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Abstract

This paper analyzes the application of several reinforcgmearning techniques for continuous state and actionespiac
pipeline following for an autonomous underwater vehicl&{A. Continuous space/RSA is compared to the actor-critic
CAcLA algorithm [19], and is also extended into a supervised oeagment learning architecture. A novel exploration
method using the skew-normal stochastic distribution éppsed, and evidence towards advantages in the case & tabul
rasa exploration is presented. Results are validated oaliatie simulator of the AUV, and confirm the applicability o
reinforcement learning to optimize pipeline following laior.

1 Introduction rameters for an AUV controller, and their corresponding
values, may be hard to determine. Reinforcement learning
Subsea oil&gas pipeline inspection is a costly and timestrategies promise to alleviate such difficulties by exghan
consuming operation traditionally carried out by traineding pre-programming by a robot programmer with on-line
operators as a manually controlled operation using reexperimentation by the AUV itself. Furthermore, RL al-
motely operated underwater vehicles (ROVs). The ROWorithms are able to account for situations unforseen at the
is tethered to a surface vessel, which makes the operatigime of programming. Instead of spending time on pre-
highly dependent on surface weather conditions. An unprogramming the perfect controller able to cope with any
tethered autonomous underwater vehicle (AUV) only reforseen or unforseen situations, an alluring alternative i
quires a short launch window, which may greatly reducdet RL algorithms figure the difficulties out for themselves
the costs and man-hours required for inspection since by experimenting with pipeline following in the real envi-
may operate without the constant presence of a costly surenment.
face vessel. However, autonomous pipeline inspection usrhe paper is organized as follows. In section 2 a short in-
ing a robotic vehicle requires algorithms able to follow thetroduction to reinforcement learning is given. Moreover, a
pipeline efficiently and robustly in the presence of distur-particular type of RL and an extension using theaCA
bances and changing or unknown conditions. algorithm is discussed in section 2.2, together with a novel
The problem of pipeline localization by sensors such agxploration strategy in section 2.3. An overview of the
a camera system, sonar, and echo sounder have beesed dynamic simulation environment is given in section
adressed separately for the AUV in question, and refer3. Section 4 describes the setup of the simulations con-
ences and results may be found in a paper by Breivik educted, and the results are presented in section 5. Section
al [5]. AUV control has also been studied extensively pre-6 and 7 gives a discussion of the results and a conclusion,
viously, examples include using model-based [9, 23] andespectively.
model-free (learning) [6] techniques. In this paper we con-
centrate on obtaining a mapping from the detected pipeline
by the sensors to an efficient set of waypoints for the AUV2 ~ Reinfor cement L earning
— low level control of the AUV is handled using traditional
controllers as described in section 3. Reinforcement learning (RL) deals with the problem of
Reinforcement learning (RL) is a very active research fieldlearning when to do what, i.e. how to map situations to
and has been successfully applied to a number of robotiactions, in order to maximise a reward [14]. An agent (e.g.
applications. It can be used to make a robot learn how tan AUV) interacts with a stochastic process modelled as
accomplish or optimize a tasthile interacting with its en- a Markov decision process (MDP), and can observe the
vironment. The robot will receive rewards or punishmentscurrent state and immediate reward. The objective is to
based on its choice of actions, and thus over time learns tdiscover which actions yield the most reward in each sit-
optimize its actions in relation to the received rewards. uation by experimenting, and may be viewed as a form of
This paper focuses on how to program a robust high leveissociative learning.
controller for maneuvering an AUV efficiently in relation An MDP can be defined as a tupl§, A, R, T), whereS
to a pipeline. The correct and complete set of control pais the set of all statesd the set of all actionsR the re-



ward function, and'(s,a, s') € [0, 1] the transition func- Two differing approaches of handling continuous actions
tion (s € S defines the current state, € A the current are common in reinforcement learning literature. The most
action ands’ € S the resulting state). In reinforcement intuitive approach in relation to the previous description
learning problems, the reward function and the transitiorof reinforcement learning may be to use a humerical opti-
function are unknown to the agent, and thus ordinary dymiziation method on the estimatégtvalue (e.g. Newton-

namic programming approaches do not apply (see [14] foRaphson or wire-fitting). Santamaria et al [13] use what

details). they call a one-step search to findhx, Q. The approach
A value function in reinforcement learning may be definedconsists of a discretizatiofa, . . ., a,,) over@ and selec-
as tion of the maximuma,. Numerical optimization, how-

tion, so if computing the objective function has a high cost
his procedure quickly becomes unmanageable for on-line
pplications.
he other mentioned approach involves actor-critic meth-
ods, which separate the estimation of the value function
(critic) from the estimation of the policy (actor). The ap-
mf>roach has been around for quite some time (see e.g. the
1977 article by Witten [22]), but has not gathered a lot of
o interest until later years when problems using the approach
Q(s,a) =E {Z’Yéﬁﬂﬂm St = 5,a1 = a} . (2)  ofdirect determination of the policy from the action-value
i=0 estimate became apparent [15].

[oe]
V(s)=E {Z’ij”-&-i-&-llﬂ'a Si =8
=0

This function describes the cumulative future discounte
reward an agent expects to receive using its current polic¥
= from states = s;, wherer is the received reward and
~va € (0,1] the discount factor. A corresponding action-
value function describes discounted reward when perfor
ing actiona in states as

} (1) ever, may require a lot of evaluations of the objective func-

This formulation has been the basis for many RL-

algorithms focused on control (e.g.Q-learning and CAcLA. Van Hasselt and Wiering [19] present an actor-
SARSA). critic based reinforcement learning algorithm named C
SARSA is a well-known on-policy temporal difference- cLa (Continuous Actor-Critic Learning Automaton) for
based reinforcement learning algorithm for control prob4earning in continuous action spaces. The value function
lems — the action-valu@(s, a) is estimated for the current (critic) is updated using the TD-error from (4) as

policy m. The algorithm is detailed by Sutton and Barto V(s) = V(s) + avd, 5)

[14], and is given by the equation
whereay € (0, 1] is the learning rate for the value func-

Q(s,a) = Q(s,a) + a(r +7Q(s',a') = Q(s,0), B)  4on For con(tinu]ous state spacges, the value function may
where (s, a) is the current state-action paifs’,a’) the  be represented by a function approximaltpts) parame-
next, r the numerical reward signal received when goingterized by a vectof. Using gradient-descent on the mean
from s to s’ using actionz, anda € (0, 1] is the learning  squared error between the experienced and currently esti-
rate. The temporal difference (TD) error for value func-mated value function gives an update rule for the parame-
tions is given as ters as (see Sutton and Barto [14] for details)

S=r+7V(s)—V(s), (4) 0 =0+ aydVeVp(s). (6)

and corresponding(s,a) for action-value functions. In actor-critic algorithms, a stochastic policy(Rps) =
SaRrsA and other TD-methods converge to an optimal pol-T(als; ¢), parameterized by a function approximator with
icy for discrete and finite states and actions under the aglarameter vectop, is usually employed. The policy pa-
sumptions that all state-action pairs are visited an irginit ”ameters for @CLA are updated by

nur_nber of tlmes and that the policy converges to a greedy ¢ = ¢ + ar max(sgn(d), 0)(a — A5(s))V4A5(s), (7)
policy (a policy that always chooses the highest valued ac- . .

tion of Q(s, a) for a givens). wherea,, € (0, 1] is the actor learning rate and

1 (a—AG(s)?
e 202 (8)

2.1 Continuous Statesand Actions ma,simo) = e
The case of continuous state spaces in reinforcement leari$-2 Stochastic actor policy employing the Gaussian distri-
ing has been extensively studied [3, 13, 14, 15, 16, 18]. ThBution with mean(s) = A7 (s) approximated by a func-
use of function approximators in some form has emerge§©n approximator. The parameteris used to control the
as the method of choice for representing the state spac@Mount of exploration for the policy. For a general actor-
This also allows for generalizing experience. Commonlychitic algorithm, the policy parameters are updates as (e.g
used function approximators include connectionist strucl4)

tures such as artificial neural networks (ANNSs), radial ba- ¢ =¢+ ardVylnm(a,s; ). 9)

sis function networks (RBFNSs) [20], and cerebellar modelThe modifications of (7) in relation to (9) is based on the
arithmetic computers or tile coding (CMACs) [13, 14]. following intuitions (see [19] for details):



1. Themax-term insures that the estimate of the bestThe parametek weighting the influence of the supervisor
actor value is not updated when the TD-error is negversus the learner may vary with states). Rosenstein
ative. This is reasonable since we do not want tcand Barto use a function approximator to keep track of the
adjust the policy in the opposite direction of somestate-dependerit The underlying intuition is that may
perceived negative action as this does not necessdne used as a measure of confidence for each state in the
ily equal better solutions. state-space: States that have been visited more often can

0¥ield more trust to the learner since the value function and

policy should already have adopted the supervisory con-
troller’s action as a base estimatg.s) thus starts ab for

all s € §, and is updated using

2. The sighum-term (sgn) makes updates of the act
invariant to scaling issues when relating the TD-
error to the actor policy. Van Hasselt and Wiering
note CACLA as superior to some comparable actor-
critic algorithms when experimenting with varying
the scaling of the reward function. k(s) = k(s) + Tr(Ag) 13)

The strong theoretical underp]nnlngs.presented by se\./er%l our algorithms, wher&,, caps updates whelnreaches
authors [4, 7, 15] for actor-critic algorithms, togethettwi . )
ok . SN .. _kmax = 1. Rosenstein and Barto also implement a forget-
the intuitions given by Van Hasselt and Wiering in addition . S :
. ting mechanism into thé updates, such that states which
to the good performance of the algorithm when tested on L : .
. . ; have not been visited in a long time will be less trusted.
the cart pole-problem, constitute the reasoning behind con
sidering this particular method for the application domain
of autonomous underwater vehicles.
2.3 Exploration
2.2 Supervised Reinforcement Learning , , :
A reinforcement learning agent needs to explore its en-
The main difference between supervised learning and radronment in order to discover more optimal solutions.
inforcement learning is the availability of a trainer with Methods for exploring range from simple to the more elab-
knowledge of correct input/output sequences for a superate. Gibbs softmax-greedy and Gaussian exploration
vised learning problem. In reinforcement learning, theare commonly used exploration strategies [11, 13, 14, 19].
learner has to discover these by trial and error via the ex9ther methods attempt to build a model of the environment
ternal reinforcement signal. (directed exploration) [17, 21] or augment the reward func-
Rosenstein and Barto [11] combine a form of supervisedion [8]. RickstieR? et al [12] use a hybrid method of ran-
learning with an actor-critic reinforcement learning arch dom and directed exploration where actions are offseted
tecture in order to implement previous knowledge in a rethe same state-dependent amount in an episode, and the
inforcement learner. The algorithm uses a supervisor immount is randomized using a Gaussian distribution be-
the form of a previously known controller. Actions from tween each episode. Supervised reinforcement learning
this controller are combined with the actions from the RLmay also be viewed as a way to guide exploration, either
controller through a weighted sum in the form of gradual guidance from a teacher [11] or e.g.
@ — kaRl & (1- k)asup7 (10) in the context of apprenticeship learning [1].

. ) This paper proposes to direct the exploration resources in
where the parametérc [0, 1] weights the influence of the - 5y action direction that looks more promising with regards
supervisor action®"" versus the RL controller actiorf". {5 receiving positive temporal difference-errors in aestat
The actor approximator weights are now updated as  gependent manner. Looking at one of the fundamental un-

_ c derpinnings of reinforcement learning theory, Thorndske’
¢ = ¢tan [ké(a —45(5)) (11 Law of Effects states (amongst other things) teaponses
+ (1= k)(@®P = A5(s))| VoA (s). accompanied by discomfort to the animal Will .] have
) o . . their connections with that situation weakengste e.g.
The first part of (11) is identical to (9), while the sec- g ;+ton and Barto [14] for an introduction). TheaGLA
ond part s the gradient from a quadratic SUPErvisory error, oo ch breaks from this behavior when electing to avoid
V\/_h_enk — _1 the update rule behaves like a standard_actorl-dlpd{mng the actor policy for negative TD-errors (see (7).
critic algorithm, whilek — 0 turns the update rule into At the same time, the intuition of not updating the esti-
adapting the weights to fit the supervisory controller. mated optimal action towards some value with unknown

In this paper we propose to extend thadLA algorithm iliy holds some merit. This proposition is an attempt at
into the supervised reinforcement learning architectdire Ousing the information inherent in negative TD-errors while

Rosenstein and Barto by modifying (11) to suit the updat§gening the current estimate of the optimal action constant
rule of (7) in the following manner This is achieved by using the skew normal distribution in-
— k sgn(8),0)(a — AS stead of the Gaussian distribution (see (8)) as basis for the
¢ 9+o [ max(sgna), 0)(a ¢(s)) (12)  stochastic policy. The skew normal distribution was intro-
+ (1= k)(a®F = A5(s)) | VoAs(s) duced by Azzalini [2], and its probability density function
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Figure 1. Influence on the skew normal distribution for

different values ofy. Figure 2: Red line illustrates the pipe centerline, the blue

triangle is the AUV, and the green rectangle is the visible
area for the camera system.

is given by tunnel thrusters, two aft propellers and two diving rudders
. The 3 degree-of-freedom simulation model of the AUV in
1 e (1554 e the body frame is given as
f(z) = —e 27 e~ 7 dt, (14)
o o
where the mean: and standard deviatios equal their My +C)v+D)v=rm, (16)

Gaussian distribution counterparts, while the parameter
directs theskewnessf the distribution.y = 0 gives the  514is a function of the body fixed velocities= [U7U7T}T_
Gaussian distribution. Skewness refers to an asymmetrighe inertia matrixM, Coriolis and centrifugal matrix
perturbation of the density center and tail of the Gaussiag- (v), and the nonlinear damping mat () = D +
distribution in such a way as to give higher probabilitieis fo D,, (v) are defined as

drawing either from the right or left side @f The effects

of varying~ are illustrated in Fig. 1. _

The ~ parameter of the skew normal distribution may in 80 +0.026p 0 0
other words be used to guide exploration away from action M= 0 80 + 0.04p 0.0135p
values that have received negative TD-errors while keep- L 0 0.0135p 10 +0.0107p |
ing the current estimate of the optimal action fixed. In [0 0 (0.04p—80) v+0.01350r ]
addition to updating the weight parameters for the mean, C (v)=| 0 0 (80 — 0.026p)u
an update has to be done for theparameter in order to (80—0.04p) v—0.0135pr (0.026p—80)u 0
direct the exploration. In order to handle this, we propose ©0.72 0 0
the update equation D— 0 0.8896 7.5

6y = &, + T (sgrd)sgria — A5(s)A,) . (15) L 0 00313 190

' _ . . 1.33|u|+5.87u?® 0 0

wherel is a function which caps updates wheha is  p, (v)=| 0 36.5v|+0.805/r| 0.845|v|+3.45|r|
reached, and\, is the~ increment (or decrement). Note 0 3.96[v|—0.130|r| —0.080|v|+0.75|r|

here the underlying assumption that also thparameter

is estimated using a function approximator similar to the . ) )
estimation ofi. p = 1.025 is the density of seawater. The AUV is con-

trolled by a PD waypoint controller in an earth-fixed refer-
ence frame with gainkK, = [1.5,0.3,1] , Kq = [6,4, 2]
3 AUV Modda and | mplementati on where waypoints are limited to be placed on a circle within
the angular range df~90°,90°]. The AUV is equipped
The AUV used for pipeline following is based on a small, with an Inertial Measurement Unit, an echo sounder and
low cost vessel developed for experimental validation ofa stereo camera system detecting the centerline of the
underwater vehicle control systems at NTNU/SINTEF.pipeline in view. If the pipeline is lost from view, a heuris-
The AUV is equipped with two vertical and two horizontal tic circular search algorithm is invoked.



4 Simulation Setup

The learning rate has been setatp = 0.4 for the value
function updates and., = 0.2 for the actor update, and

This section describes the simulation setup used to traiare held constant throughout the learning period. The dis-
and validate the previously described reinforcement learncount factor is set ta,; = 0.8. The exploration factor
ing algorithms for the AUV and pipeline environment. starts air = 1 and decreases linearly per episode towards
Two main experiments have been conducted. The first is = 0.01 for the final episode.

carried out in order to analyse the performance of previThe reward function is calculated by the environment (un-
ously discussed RL algorithms for our application of inter-known to the learner) as

est, and is described in section 4.1. The second experiment,
described in section 4.2, validates if the learned policy is

able to generalize to other pipeline geometries.

R=wv, — egist - egngl - (a - apre\,)Q. (19)

That is, the AUV receives reward for higher spegdand
is punished if the pipeline either deviates from the middle

Function Approximation. In the experiments presented Of the camera frameesy), the angle of the pipeline de-

in this paper, RBFNs are used as function approximator¥iates from a vertical line in the camera fram), or if
both for critic and actor approximation. RBF networks typ-chosen actions vary greatlly between consecutive dec_lsmns
ically have three layers; an input layer, a hidden layer with(@—aprev). Qualitatively, this should provide the AUV with

a Gaussian activation function, and a linear output layer@ 9oal of keeping a smooth trajectory with the pipeline as

The output of the network is

N
£ = 3 dunlx i)

where

center and level as possible in view. If the AUV ever looses
track of the pipeline, a pre-coded safety behavior ovesride
the learning behavior, and a punishmentabh per control
step — a larger punishment than possible if the pipeline is
in view —is incurred. The safety behavior is a rotating mo-
tion around the AUV center axis, making the AUV camera
system sweep the entire surrounding of the AUV in hope
of returning track of the pipeline.

pllx = cl]) = e~ #lxmeill? Z [ e 7 0"
J

18r

Camera view

is the Gaussian activation function with center veetand T

width o, ¢ the associated weight parameter, akdthe ™
number of activation functions.
The state space is constructed of four dimensianand il )
y position of one endpoint of the current pipeline in view,
x position of the other end of the detected pipeline, and
the longitudinal speed, of the AUV. Fig. 3 illustrates ool }
the points of the pipeline available as state space dimen- /
sions. The reasoning behind the state space division has
been to minimize the number of state space dimensions in
order to keep calculations at a minimum, while keeping Ry
all coordinates local with respect to the AUV in the sense

that all information is available without external refecen

systems. Both critic and actor use the exact same stafdgure 3: Red line is visible pipeline segment. Blue
space dimensions, and the basis function parameters agfosses are data points extracted by the camera system
also equal. The basis function parameters are the centgyailable to the learner.

vectorc and the width vectos. The center vectors for the

state space dimensions are as follows

0.8 \

Meters relative to AUV x axis
-

/
04 -02 0 02 04 06 08 1
Meters relative to AUV y axis

4.1 RL analysis

z; — [-1,-0.8,-0.4,0,0.4,0.8, 1][m]

y1 —[0,0.375,1.125,1.875,2.625, 3][m] In this experiment, the pipeline is laid out as three straigh
zy — |[—1,-0.8,—0.4,0,0.4,0.8,1][m] segments witt90° left turns between. The simulation en-
vy — [—0.25,—0.156,0.031,0.219,0.406,0.5][m/s], vironment may be visualized as in Fig. 2. The goal of the

experiment is to analyse the application of (a) the standard

and the width is calculated as half the largest distance besARSsA algorithm, (b) the GcLA algorithm, (c) G\CLA
tween centers in order to cover the entire state space comith skew normal exploration, and (d) supervisesdCA.
pletely in each dimension. See e.g. Park and Sandbefgach episode lasts for 20 seconds, and each trial repeats
[10] for more details on RBFNs. The total number of basis500 episodes. The learning controller runs once each sec-
functions thus sums to 1'764. Reducing or optimizing theond, giving a total of 20 decisions per episode. Each of the
choice of basis functions has not been tried. experiments were repeated 5 times.



SARSA. For the S\RsA algorithm, the central equa- 5 Results
tion is (3). An RBFN is used to estimat@, employ-

ing the state space previously described. The action di- )
mension has been added to the state space, with cent&?sl RL analysis
[-90°, —81°, —63°, —45°,...,63°,81°,90°]. For action
selection, theQ-function has been discretized with step
size 9° in the range[—90°,90°]. The state space explo-
sion of @-function based methods is easily visible here, as
the total number of basis functions now sums to 22'932.

-500

CacLA. For skew normal exploration, A, =
(11.25°,22.5°,45°) has been tested arld caps updates
of ¢, atamax = 1 in all cases. In the case of supervi-
sion, the heuristic controller providing®P is a controller
that sets the waypoint in the exact direction of the pipe
endpoint furthest away from the AUV. This simple control
scheme generates a path that is able to tracRaheurns,
but overshoots somewhat when tracking. Tthandk pa-

-1000

-1500

-2000 Hj

Total accumulated reward

rameters are updated in a state-dependent manner by usi | —onan
. . upervise
an identical RBFN as for the state space. ktmarameter | Continuous SARSA
is initialized at0 for all states, meaning that the supervi- o0l
R 0 50 100 150 20(_) 250 300 350 400 450 500
sory controller has full control over the action. Updates ar Episode number

given with A, = 0.05. Our algorithms do not implement

a forgetting factor. . .
g 9 Figure 5. Continuous 8RSA versus QCLA and super-

o vised CACLA.
4.2 Validation

This experiment aims to validate if the AUV is able to track F19: © Shows a comparison ofACLA, supervised GCLA

a different, unknown pipe geometry. A suitable algorithm@nd S\RSA. The Sarsa algorithm did not converge to a
was selected based on the analysis experiment — the s{?-SUIF able tc_) track_the pipeline within _the alloted number
pervised @CLA algorithm with~ — 22.5° skew (equals of episodes in any mstancg. Both versions @foCA con-
absolute value df.5 in relation to Fig. 1), see section 5 for Verged to a successful policy in all instances.

results. Since the AUV learning algorithm had only been
trained in left turns, the pipeline was first mirrored along
the y-axis in Fig. 2 to get right turns. A learning phase
with identical parameters as in section 4.1 was conductec
The AUV learning algorithm was validated on the pipe ge-
ometry shown in Fig. 4. During this experiment, the opti-
mal action was always chosen deterministically. For com
parison, the unknown pipe geometry was also tested usir
the heuristic controller described in section 4.1.

-500

-1000

AUV Simulation 15001 |/

Total accumulated reward

20

—— CACLA
CACLA 0.25 skew| |
——— CACLA 0.5 skew
—— CACLA 1 skew

—-2000

15

~2500 L L L L L L L L L
10 50 100 150 200 250 300 350 400 450 500

Episode number

Meters

Figure 6: Tabula rasa &CLA with varying skew ).

P — Skew updates ofA, = 11.25°, 22.5° and45° has been
Meters tested for the tabula rasaaCLA algorithm. Results are
shown in Fig. 6. All cases converged to a successful pol-
Figure 4: Validation environment for learner. icy in all instances.



The exploration policy for GcLA and the skew variant
does not equate to the gradient of the actor update rule
via Sutton et al’'s [15compatiblefunction approximator.
The authors have chosen to keep with the intuition of the
original CACLA algorithm in this respect, but a theoretical
derivation of the implications should be done.
Since the @cLA algorithm has proven quite robust with
respect to parameters such as learning rate and discount-
ing, little effort has gone into tuning these variables —gen
~oor 1 eral guidelines as given by Van Hasselt and Wiering [19]
_aso] ] have been followed. Better results from therSA algo-
rithm might be obtained by tuning these variables. This
has not been verified by the authors. The gain scheduling
450 * employed by the supervised reinforcement learning algo-
R R rithm is implemented as a weighted sum. In the general
T Bodenumber case, this may lead to choosing a worse action than any of
the alternatives and thus may gain from using a different
strategy such as stochastic choice.
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Figure 7: Supervised GCLA with varying skew §).

Supervised @CLA is compared to supervisedACLA
with a skew update of\, = 22.5° in Fig. 7. Both cases
converged to a successful policy in all instances. All fig- .
ures are an average of 5 runs of 500 episodes, and a indirYgl Conclusions
average of 10 episodes has been used to smooth the figurgsis paper has analyzed the application @RSA, CA-
CLA and supervised &LA for continuous state and ac-
5.2 Validation tion spaces applied to the task of pipeline following for
an AUV. Experiments in a simulation environment have
Training of the supervised A&CLA algorithm resulted ina  shown supervised & LA to be the best candidate, as well
successful policy also for right turns. Table 1 shows theys the ability to generalize the learned pipeline following
results of the RL-algorithm compared to the supervisorytrategy to new and unknown pipe geometries.

7 Conclusions and Future Work

heuristic controller previously described. The use of skew normal distribution for exploration has
Algorithm | Acc. reward been proposed, and evidence towards its advantages in the
CACLA —23.2349 tabula rasa case has been presented. No such evidence has
Heuristic —27.8590 been found in the case of supervised reinforcement learn-
ing.

Table 1. Accumulated reward for supervisehCLA and  Thg simulation results show that reinforcement learning is

heuristic controller. More_ positive reward is better. Ac-\a|l suited to optimize pipeline following behavior for an
cumulated reward per episode converges to a constant ag\/

t — oo when explorationr — 0.

) ) 7.2 Future Work
6 Discussion

It is important to analyze the application of skew normal
The CacLA algorithm clearly outperforms the traditional exploration more rigorously, for instance by looking at the
SARsA algorithm for our application. Adding skew explo- situation in which the estimated policy is close to the op-
ration also seems to have a positive effect on early stagesmnal one. It is also necessary to study the theoretical im-
of the tabula rasa & LA algorithm — the stages with more plications of changing the policy from a Gaussian distribu-
heavy exploration. Comparing the superviseslcCA al-  tion (see (7-9)). Implementation on the real-world AUV is
gorithm with and without skew, we see no advantage o necessary next step in evaluating the RL-algorithms for
using the skew exploration parameter. A possible explaAUV pipeline following.
nation for this is that when the solution already is close
to an optimum (initialized by the supervisory controller),
the skew parameter will just oscillate around the optimaIRefer ences
1 because of inaccuracies in the value function estimates.
It is believed to be beneficial to exploration with skew to [1] Pieter Abbeel and Andrew Y. Ng. Exploration and
employ a more elaborate update strategy which dampens apprenticeship learning in reinforcement learning. In
responses in such cases. Proceedings of the 22nd international conference
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