
DIAGRAMATIC SOFTWARE SPECIFICATION

ADRIAN RUTLE1, YNGVE LAMO1 AND UWE WOLTER2

1BERGEN UNIVERSITY COLLEGE, BERGEN, NORWAY
2DEPT. OF INFORMATICS, UNIVERSITY OF BERGEN, BERGEN, NORWAY

1. Introduction

Designers of software speci�cations, experts of the application domain and programmers who are intended to
implement the system need always a common language to discuss the domain. A graphical language is well suited to
reason about the problem and to verify business logic with the experts of the application domain. This is because of
its simplicity and universality. It's simple since a graphical representation for an ontology of a business or a hierarchy
of a system is much easier to understand than their textual versions. Moreover, it's universal since people with
di�erent background can be involved in the discussion of the system architecture as long as a consistent graphical
notation is used. So, a good modeling language is graph-based, formalized and su�ciently expressive to capture all the
peculiarities of the universe. This is a well-known issue in Generalized Sketches (GS); dealing with formal, graphical
notations. To the current state of the art in modern graphical speci�cation languages, this goal has not been achieved;
speci�cation languages used are either semi-formal, or have a very restricted expressive power, or both [2].

There are many graphical modeling languages that are used for speci�cation purposes in software engineering,
unfortunately only few of them has proper semantics. Speci�cations constructed by means of informal graphical
notations are often di�cult to maintain due to ambiguous constructions and semantic relativism [1]; the same concepts
may be understood and/or modeled di�erently by di�erent designers. This leads to di�culty when the resulting
software is to be expanded and integrated with other systems speci�ed by other designers or even by the same
designers.

We use GS and it's machinery to integrate and/or compare system models in a consistent way, this doesn't propose
that a standard type of graphical notations should be used, but what should be modeled must be standardized. By
superimposing signatures from di�erent graphical notations (that have a formal semantic) and mapping them to the
GS notations, we can achieve that goal.

Any speci�cation that is sketch-able has a formal semantic and, every formal speci�cation is sketch-able [1]. Any
graphical speci�cation, whether it is an ER diagram or a UML class diagram, can be considered as abbreviations or
visualizations of sketches for a �xed signature, where the signature is its corresponding diagram type. It's important to
notice that a graphical notation is a visualization on the top of a speci�cation core. The visualization is a presentation
(a user interface) of the speci�cation, while the speci�cation deals with the semantics of the notational constructs [3].

2. Generalized sketches

The necessity for a formal, precise formalism for software speci�cation was the reason for a proposal made by
M. Makkai [6] and later by Z. Diskin [2]. The formalism is based on already developed constructions, sketches, in
Category Theory invented by Ehresmann [2]. Ehresmann's sketches are graphical presentations of categories. Makkai
generalized sketches by introducing diagram predicates to them and called the result for Generalized Sketches. Diskin
made GS more direct and introduced operational sketches specifying complex diagram operations over sketches, and
thus made GS more applicable to the area of software engineering. Many of the theoretical questions and practical
problems in the area are successfully approached in this framework [3].

2.1. De�nitions[4]. A graph is composed of one or more nodes or objects that are connected by edges, it's a
mathematical structure used to model pairwise relations between objects from a certain collection. A graph morphism
f : G1 → G2 maps nodes to nodes and arrows to arrows such that their incidences is preserved. A diagram is a
visual presentation of a part of a graph. Formally, a diagram in graph G is a graph morphism d : Gd → G where
Gd is a graph, the shape of d. Informally, we look at d as a sub-graph d(Gd) of G. A signature Σ is a collection of
diagram predicates which is a name together with an arity (a �xed shape.) Formally, a signature Σ is composed of a
pair < P, Arity(P ) > where P is a set of predicate labels and Arity(P ) is the arity shape of P . A signature morphism
is a mapping σ : Σ1 → Σ2 such that Arity(P.σ) = Arity(P ), i.e. the shape graph of the predicate label is preserved.
It is possible to have predicates both on nodes and on arrows - diagrams with a single arrow.

Given a signature Σ, a (Σ-)sketch S =< GS , DS(P ) > is composed of a graph GS , the carrier graph of S, in which
some diagrams DS are marked with predicate labels P ∈ Σ, where DS(P ) is the (possibly empty) set of all diagrams
from GS that are labeled by P . While a marked diagram is de�ned as the pair < d, P > where d : Gd −→ GS and
P is a predicate label such that Arity(P ) is isomorphic to d or, if Arity(P ) is a family, d ∈ Arity(P ). A Sketch

1



DIAGRAMATIC SOFTWARE SPECIFICATION 2

morphism f : S1 −→ S2 is a mapping of the carrier graphs f : GS1 −→ GS2 such that if (d : Gd −→ GS1) ∈ DS1(P )
then (d; f : Gd −→ GS1 −→ GS2) ∈ DS2(P ), i.e. the following diagram commutes.

GS1

f // GS2

Gd

d

OO

d;f

<<yyyyyyyy

For a signature Σ, we let the space of all Σ-sketches and mappings between them be denoted by Sketch(Σ). Then a
signature morphism σ : Σ1 → Σ2 gives rise to a mapping between sketch spaces σ# : Sketch(Σ1) → Sketch(Σ2). Due
to this result, we can de�ne mappings between sketches in di�erent signatures as a pair µ =< σµ, fµ >: (Σ1, S1) →
(Σ2, S2) where σµ : Σ1 → Σ2 is a signature morphism and fµ : S1.σ# −→ S2 is a mapping of Σ2-sketches. In this way,
we can map sketches that have di�erent graphical notations (signatures) to each other. The �gure below explains this
result.

< S1,Σ1 >
µ // < S2,Σ2 >

Σ1

σµ // Σ2

Sketch(Σ1)
σ# // Sketch(Σ2)

S1.σ#
fµ //

∈ooooo

77ooooo

S2

∈

OO

2.2. Some examples. The simplest diagram is a single node. A node denotes the existence of an object class in the
application domain. Constraints could be applied to the node to make it compatible with the real world peculiarities.
For example in Figure 1, we have three nodes which are marked with markers (predicates) from a signature, the nodes
put di�erent constraints on the object classes that are denoted by them.

Figure 1. Examples of nodes carrying di�erent constraints.

An arrow is also a diagram predicate, it connects two nodes to each other and serves as a relation between the
object classes. Constraints can also be applied to arrows as shown in Figure 2. Di�erent kinds of arrow predicates
denote di�erent kinds of relationships between the object classes. Many of the arrow constraints are shown as diagram
predicates that are abbreviated and drawn as markers hung on the arrows.

Figure 2. Example of arrows and their semantics[4]

A diagram could be more complex consisting of a few nodes and arrows from the sketch, and diagram constraints
are used to denote more complex relations between them. This is needed to model complex relations between several
object classes, and between di�erent components of the system. The latter is important in the integration phase of
the software life cycle, however, other graphical notations like UML and ER does not support this. The diagram that
is to be marked with some label, should have the same shape as the diagram predicate from the signature. Figure 3
below shows some examples of diagram predicates.

2.3. Advantages of GS. Among the principal advantages of GS the following can be mentioned:

• Nice amalgamation of logical rigor and graphical evidence. GS are graph-based images yet they are precise
formal speci�cations.

• Universality, in the precise sense of the word. It can be mathematically proved that any speci�cation whose
semantic meaning can be formalized, can also be expressed by a GS, or in other words, is sketch-able.



DIAGRAMATIC SOFTWARE SPECIFICATION 3

Figure 3. Diagram predicates (row 1 and 2) and a diagram operation (row 3) with their semantics in sets[1]

• Unifying power. Many graphical speci�cation languages can be simulated by GS in the corresponding signature
of diagram markers. That is, each graphical notation, say ERD or the di�erent types of diagram in the UML
language, corresponds to a given signature.

• Semantic capabilities. The GS language is inherently object-oriented and provides a quite natural way of
specifying OO class-reference schemes.

• Easy and �exible modularization mechanism. A complex speci�cation can be presented by a GS whose nodes
are sketches and arrows are sketch mappings. This pattern can be reiterated if necessary.

3. Summary

Development of a graphical speci�cation tool with functionalities that take advantage of the GS framework is one
of the major focuses of our project. Making the theory of GS more applicable to the �eld of software engineering
constitutes another part of the project. The tool to be developed will serve as an IDE (Integrated Development
Environment) with the possibility for automatic code generation and system integration for formal graphical speci�-
cations drawn based on GS formalism. We have developed a prototype [5] of a drawing tool that serves as a base for
development and implementation of well-known results from GS and Category Theory, and also potential new results
obtained throughout the progress of the project. Our intention is to develop techniques and methods for application
of GS and its formalism to software speci�cation. This contributes to further exploration of the practical values of the
formalism in question and provides the necessary framework for building such speci�cations and supports the diversity
of potential operations that can be applied in coordination with this universal formalism. To the current state of the
art, there exist no other drawing tool for GS suitable for practical work. A program [2] has been developed for this
purpose, but it is rather old and has unfortunately not been �nalized, a problem that is re�ected through the use of
this application as it su�ers from some serious bugs.

In view of the general objectives the following tasks will be addressed by our project:

• Formalization of di�erent software description formalisms as, for example, ER-diagrams, UML-diagrams, DB-
schemes, by GS.

• Investigation of the integration, the combination, and the modularization of speci�cations within single spec-
i�cations formalisms.

• Investigation of a rigorous integration of di�erent software description formalisms based on GS
• Design and development of tools supporting the application of GS in the �eld of software engineering:

� implementing the functionality for drawing UML and ER diagrams based on GS formalism with support
for mappings/translations between the two types of diagrams by mapping their signatures

� implementation of a code-generator for generation of code in di�erent programming languages based on
the graphical speci�cations

� case studies to evaluate the theory in practice.

References

[1] Z. Diskin and Boris Kadish, Variable set semantics for keyed generalized sketches: formal semantics for object identity and abstract
syntax for conceptual modeling.

[2] Z. Diskin, Generalized sketches as an algebraic graph-based framework for semantic modeling and database design. Technical Report
9701, University of Latvia, 1997.

[3] Z. Diskin, Visualization vs. speci�cation in diagrammatic notations: A case study with the UML.
[4] Z. Diskin, MATHEMATICS OF UML: Making the Odysseys of UML less dramatic.
[5] Ørjan Hatland, Sketcher .NET A Drawing Tool for Generalized Sketches.
[6] M. Makkai, Generalized sketches as a framework for completeness theorems.


