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Abstract

Due to their complexity and the plethora of requirements placed upon them, healthcare systems so far have not been adequately

modeled for the purpose of software development. As a result, the healthcare software suffers from high development costs and

lack of flexibility. Model driven software engineering (MDSE) is an emerging methodology for software development, targeting

productivity, flexibility and reliability of systems; metamodelling is at the core of most MDSE approaches. In previous work, we

proposed a multi metamodelling approach that captures the complexity of these systems by using a metamodelling hierarchy, built

from individually defined metamodels, each capturing different aspects of a healthcare domain, namely, user access modelling,

health process modelling, process monitoring, user interface modelling and modelling of the data sources. Here, we formalize

the co-ordination among metamodels, using a linguistic extension of the metamodelling hierarchy. This linguistic extension is an

added metalevel which models the integration of two or more different aspects of the system. We focus on two features essential to

the co-ordination of healthcare metamodels, namely the integration of process and data, modelling data-aware processes, and the

integration of process and user, modelling both user access as well as inheritance of user access to tasks.
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1. Introduction

Rising costs, ageing populations and increased expectations are making the current healthcare systems in the de-

veloped world unsustainable. Information technology has the potential to support healthcare but its application to

support the continuum of care has not nearly reached its full potential. Barriers include the proliferation of systems

even within one hospital, often which do not support interoperability; the fact that systems must be highly customized

to adequately serve local situations (usually an expensive and error prone process); the fact that the systems are con-

stantly evolving due to new medications, and changing protocols and management strategies; the fact that software

engineering itself for such safety critical systems as healthcare needs new strategies to ensure that systems behave
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correctly in every possible scenario; and the fact that in many situations, healthcare is a team process involving many

players, each with specific requirements from the technology. Taken altogether, we may say that the current health-

care information systems can be characterized as follows: they are hard to analyze to ensure correctness of process;

they have sophisticated tracking and interoperability requirements due to numerous silo-ed data sources; they have

high development and maintenance costs; they lack flexibility to adapt to changes and for customization required by

different users with different needs; and, finally, the ability to customize different subsystems with different access

policies is limited.

Model driven software engineering (MDSE) is an emerging and promising methodology for software development,

targeting challenges in software engineering relating to productivity, flexibility and reliability of systems. The con-

struction of various kinds of models (e.g., blueprints, mockups etc.) is a well-known approach in the more traditional

engineering fields; these models are used as artifacts to enable engineers to describe designs and validate whether a

proposed design has desired qualitative and quantitative properties. We propose to use MDSE in an analogous manner

for the development of reliable and robust software systems supporting the diverse, evolving and often safety critical

requirements of healthcare. We note that many complex systems are characterized by the features discussed above

and as such, the discussion here may be generalized to numerous processes involving complex information systems,

such as transportation systems, communication systems, etc.

Many different MDSE technologies automatically generate code from models1,2: these technologies are particu-

larly suited for specifying the structural aspects of software systems generally, whereas the actual behavior is pro-

grammed manually. Some technologies for behavioural modelling in MDSE exist3,4, but current approaches are often

at a low level of abstraction and lack domain concepts for specifying behavior5.

A collaborative group of researchers in Norway and Canada have been working on various issues relating to these

problems. We describe a formal approach to workflow modelling in6, based on the Diagram Predicate Framework

(DPF)7 which provides a formalism of (meta) modelling and model transformations based on category theory and

graph transformations8,9,10. The dynamic semantics of models were described by a transition system where the states

are instances and transitions are applications of coupled transformation rules. Our long term goal is to promote

automatic generation of complex software systems from models, which can be easily adapted as the need arises; the

formal approach permits a variety of formal validation techniques which go a long way toward ensuring correctness.

In his thesis11, Baarah proposed an application framework for care process monitoring that collects and integrates

events from event sources, maintains the individual and aggregate state of the care process and populates a metrics

datamart to support performance reporting. He presented a UML-style metamodel for the care process monitoring

application that had 3 main components: a process model, a performance model and an enterprise model. This

work motivated us to take a more modular approach to our metamodelling, in order to more adequately model the

various components involved in a healthcare process. In12 we proposed that the separation of concerns via the use

of multimodelling was an appropriate methodology for designing healthcare information systems. The use of multi

metamodels for modelling different aspects of a system facilitates abstraction and require less coupling among the

models; this modularity gives flexibility as it permits the independent remodelling of parts of the system. It also

reduces development and maintenance costs. The paper outlined several metamodels, each of which comes equipped

with its own domain specific language which supports one aspect of the system and outlined where some of the links

were needed for co-ordination. We focused on user aspects and monitoring, and the need for flexibility in design of

user interfaces to suit the needs of different participants in the healthcare process. Users may interact with parts of the

workflows, and parts of the datasource and receive and acknowledge alerts from the monitoring system.

In this paper, we begin the formalization of the co-ordination among the metamodels necessary to integrate two or

more aspects during different phases of modelling. We use a linguistic extension of the metamodelling hierarchy, in

the form of a metalevel which sits at the top of the multi metamodelling hierarchy and which provides co-ordinating

edges which link two different metamodels together with constraints relating these co-ordinating edges to edges in

the existing metamodels. This metamodelling formalism can be used to automatically generate program code from

models to implement software systems. In section 2, we briefly outline the DPF modelling approach, and use it to

describe two metamodels, namely, the process metamodel and the datasource metamodel. In section 3, we describe the

enrichment of DPF by defining the linguistic extension of the metamodelling hierarchy which permits the integration

of metamodels. We discuss the co-ordination of data, by the integration of the process and datasource metamodels

via a co-ordinating edge between them, subject to a commute constraint, ensuring that the data is assigned to the
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appropriate patient. We also discuss the co-ordination of user privileges, by integrating the process and user access

metamodels by means of a co-ordinating edge between them which models user access and also models inheritance

of user access to workflow tasks. In that section, we also give an overview of five aspects of healthcare information

systems and some required co-ordinating edges between them. In section 4, we briefly discuss related and future

work. Section 5 concludes the paper.

2. Metamodeling in DPF

A traditional modelling hierarchy consists of 4 levels, meta-metamodels, metamodels, models and instances of

models13. A meta-metamodel represents a modelling formalism, modelling languages are represented by metamodels,

software systems are represented by models and possible instances of a software system are represented by instances

of models. The metamodel describes the syntax of the modelling language, i.e., it describes the types and relations

between the types. Each model must conform to the language’s metamodel, i.e., it must respect the typing and

other constraints of the language. Finally, instances must conform to models. In contrast to traditional hierarchies,

DPF7 has a potentially unbounded number of metalevels14. A model is represented by a diagrammatic specification

S = (S ,CS : Σ) consisting of an underlying graph S together with a set of atomic constraints CS specified by

a predicate signature Σ. A predicate signature consists of a collection of predicates, each having a name and an

arity (or shape graph). A predicate (name) imposes a constraint on a portion of the graph S , of the associated arity.

DPF provides a formalisation of multi level metamodelling by defining the conformance relation between models

at adjacent levels of a metamodelling hierarchy. There are two kinds of conformance: typed by and satisfaction of
constraints.

In6 we detailed the DERF modeling hierarchy developed to represent processes. Traditional DPF models were

used to represent structural (static) aspects of a software system. The DERF modeling hierarchy extended modelling

to include behavioural aspects (dynamic semantics); behaviour was defined by a coupled transition system. As an

illustration we briefly discuss the process formalizing the Clinical Practice Guideline for the Management of Hy-

pertension15. In the management of hypertension, an initial blood pressure (BP) measurement is made; if the BP is

normal, the patient is “Safe”, i.e., the process stops. If the BP is high, the patient is scheduled for Visit 1, the first visit

in the treatment process. An overview of the model of the treatment process is found in the lower portion of Fig. 1,

the reader will note the [XOR SPLIT] predicate indicating that exactly one of the paths is followed at the Initial BP

Measure task. This model uses predicates [XOR SPLIT], [AND SPLIT], [OR SPLIT], etc., to describes the control

flow of the process model. The metamodel level provides the abstract modelling language for workflow, and consists

of two types, Task, and Flow; the model level details a specific workflow; the instance level gives instances of specific

enactments of a workflow. Fig. 1 shows two meta level specifications SW1
and SW2

for this process (the instance level

is not shown). Arrows from the bottom layer to the top layer indicate the typing constraints. In the examples of the

DPF modelling hierarchies given here, predicates at each level are described by their name and a “shape graph”, for

visualization. The metamodel specification SW2
of Fig. 1 is similar to a workflow metamodel specification presented

in6. Space does not permit us to discuss this modelling hierarchy and its dynamic behaviour further; the reader can

refer to6,12 for more details.

Fig. 1 provides a process flow modelling hierarchy for the hypertension managment system but it does not specify

the data model of the system. Let us consider the following data requirements from the healthcare domain which we

use to describe the datasource modelling hierarchy: (We remark that these requirements are overly simplified from

real life applications, but suffice to illustrate the features we wish to discuss here.)

Requirement 1 An employee (e.g., nurse, doctor) must work for a department.

Requirement 2 A department may have zero or more employees.

Requirement 3 A ward must be under a department.

Requirement 4 An employee who is involved in a ward, must work in the controlling department.

Requirement 5 A patient’s systolic and diastolic blood pressure records are numbers.
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Fig. 1. Hypertension Management Workflow (Overall)

Fig. 2. Example of a datasource metamodel

Table 1. Predicate constraints of the signature ΣD
2

p α
ΣD

2 (p) Proposed Vis. Semantic Interpretation

[mult(n,m)] ∀x ∈ X : m ≤ | f (x)| ≤ n, 0 ≤ m ≤ n, n ≥ 1

[irreflexive] ∀x ∈ X : x � f (x)

[surjective] ∀y ∈ Y,∃x ∈ X, f (x) = y

[inverse] ∀x ∈ X,∀y ∈ Y : y ∈ f (x) iff x ∈ g(y)

[image-inclusion] ∀x ∈ X : f (x) ⊆ g(x)

[composition] ∀x ∈ X : h(x) =
⋃{g(y) | y ∈ f (x)}

In Fig. 2, we outline two meta level specifications, SD2
and SD1

of the datasource metamodelling hierarchy that

we developed from the above mentioned requirements. In this specification we used the signature ΣD
2 = (PΣ

D
2 , αΣ

D
2 )

(ΣD
2 indicates the signature at meta–level 2) from Table 1 to define the set, CSD1 , of atomic constraints where the

first column of Table 1 shows the names of the predicates; the second, third and fourth columns show the arities of
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predicates, possible visualizations, and semantic interpretations, respectively (Fig. 2 does not show all of ΣD
2 ). The

predicate constraints are added into the specification by a set of atomic constraints; this is depicted in the specification

by using the proposed visualization. Requirement 1 is encoded in SD1
by the [sur jective] predicate constraint over

the morphism depEmps; the fourth requirement “an employee who is involved in a ward, must work in the controlling

department” is encoded in SD1
by two predicate constraints [composition] and [image − inclusion] over morphisms

depEmps, wardDeps, wardEmps and wardEmps′ where wardEmps := wardDeps; depEmps (the composition of

morphisms wardDeps and depEmps). The atomic constraint for [composition] predicate in SD1
indicates a morphism

z
wardEmps−−−−−−−→ x exists iff morphisms z

wardDeps−−−−−−−→ y and y
depEmps−−−−−−−→ x exist, and the atomic constraint for [image−inclusion]

predicate in SD1
indicates that for any Employee x working under a Ward z (i.e., z

wardEmps′−−−−−−−−→ x) there is a morphism

z
wardEmps−−−−−−−→ x. In this situation, wordEmps morphisms are explicitly defined while wordEmps′ morphisms are derived

from the existance of wordDeps and depEmps.

3. Co-ordination of metamodels

In this section we describe a linguistic extension to the DPF metamodelling hierarchy; this extension is an added

metalevel which models the integration of two or more different aspects of the system. The formalization of the lin-

guistic extension, that is, the top layer of the hierarchy with two different types of edges, is inspired by the notion of

E-Graph16. To illustrate co-ordination, we present two features essential to the co-ordination of healthcare metamod-

els, namely, the integration of process and data, modelling data-aware processes, and the integration of process and

user, modelling user access to tasks in a process as well as inheritance of user access.

Fig. 3. Example integration of a process metamodel and a datasource metamodel

3.1. Co-ordination of a process model and a datasource model

The process model shown in the previous section is not data-aware. In order to develop a data-aware process model

we need to co-ordinate the process model with a datasource model. In Fig. 3 we present the integrated modelling hi-

erarchy where SJ1
,SJ2
,SJ3

are specifications of metalevels representing the co-ordination of the process metamodel

and the datasource metamodel. Our linguistic extension is based on ideas from17. The formalization of the specifica-

tion SJ3
(similar to that in17) uses, in addition an “ordinary” edge (called Edge), a so-called “Co-ordinating Edge”,

subject to constraints. The specification SJ3
contains a signature ΣJ

3
with a predicate called mult(n,m). The semantics

of the predicates containing “Co-ordinating Edge” is defined in a fibred manner as in7. That is, the semantics of a

predicate p is given by the set of its instances. SJ2
consists of specification SW2

and SD2
and a signature ΣJ

2
with one

predicate [commute]. Moreover it has a co-ordinating edge, DataReference from Task in W2 (underlying shape graph
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of SW2
) to Class in D2 (underlying shape graph of SD2

). In specification SJ1
, the edges h, k are co-ordinating edges

and the three edges g, h and k respect the commute constraint: i.e., g followed by h equals k. This is to indicate that

the patient who is assigned an initial BP measurement is the same patient who is assigned a Visit1 task.

Fig. 4. Example integration of a process metamodel and a user metamodel

3.2. Co-ordination of a process model and a user metamodel

The access policy of a task may be specified by an integrated metamodelling hierarchy shown in Fig. 4. The Copy-

acc edge of the User Access specification SU2
copies access from one user to another. The specification SJ2

has a

co-ordinating edge, TaskAccess, which co-ordinates the user access to a task. Both the TaskAccess and Copy-acc

arrows are labelled with the composition constraint, [comp], which ensures the inheritance of task access between

users. The arrow h at the bottom level is a co-ordinating edge and copy-acc arrow c from Doctor to Nurse indicates

that the Doctor inherits the access that the Nurse has to the tasks. The co-ordinating edge s indicates that the Doctor

has access to the task Measure.

Table 2. Example of a user access policy

User
Patient 1 Patient 2

BP More BP More

Jessica : Nurse � X � X
Bryan : Doctor � � � X

Note that the [comp] predicate is associated with the integrated

shape graph of SJ2
by a graph homomorphism. The arity of the [comp]

predicate consists of 2 co-ordinating edges and 1 (ordinary) edge. The

diagram to the right shows the graph homomorphism from the arity

of [comp] to the underlying shape graph of SJ2
, where f and h are

co-ordinating edges.

More complex user access rules may be specified co-ordinating the

datasource metamodel with the process and user access metamodel.

E.g., if we want to specify that when a user has copy access from a

second user then the first user is allowed to see only the data the second

user has access to. Table. 2 illustrates an example where Doctor Bryan

is in relation with Patient 1 and therefore has access to all Patient 1’s

data. Doctor Bryan can see only Patient 2’s BP-related information

since he copied (inherited) the access of Nurse Jessica who has access only to Patient 2’s BP information. Other

fine-grained access policies may be defined; e.g., only allowing a doctor to copy (inherit) access regarding a patient

from a nurse, if the patient the nurse is treating is one of the doctor’s patients.
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3.3. Co-ordination of different aspects

Fig. 5. Multi metamodel for healthcare information systems

In Fig. 5 we show 5 aspects

of Health Information Systems,

namely, a Monitor aspect, a User

Interface View aspect as well as

the Process, Datasource and User

Access aspects discussed here.

See12 for details on the metamod-

els for the two aspects not dis-

cussed here as well as an exam-

ple of the co-ordination among 3

metamodelling hierarchies (User

Access, Process and Monitor) re-

quired for the Monitor to give

alerts. In Fig. 5 we show a num-

ber of co-ordinating edges: Trig-

ger, Sends, Displays, Alert UI,

View Access, as well as other ex-

amples of Data Access, which are

required to co-ordinate the 5 as-

pects displayed.

4. Related and Future Work

Many workflow languages such as YAWL18, ADEPT219 focus on a single aspect of a system, usually the control

flow. YAWL is data-aware workflow language which supports XML-based models for data definition and manipula-

tion based on XML Schema. These languages are not flexible enough to customize to a different syntax or semantics.

In this article we enhanced the DPF framework using an integrated metamodelling technique which can be customized

according to different needs. The approach makes the framework modular and flexible yet structured as an integrated

model specification has to satisfy typing and conformance to its metamodel specification.

An OCL-based domain specific language, MoScript, was presented in20 for model-based task and workflow au-

tomation. The language is based on the metadata contained in a Megamodel that allows querying a Megamodel for

the required modelling artefacts and tools. It supports model manipulations, such as loading and storing modelling

artefacts, invocation of a model transformation engine, etc,. MoScript is able to perform some validation at run-time

such as to check if a model transformation is applied to a model that conforms to the right meta-model. Whereas in

our work, we enhanced the software modelling with the co-ordination of multiple metamodels.

Diskin et al. proposed a megamodeling framework based on graphs and graph mappings, and operations over

them21. They presented model mapping which is a structured set of links between models, specified a library of

elementary building blocks, and presented how to combine them into a complex workflow. In that paper, the authors

focused on a single aspect of a system with multiple views. Different views of the entity model in21 would correspond

to different views of the datasource model in our paper. They presented a query mechanism and, correspondingly,

q-mappings (Kleisli morphisms), essential for megamodeling such views. In this paper, we focused on several aspects

of a system (datasource aspect, monitor aspect, etc.) and presented a metamodelling approach to integrate them by

co-ordination. Our approach can be further improved by the use of a query mechanism which should incorporate

more expressiveness in the DPF metamodelling language. In future we also plan to metamodel other aspects of

healthcare information system (eg., Scheduling, Resources, and Service Orientation) and co-ordinate them. This

may require an extension of the metamodelling language with time22, and compensation23 and co-ordinating them;

including such features as time and compensation are essential for the enactment of real life healthcare workflows.

The implementation of the editor requires abstraction and projection facilities in order to accommodate many models

in the display devices.
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5. Conclusion

Separating different concerns (aspects) of a system into several metamodels gives us flexibility, allowing us to

modify one aspect of a system described by a particular metamodel without affecting other metamodels. However,

to realistically capture the requirements of complex systems such as healthcare systems we need to integrate the

metamodels. In this paper, we proposed a linguistic extension to the DPF metamodelling hierarchy, consisting of co-

ordinating edges together with constraints on these edges, this allows us to integrate metamodels, thereby modelling

features that cannot be modelled by the multi metamodels in isolation. We were able to capture data-aware processes

through the use of co-ordinating edges together with the constraint represented by the commute predicate, and the

inheritance of user access using a co-ordinating edge together with the constraint represented by the composition

predicate. We believe that multi metamodeling with linguistic extensions as described here, together with MDSE

principles in general, can be used as the main methodology in the development process of software for care processes.
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