embeddings mentioned above we are able to reuse a desired concept from a
particular specification formalism and refine it within the institution of multial-
gebras, in the similar way we may use multialgebras to combine concepts from
different specification formalisms. This means that we actually can reuse spec-
ifications from other algebraic specification formalisms, either to further refine
them or else combine them with other specifications. One should observe that
in many cases (e.g. MEMB and PA) such reuse of specifications in MA is
based on a simple translation without any elaborate coding.

Of course one has to pay the price for the generality offered by multialge-
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bras. One major problem that is left for further work is to find syntactical
restrictions that ensure the existence of canonical models for multialgebra spec-
ifications. A step in this direction is to describe the class of multialgebras that
has initial models, we have summarized the present results concerning initial
models in chapter 1, but the problem is still unsolved. It should be interesting
to implement a theorem prover for the Raisowa-Sikorski logic given in chapter 2.
Moreover we will try to develop a system for reasoning about PDT’s. We also
think that it will be fruitful to study implementation aspect of PDT’s, and we
hope to obtain a desirable software developing methodology for PDT’s.
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[14] Joseph Goguen and Răzvan Diaconescu. An oxford survey of order-sorted
algebra. Journal of Mathematical Structures in Computer Science, 4:363–
392, 1994.

[15] Joseph A. Goguen. Abstract errors for abstract data types. In IFIP Work-
ing Conference on the Formal Description of Programming Concepts, vol-
ume 116, pages 89–103. North-Holland, 1978.

[16] Joseph A. Goguen. Order-sorted algebra i. Semantics and Theory of Com-
putation Series 14, UCLA Computer Science Department, 1978.

[17] Joseph A. Goguen and R. M. Burstal. Some fundamental algebraic tools
for the semantic of computation. part 1: Comma categories, colimits, sig-
natures, and theories. Theoretical Computer Science, 31:175–209, 1984.

[18] Joseph A. Goguen and R. M. Burstal. Institutions: Abstract model theory
for specification and programming. Journal of the ACM, 39:95–146, 1992.

[19] Joseph A. Goguen and Rod M. Burstall. Cat: a system for the structural
elaboration of correct programs from structured specifications. Technical
Report CSL-118, SRI International, 1980.
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