
Digital Communications and Networks 10 (2024) 190–204
Contents lists available at ScienceDirect

Digital Communications and Networks

journal homepage: www.keaipublishing.com/dcan
IDS-INT: Intrusion detection system using transformer-based transfer
learning for imbalanced network traffic

Farhan Ullah a, Shamsher Ullah b, Gautam Srivastava c,d,f,*, Jerry Chun-Wei Lin e

a School of Software, Northwestern Polytechnical University, Xian, 710072, Shaanxi, China
b Knowledge Unit of Systems and Technology, University of Management and Technology, Sialkot, 51040, Pakistan
c Department of Math and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada
d Department of Computer Science and Math, Lebanese American University, Beirut, 1102, Lebanon
e Western Norway University of Applied Sciences, Bergen, Norway
f Research Centre for Interneural Computing, China Medical University, Taichung, Taiwan, China
A R T I C L E I N F O

Keywords:
Network intrusion detection
Transfer learning
Features extraction
Imbalance data
Explainable AI
Cybersecurity
* Corresponding author. Department of Math and
E-mail addresses: farhan@nwpu.edu.cn (F. U

(J.C.-W. Lin).

https://doi.org/10.1016/j.dcan.2023.03.008
Received 23 October 2022; Received in revised for
Available online 17 March 2023
2352-8648/© 2023 Chongqing University of Posts a
open access article under the CC BY-NC-ND license
A B S T R A C T

A network intrusion detection system is critical for cyber security against illegitimate attacks. In terms of feature
perspectives, network traffic may include a variety of elements such as attack reference, attack type, a sub-
category of attack, host information, malicious scripts, etc. In terms of network perspectives, network traffic
may contain an imbalanced number of harmful attacks when compared to normal traffic. It is challenging to
identify a specific attack due to complex features and data imbalance issues. To address these issues, this paper
proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic
(IDS-INT). IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature
representation and imbalanced data. First, detailed information about each type of attack is gathered from
network interaction descriptions, which include network nodes, attack type, reference, host information, etc.
Second, the transformer-based transfer learning approach is developed to learn detailed feature representation
using their semantic anchors. Third, the Synthetic Minority Oversampling Technique (SMOTE) is implemented to
balance abnormal traffic and detect minority attacks. Fourth, the Convolution Neural Network (CNN) model is
designed to extract deep features from the balanced network traffic. Finally, the hybrid approach of the CNN-Long
Short-Term Memory (CNN-LSTM) model is developed to detect different types of attacks from the deep features.
Detailed experiments are conducted to test the proposed approach using three standard datasets, i.e., UNSW-
NB15, CIC-IDS2017, and NSL-KDD. An explainable AI approach is implemented to interpret the proposed
method and develop a trustable model.
1. Introduction

Currently, the widespread use of the Internet has made life more
convenient for everyone, but it has also made cybersecurity threats more
difficult to combat. With the advent of Internet of Things (IoT) devices
such as smart objects, smart handheld devices, and smart sensing tech-
nologies, it is now possible to process massive amounts of data quickly
and efficiently. Thus, such systems are consequently vulnerable to a wide
range of malicious attacks and security flaws [1]. The first line of defense
in a computer network is Intrusion Detection Systems (IDS). IDS are
divided into two primary categories: host-based IDS (H-IDS), and
network-based IDS (N-IDS) [2]. The H-IDS is installed on a host
Computer Science, Brandon Uni
llah), shamsherullah@nwpu.edu

m 31 January 2023; Accepted 14

nd Telecommunications. Publishi
(http://creativecommons.org/lic
computer, whereas the N-IDS is distributed throughout a network sys-
tem. Furthermore, both types of IDS use signature-based and
anomaly-based detection methods in their operations. Phishing viola-
tions are the most common type of cyberattack, followed by Distributed
Denial of Service (DDoS) attacks and security breaches. Additionally,
ransomware attacks are frequent and their variants are growing [3]. In
recent years, DDoS attacks have become more prevalent, and their
planning and objectives have come into the spotlight. Advanced Persis-
tent Threat (APT) attacks have slowly spread to important industries and
become more common during big events and times when security is
weak. If an organization or a person is attacked by a network intrusion,
they can suffer significant losses. So, the threat of network intrusion has
versity, Brandon, MB R7A 6A9, Canada.
.cn (S. Ullah), srivastavag@brandonu.ca (G. Srivastava), jerrylin@ieee.org

March 2023

ng Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
enses/by-nc-nd/4.0/).

mailto:farhan@nwpu.edu.cn
mailto:shamsherullah@nwpu.edu.cn
mailto:srivastavag@brandonu.ca
mailto:jerrylin@ieee.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcan.2023.03.008&domain=pdf
www.sciencedirect.com/science/journal/23528648
http://www.keaipublishing.com/dcan
https://doi.org/10.1016/j.dcan.2023.03.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dcan.2023.03.008
https://doi.org/10.1016/j.dcan.2023.03.008


Fig. 1. Network-based intrusion detection system (N-IDS).

F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204
grown into a big problem that needs to be fixed right away. Numerous
researchers are continuously working to develop a secure and reliable
network intrusion detection system to achieve this goal [4].

Traditional network intrusion detection systems can be divided into
misuse detection and anomaly detection [5]. Misuse detection uses reg-
ulatory matching or feature matching to determine if the data is an
intrusion, whereas anomaly detection determines if data is abnormal.
However, both approaches have drawbacks, including low detection
rates and high false alarm rates. Researchers are using machine learning
and deep neural models to improve N-IDS results with intelligent systems
[6]. In the early days of N-IDS, traditional machine learning was usually
used to look into how a single model's prediction could be made. How-
ever, the prediction accuracy obtained from a single model is quite
limited. Models such as k-nearest neighbor [7], naive bays [8], decision
tree [9], support vector machine, random forest [10], and other algo-
rithms have been used in N-IDS. Although these techniques are simple
and require little training, their accuracy is low. When compared to
N-IDS built using conventional machine learning methods, N-IDS built
using deep learning achieves superior accuracy. For instance, N-IDS have
used Multi-Layer Perceptron (MLP) [11], Convolutional Neural Network
(CNN), Recurrent Neural Networks (RNN) [12], Long Short-Term
Memory (LSTM), and other related algorithms to obtain detection ac-
curacy. Even though these algorithms havemade IDSmore accurate, they
are very hard to program and take a long time to train. Bidirectional
Encoder Representations from Transformers (BERT) base [13] classify
malware such as adware, ransomware, scareware, SMS, etc. There are
fewer layers and parameters in this basic version of BERT. For instance,
the BERT base is comprised of 12 layers of transformer blocks, 768
hidden blocks, 12 self-attention heads, and 110 M trainable parameters.
Furthermore, this study classifies malware using traditional machine
learning algorithms, such as Gaussian Naive Bayes (GNB), Support Vector
Machine (SVM), Decision Tree (DT), etc. The objective of this study is to
detect network-based intrusion, such as fuzzers, port scanners, back-
doors, DoS, exploits, etc., using an advanced version of the BERT model
named BERT large. We developed the BERT large model to extract train
features from network traffic using in-depth analysis. This method has 24
encoded layers, 1024 hidden sizes, 16 self-attention heads, and 340 M
parameters. To detect network-based intrusion, we used a combination of
deep learning models, such as CNN-LSTM. Following that, extensive
comparisons with other combined deep learning approaches, such as
CNN-RNN and CNN-GRU, are made using three different standard
datasets. The findings also support the claim that increasing the size of
the model from BERT base to BERT large using deep learning methods
leads to better results.

In the past, machine learning and deep learning-based N-IDS have
focused on model performance rather than semantic analysis of the
network data. Fig. 1 depicts the general N-IDS scenario in which the
devices are connected and communicate in real time. N-IDS inspects
network traffic and hosts to identify possible intrusions. This system is
linked to a network node, like a hub or switch, so that network activity
can be tracked. N-IDS surveillance points are placed in high-traffic areas
of the network to inspect data packets for signs of bad behavior. Attackers
may employ several malicious scripts to damage a target device. In terms
of behavioral segmentation, semantic-based feature analysis can reveal
potentially damaging scripts. Before feeding the network data into the
deep learning model, it can be semantically analyzed to extract train
features [14,15]. For semantic analysis, detailed information for each
type of attack, such as host information, attack name, and attack refer-
ence, can be combined with other features. Overall, each security feature
only gives a limited view of the security threat and often only looks at one
type of attack. Furthermore, the ability of various features to differentiate
between abnormal activities varies considerably. Because of this, most
existing IDS were made to collect a full picture by using a mix of features
instead of just one type. Furthermore, attackers leverage existing
feature-related experiences to create intrusion variants to avoid detec-
tion. It is desirable to develop novel feature sets to supplement existing
191
knowledge and expand the feature combination space. This makes it
more difficult for intruders to avoid detection.

This paper presents a novel IDS-INT approach that uses semantic-
based analysis to detect various types of attacks. The multi-head atten-
tion-based transformer method is designed to extract train features for
accurately detecting various types of attacks. The main contributions of
the paper are the following:

1. Multi-head attention-based transformer approach is designed using
the BERT large model. This makes it possible to mine network data
and pull out train features, which helps wireless devices work better.

2. Because normal traffic samples surpass minority attacks, the deep
learning model may be biased. The SMOTE method is used to balance
each class to solve the model's bias problem.

3. To classify various types of network intrusion attacks, a combined
approach of CNN and LSTM deep learning models is developed. The
effectiveness of the proposed approach is validated by comparing it
with other cutting-edge deep learning methods.

4. An explainable AI experiment is conducted to interpret the designed
approach. This assists in analyzing the most reliable and efficient
features that contribute to a specific type of attack.

The remaining part of the paper is organized as follows: Section 2
discusses the related and recently published works, Section 3 briefly
explains the proposed IDS-INT scheme, the experimental analysis is
represented in Section 4 and finally, Section 5 concludes the paper.

2. Related work

Network intrusion detection can be viewed as a supervised anomaly
detection problem, which is also a classification problem. Recently,
several studies have been proposed to obtain unique patterns from attack
intrusions and differentiate attacks from normal traffic, ranging from
traditional statistical techniques to deep learning-based methods.
2.1. Semantic-based methods

Enterprise systems frequently generate a substantial volume of logs to
track runtime status and activities network traffic data. Traditionally,
intrusion detection requires the parsing of unstructured network data by
analyzing Packet Capture (PCAP) files. Such data may contain useful
information about the specific attack, such as the attack name, reference,
host information, and so on. Semantic tools can be used to pre-process
network data to extract meaningful information and remove noisy
data. It may also aid in reducing the load on the N-IDS [16]. Seyyar et al.



F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204
[14] proposed a model for a web IDS that can distinguish between
normal and abnormal URLs. During the URL analysis phase, the method
employs the BERT transformer model and then CNN to classify various
types of attacks. The experimental results showed an accuracy of more
than 96%. To address the semantic gap, li et al. [17] used the word2vec
model and implemented the TF-IDF weighted mapping of HTTP traffic to
generate a low-dimensional features vector. Using the HTTP CSIC 2010,
UNSW-NB15, and malicious-URL datasets, experimental results show
high detection accuracy, a high true positive rate, and a low false positive
rate. Huang et al. [18] proposed the HitAnomaly method which uses a
BERT to construct log template segments and attribute values for
anomaly detection. Log sequence and parameter settings-based encoders
are designed to extract the sequenced data. Compared to log-based
anomaly detection methods, the proposed method performs better. Min
et al. [19] suggested an intrusion detection system that uses statistical
and payload features. Word semantics and text-CNN are used to gather
useful features from payloads. The proposed method provides the best
detection accuracy. The proposed study provides the best classification
results for each type of attack, with more than 98% accuracy.

2.2. Features selection methods

The method of feature selection can also be used as a pre-processing
step in machine learning to reduce computation costs. It aims to remove
unnecessary features while maintaining or even improving IDS perfor-
mance. Aslahi-Shahri et al. [20] used a combination of a support vector
machine and a genetic algorithm to decrease the number of features in
the KDD CUP-99 dataset from 41 to 10. The experiments demonstrate
that the proposed method achieves better true positive rates while
maintaining very low false positive rates. To enhance the process of
selecting features for N-IDS, Alazzam et al. [21] used a Pigeon Inspired
Optimizer (PIO). The suggested method lowered the number of features
in the KDD CUP99, NSL-KDD, and UNSW-NB15 datasets from 41 to 7, 5,
and 5, respectively. Furthermore, it maintains high true positive rates,
and accuracy, and decreases the amount of time to build a decision tree.
To select the optimal subset for network IDSs, Khammassi et al. [22]
utilized logistic regression as a selection method and as a trained model.
Their method yields high detection accuracy with 18 features for KDD
CUP-99 and 20 features for UNSW-NB15. Even though feature
selection-based techniques can minimize feature dimension, their effec-
tiveness is heavily dependent on the quality of features with semantic
details. It cannot ensure the best results in every data situation, partic-
ularly in the case of imbalanced data. Furthermore, current feature se-
lection strategies are based on heuristic rules and metrics, limiting their
ability to learn complex relationships among features.

2.3. Deep learning methods

Deep learning has proven to be effective in a variety of fields,
including image feature extraction, text mining, and tabular data. Deep
learning methods are being used by researchers to automatically learn
feature representation in N-IDS [6,23]. Vinayakumar et al. [24] pre-
sented a hybrid IDS using distributed deep learning and Deep Neural
Networks (DNN). It employs five hidden layers to handle and analyze
large amounts of data in real time. They determine the optimal number of
layers and nodes by running the proposed method on six datasets for
binary and multiclass classification, including KDD CUP99, NSL-KDD,
WSN-DS, and UNSW-NB15. Jiang et al. [25] developed a multi-channel
IDS using long short-term memory recurrent neural networks
(LSTM-RNN). It reveals attack behavior as sequential data by mining the
information of a specific attack. Autoencoders are also extensively used
in N-IDS to discover the reflection of network behavior, which can then
be used to detect abnormal traffic. Shone et al. [6] used Random Forest
(RF) and non-symmetric deep autoencoder. The method employs stacked
autoencoders, each of which contains three hidden layers; the output of
the auto encoder's final encoding layer serves as the input to the softmax
192
classifier. In addition, several deep learning-based N-IDS use a combi-
nation of unsupervised Autoencoders (AE) and a softmax layer to obtain
end-to-end training. Naseer et al. [26] looked into the use of DNN for
anomaly detection. In the implementation, Deep Convolutional Neural
Networks (DCNN), various autoencoders, and LSTM-RNN were used.
Such DNN models were pitted against traditional machine learning
techniques. The experimental results showed that DCNN achieved an
85% detection rate on the test data, which was better than standard
machine learning methods.

A network is frequently compromised for one of the following three
reasons: a) Cyber terrorism: Hacking and activism are combined to form
cyber terrorism. The intruders wish to invade to prove a political
objective or social cause. b) StealingMoney: The purpose of this intrusion
is to steal money or information from the victim. Generally, the intent is
to harm the victim for monetary benefit. c) Spying: An enemy or alliance
is spied on by a state-sponsored network. The following are some of the
significant losses caused by network intrusion if a company does not use
IDS: a) Data corruption: A high volume of requests or unauthorized re-
quests may taint the vital details about the company or its customers.
Orders and operations may be altered, and client transactions may take
longer to process. b) Economic Loss: Perks and bonuses may be required
to gain the trust of clients and stakeholders. Potential transactions are
lost if an attack occurs during the holidays or sales, resulting in additional
economic losses. The cost of restoring the defective product is an addi-
tional expense. c) Data theft: For intruders, client data is a valuable
resource. Social engineering and other techniques can be used to obtain
their address, contact information, email addresses, and even billing in-
formation. d) Interrupted execution: The company may halt activities
until it recovers from the attack, delaying normal service. e) Reputation
risk: Loss of credibility can be disastrous for a company. Customers, ad-
versaries, financial leverage, and market share effects would make it
more difficult for the company to recover. Existing intrusion detection
methodologies only use deep learning by reshaping categorical features
into one-hot encoding, which is incapable of simulating complex intru-
sion behavior. To learn a strong picture of N-IDS, we combine the se-
mantic information of attacks feature learning and implicit deep
learning. Semantic-based and balanced features are used in N-IDS to
address specific problems such as diverse features and limited labeled
data in abnormal classes.

3. Proposed IDS-INT scheme

Fig. 2 shows the proposed research framework. The IDS manager
analyzes and collects network data in the form of PCAP files. The network
traffic data is recorded in the PCAP file in encrypted form. The network
parser is used to convert the PCAP file to a human-readable format and
extract flow events. These flow events could include malicious network
behavior such as malicious scripts or malicious URLs. The transfer
learning approach based on transformers is intended to extract semantic
features from flow events. As normal network data may be greater than
the abnormal data, the SMOTE method is then used to balance the fea-
tures. The CNN model extracts deep features from balance features, and
the CNN-LSTM model detects network-based intrusion.

3.1. Network traffic analysis

Packet capture is a networking technique that uses PCAP to intercept
data packets as they travel through a network and store them for later
analysis. This file contains network traffic information and is used to
assess the underlying data exchange between botnets. By inspecting these
packets, IT analysts can detect flaws and resolve network issues. They
also aid in network traffic management and the detection of specific data
traffic. The packets are encoded in the PCAP file, and we used the
Wireshark tool to decode them into a human-readable format. The port
number can explain network data transmission between communicating
nodes. This number may differ if a node redirects traffic to a different



Table 1
Detailed information about different types of attacks filtered from PCAP.

Start time-
Last time

Attack category-
subcategory

Protocol Source IP-Port Destination IP-Port Attack Name Attacks Reference

0.000011 Reconnaissance-
HTTP

tcp 175.45.176.0–13284 149.171.126.16–80 Domino Web Server Database Access:/
doladmin.nsf a

��

0.000008 Exploits-Unix ‘r’
Service

udp 175.45.176.3–21223 149.171.126.18–32780 Solaris rwalld Format String Vulnerability b CVE 2002–0573 c

0.000004 Exploits-Browser tcp 175.45.176.2–23357 149.171.126.16–80 Windows Metafile (WMF) SetAbortProc()
Code Execution [009] d

CVE 2005–4560 e

0.000005 Exploits-
Miscellaneous Batch

tcp 175.45.176.2–13792 149.171.126.16–5555 HP Data Protector Backup f CVE 2011-1729g

0.000009 Exploits-Cisco IOS tcp 175.45.176.2–26939 149.171.126.10–80 Cisco IOS HTTP Authentication Bypass
Level 64h

CVE 2001–0537 i

0.000028 DoS-Miscellaneous tcp 175.45.176.0–39500 149.171.126.15–80 Cisco DCP2100 SADownStartingFrequency
Denial of Service j

http://www.exploit-
db.com/exploits/21523/k

a (https://strikecenter.bpointsys.com/bps/strikes/recon/http/domino/access_domino_doladmin_nsf.xml).
b (https://strikecenter.bpointsys.com/bps/strikes/exploits/rservices/solaris_rwall_format_string.xml).
c (http://cve.mitre.org/cgi-bin/cvename.cgi?name¼2002%2d0573)BID 4639 (http://www.securityfocus.com/bid/4639)CVSS-High (https://strikecenter.bpointsys

.com/bps/reference/CVSS/).
d (https://strikecenter.bpointsys.com/bps/strikes/exploits/browser/wmf_009.xml) e(http://cve.mitre.org/cgi-bin/cvename.cgi?name¼2005%2d4560)BID 16074

(http://www.securityfocus.com/bid/16074)OSVDB 21987).
e (https://strikecenter.bpointsys.com/bps/strikes/exploits/misc/cve_2011_1729.xml).
f (http://cve.mitre.org/cgi-bin/cvename.cgi?name¼2011%2d1729)BID 47638 (http://www.securityfocus.com/bid/47638)OSVDB 72188 (http://www.osvdb.org/

72188)CVSS-Critical)-.
h (https://strikecenter.bpointsys.com/bps/strikes/exploits/ios/cisco_auth_bypass_level_64.xml).
i (http://cve.mitre.org/cgi-bin/cvename.cgi?name¼2001%2d0537)BID 2936 (http://www.securityfocus.com/bid/2936)OSVDB 578 (http://www.osvdb.org/578)

CVSS-High)/).
j (https://strikecenter.bpointsys.com/bps/strikes/denial/misc/cisco_dcp2100_denial_of_service.xml).
k (http%3a%2f%2fwww.exploit%2ddb.com%2fexploits%2f21523%2f)CVSS-High (https://strikecenter.bpointsys.com/bps/reference/CVSS/7.8).

Fig. 2. Intrusion detection system using transformer-based transfer learning and explainable AI.

F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204
port. To decrease the load on N-IDS, we categorized data according to the
nature of features such as basic, contents, connection, time, etc. Further,
each network flow contains detailed information such as type of attack,
attack name, attack reference, host information, and malicious scripts
that can be filtered from PCAP as shown in Table 1. We incorporate this
data into the proposed IDS-INT to develop an intelligent transfer learning
193
approach. However, such data is noisy and cannot carry meaningful se-
mantics for the detection system. For instance, the attack name and
attack reference for Reconnaissance and exploit attacks include messy
and noisy information. Such data can be filtered to preserve actual se-
mantics. We develop a semantic tokenizer that is capable of filtering such
data. The following are the main steps in network traffic analysis:

https://strikecenter.bpointsys.com/bps/strikes/recon/http/domino/access_domino_doladmin_nsf.xml
https://strikecenter.bpointsys.com/bps/strikes/exploits/rservices/solaris_rwall_format_string.xml
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002%2d0573)BID
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2002%2d0573)BID
http://www.securityfocus.com/bid/4639)CVSS-High
https://strikecenter.bpointsys.com/bps/reference/CVSS/
https://strikecenter.bpointsys.com/bps/reference/CVSS/
https://strikecenter.bpointsys.com/bps/strikes/exploits/browser/wmf_009.xml
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2005%2d4560)BID
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2005%2d4560)BID
http://www.securityfocus.com/bid/16074)OSVDB
https://strikecenter.bpointsys.com/bps/strikes/exploits/misc/cve_2011_1729.xml
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2011%2d1729)BID
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2011%2d1729)BID
http://www.securityfocus.com/bid/47638)OSVDB
http://www.osvdb.org/72188)CVSS-Critical
http://www.osvdb.org/72188)CVSS-Critical
https://strikecenter.bpointsys.com/bps/strikes/exploits/ios/cisco_auth_bypass_level_64.xml
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2001%2d0537)BID
http://cve.mitre.org/cgi-bin/cvename.cgi?name=2001%2d0537)BID
http://www.securityfocus.com/bid/2936)OSVDB
http://www.osvdb.org/578)CVSS-High)/
http://www.osvdb.org/578)CVSS-High)/
https://strikecenter.bpointsys.com/bps/strikes/denial/misc/cisco_dcp2100_denial_of_service.xml
https://strikecenter.bpointsys.com/bps/reference/CVSS/7.8


F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204
� To prevent redundant data, eliminate features from input segments
that are concurrently identical.

� Special symbols may not have enough information to differentiate
relevant network traffic and are thus removed from data.

� Because distinct pattern lengths overwhelm neural network models,
N-IDS must standardize sequence length.

� In IDS-INT, the lengths are balanced using a predetermined pattern
length L. Patterns longer than L retain their first L names, while those
that are lower than L are unified using zero-padding.

3.2. Transformer-based transfer learning

BERT is an open-source framework for machine learning and Natural
Language Processing (NLP). It is a pre-trained algorithm for compre-
hending the interpretation of lengthy and complex texts. Transformers is
a deep learning model that is used by BERT. In this model, each input and
output are connected, and the attention head between them is dynami-
cally computed [13,27,28]. It is designed to help devices understand the
meaning of an ambiguous text by establishing context using nearby text.
Non-contextual models can only give a word description of a term, no
matter how it is used in the network flow. It is a contextual model that
gives different meanings to words in a sentence based on how they relate
to other words in the sentence. We used the transformer-based transfer
learning method with the Bert large model to pull train features out of
network traffic. Fig. 3 depicts the transformer architecture using the
encoder and decoder.

Network features are encoded and decoded using embedding and
positional encoding layers. The embedding layer records the definition of
network flows. The transformer has two embedding layers. The se-
quences of network features are provided as input to the input embed-
ding. The target sequence is supplied to the second embedding layer after
it has been moved one position to the right and a start token is placed in
the first place. The embedding layer converts network features into
embedding vectors to better represent network attacks. The position
encoding is computed individually from the features sequential manner.
Features sequence matrices are used by the embedding and position
encoding layers. The encoding size for position encoding is the same as
the embedding size. As a result, it generates a similar-shaped matrix that
can be integrated into the embedding matrix. The encoder stack has
multi-head attention and feed-forward layers for each encoder. A feed-
forward layer and two multi-head attention layers are included in each
decoder. The output layer can be linear or softmax depends whether the
features are binary or multi-class classification.
Fig. 3. Semantic features processing using transformers.

194
3.3. Handling imbalance network traffic

The nature of network flows allows for the growth of a class imbal-
ance problem. Normal network flows always surpass abnormal network
traffic because the intruder may attack the network at a specific time and
date. Furthermore, they may use various types of attacks to compromise
network behavior. The network dataset contains a diverse set of features
related to various types of attacks, and each network type corresponds to
a class label. When one class dominates another, it can be difficult to train
the deep learning model for each class effectively. It has a significant
impact on the proposed IDS-INT's evaluation criteria and detection ac-
curacy. During training, the deep learning model may concentrate on the
major class while ignoring the minor. This can result in high accuracy for
the major class but low accuracy for the minor class as shown in Fig. 4.

To address this issue, we oversampled minority classes using the
Synthetic Minority Over-Sampling (SMOTE) technique. It introduces
various minority class samples based on their resemblance to the previ-
ous samples [29]. This brings the influence of minor classes closer to that
of major ones. The following is how SMOTE operates:

� The Euclidean distance method is used to find the k-nearest neighbor
for each minor class xi 2 Smin.

� Next, select the random and nearest instance xj in a cluster of nearest
neighbors of xi. Equation (1) is now used to generate a new sample.

xnew ¼ xi þ jxi þ xjj þ δ (1)

The distribution of the newly generated samples is determined by a
random factor, denoted by δ[0, 1].

3.4. Deep features extraction

The CNN network is developed to extract deep features by examining
a large number of features, which helps the detection model run more
efficiently. To accomplish this, balanced network features are fed into the
CNN model. Several researchers [30–32] have used the CNN model for
IDS. The CNN model outperforms other models when dealing with text,
images, and video files. We employ a 1-D CNN network that consists of
convolutional, max-pooling, dropout, and fully connected layers. The
network features are recurrently cycled along by convolution to generate
the most accurate network representations. A feature map, which is
created by each filter, contains a clean collection of characteristics. The
hyper-parameters are adjusted to find the appropriate number of filters.
Four convolution layers are used, each with a different number of filters
(64, 128, 156, and 512). Using max-pooling layers reduces the size of the
feature set, number of features, and the amount of work that needs to be
done to process the data. This layer also makes a feature map of the most
important things from the previous set. We also integrate deep CNN with
the Keras batch normalization layer. The final output mean and standard
deviation are kept close to zero and one, respectively, thanks to the batch
normalization method. This helps to steady the learning process and
shorten the time it takes for deep networks to become fully trained. The
proposed CNN network has softmax and dropout layers to deal with
overfitting. The output of the CNN network is shown in Equation (2)

o1k ¼ f

 
c1k þ

XNl�1

i¼1

ConIDðXl�1
ik ; tl�1

i Þ
!

(2)

where c1k is the parameter bias of the kth neuron in the first layer, tl�1
i is

the outcome of the ith neuron in layer l � 1, Xl�1
ik is the kernel strength

from the ith neuron in layer l-1 to the kth neurons in layer l, and “f()” is
the activation function.



Fig. 4. Imbalance class distribution in UNSW-NB15 and NSL_KDD datasets.

F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204
3.5. Network-based intrusion detection system (N-IDS)

The proposed method introduces a CNN-LSTM [33,34] model for the
automatic detection of network-based intrusion attacks to benefit from
bothmodels. CNN networks use max-pooling layers to extract features for
the fully connected layer. The proposed CNN-LSTM model, on the other
hand, sends deep features to the LSTM layer instead of the fully con-
nected layer. The LSTM network is good at finding long-term and
short-term correlations, while the CNN network is good at representing
and understanding network feature vectors. The proposed CNN-LSTM
Fig. 5. CNN-LSTM archi

195
model consists of two stages, as depicted in Fig. 5.
The convolution, dropout, and max-pooling layers are used in the first

stage, while LSTM and dropout layers are used in the second stage. The
convolution layers encode the network's feature set, and the LSTM layers
decode it. Before information is sent to a fully connected layer in an
intrusion detection system, it is flattened. The cell state and its various
gates are central to LSTM. The cell state acts like a highway for data links,
sending important information down the sequence alignment network.
The LSTM model is made up of one storage unit and three interaction
gates: the input, forget, and output gates. The memory module seems to
be the most essential component of LSTM. Because this unit remembers
each communicating link's current and previous states, To pursue data
communication and information between current and previous states,
the sigmoid activation function is used. The resultant values can be in the
range between 0 and 1. The value near 0 indicates forgetting, while the
value near 1 indicates keeping. The input gate decides how much in-
formation from the network should be kept in the unit state at a time t.
The forget gate controls data flow to the input gate at the time t-1. The
output gate regulates the parameter settings. Furthermore, this gate su-
pervises the operation of each communicating link's hidden state. It is
critical to handle the hidden state because it incorporates information
from previous inputs. The previous hidden state is first integrated with
the current input using a sigmoid function. The newly altered cell state is
then passed on to the tanh function. The hidden state information can
then be computed by multiplying the sigmoid by the tanh function. The
resulting value is then used to predict the hidden state information.
Following that, the information from the new cell state and hidden state
is passed on to the next input sequence for detection. Equation (3) de-
scribes how the model works.

it ¼ σðVixt þWihðt�1Þ þ biÞ
ft ¼ σðVfxt þWf hðt�1Þ þ bf Þbct ¼ tanhðVc Xt þWchðt�1Þ þ bcÞ
ct ¼ðftACt þWchðt�1Þ þ itAbctÞ
ot ¼ σðVoxt þWohðt�1Þ þ boÞ
ht ¼ otAtanhðctÞ

(3)

The symbol xt represents the input at the time t the symbols x and w
represent the weight matrices, and the symbols b and h represent the bias
and hidden states, respectively. The symbols σ and tanh represent the
activation functions. The letters it, ft, ot, and ct, represents the input gate,
forget gate, output gate, and memory cell, respectively. Algorithm 1
depicts the entire procedure for the proposed method.
tecture for IDS-INT.



Table 2
UNSW-NB15 dataset.

Type No. of
records

Information

Normal 2,218,761 Clean data exchange
Fuzzers 24,246 Randomly feeding a program or network to

suspend it
Analysis 2,677 It has port scan, spam, and HTML file attacks
Backdoors 2,329 Stealth access to a computer or its data by

bypassing system security
DoS 16,353 Malicious attempt to make a server or network

resource unavailable to users
Exploits 44,525 The attacker exploits a software or operating

system security flaw
Generic 215,481 A technique works against all block-ciphers with

the given block and key size
Reconnaissance 13,987 Contains all information-gathering strikes
Shellcode 1,511 Payload is used to exploit a software vulnerability
Worms 174 The attacker exploits PC security flaws to replicate

F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204
4. Results and discussions

4.1. Dataset preparation

The proposed approach is tested extensively using three standard
datasets, i.e. UNSW-NB15 [35,36], CIC-IDS2017 [37], NSLKDD Dataset 3
[38]. To prepare the UNSW-NB15 dataset, the packet parser is used to
collect 100 GB of raw traffic in the form of PCAP files. This dataset
contains nine attack families, namely fuzzers, analysis, backdoors, DoS,
exploits, generic, reconnaissance, shellcode, and worms. Table 2 shows
the type of attack, the number of records, and information about each
196
attack. Worms is a minor class, i.e. 174, whereas generic attack types are
a major class, i.e. 215, 481. In addition, the features are not categorized
as equal number instances. This class imbalance is a significant issue that
can affect intrusion detection accuracy. This dataset contains a variety of
malicious attack features, making it difficult to analyze all of them at
once. Therefore, it is further divided into four sub-datasets to test the
proposed approach based on the nature of different types of features.
These are basic, contents, connection, and time. Each subset includes
features that are most relevant to the other. For instance, the time fea-
tures stime, ltime, and sintpkt denote the start time, last time, and source
inter-packet arrival time, respectively. Table 3 shows a chunk of features
included in each subset of UNSW-NB15 dataset. The CICIDS2017 in-
cludes normal and ongoing intrusion attempts in the form of PCAP files,
which represent real-world data. CICFlowMeter is a traffic flow generator
and anlyzer that can be used for network activity assessment with cate-
gorized streams according to the time stamp, source as well as destina-
tion IPs, ports, protocols, etc. The network is analyzed weekly and some
statistics are discovered, such as (Monday, normal activity), (Tuesday,
attacks þ normal activity), (Wednesday, attacks þ normal activity),
(Thursday, attacks þ normal activity), and (Friday, attacks þ normal
activity). Furthermore, these attacks are of different types, such as brute
force, DDoS, web attacks, infiltration, and port scan. Table 4 shows
detailed information about CIC-IDS2017, including attack type, attacker,
victim, and date and time. The NSL-KDD dataset addresses some of KDD
CUP99's issues. NSL-KDD train and test sets have rational data. This al-
lows testing the entire set without randomly selecting a small portion, as
shown in Table 5. For instance, this dataset is further divided into four
subsets namely, KDDTrainþ, KDDTestþ, KDDTest-21, KDDTrainþ_20%.
Therefore, research evaluations can be easily analyzed and compared
with subsets of features. Because the KDD dataset has a lot of duplicate
data, learning models tend to focus on frequent data. This prevents them
from learning less common records, such as U2R and R2L attacks, which
are more dangerous to network systems. The recurring data in the test set
will also bias the assessment results, with better detection rates on
frequent records. It includes DoS, probe, R2L, and U2R attacks.
4.2. Performance indicators

We used five different types of evaluation metrics to evaluate the
proposed approach thoroughly: Precision, Recall, F1-score, Accuracy,
and confusion matrix. True Positives (TP) and True Negatives (TN) are
correctly classified as the proportion of normal and abnormal network
traffic. Similarly, a large proportion of normal and abnormal network
traffic is classified incorrectly as False Positives (FP) and False Negatives
(FN). The effectiveness of general classification is assessed using Accu-
racy. Accuracy can be computed as the number of instances correctly
classified divided by the total number of instances. The confusion matrix



Table 3
A chunk of four subsets, i.e., basic, contents, connections, and time categories
extracted from UNSW-NB15 dataset.

Flow
Category

Features Information

Basic dur Record total duration
sbytes Source to destination bytes
dbytes Destination to source bytes
sttl Source to destination time to live
dttl Destination to source time to live
sload Source bits per second
dload Destination bits per second

Contents swin Source TCP window advertisement
dwin Destination TCP window advertisement
stcpb Source TCP sequence number
dtcpb Destination TCP sequence number
smeansz Mean of the flow packet size transmitted by the

source
dmeansz Mean of the flow packet size transmitted by the

destination

Connection ct_srv_src No. of connections that contain the same service
and source address

ct_srv_dst No. of connections that contain the same service
and destination address

ct_dst_ltm No. of connections of the same destination
address

ct_src_ltm No. of connections of the same source address
ct_src_dport_ltm No: of connections between the same source

address and the destination port

Time sjit Source jitter (m/sec)
djit Destination jitter (m/sec)
stime record start time
ltime record last time
sintpkt Source inter-packet arrival time (m/sec)

Table 4
CIC-IDS2017 dataset.

Attack Attacker Victim Date

Brute
Force

Kali,
205.174.165.73

Web Server Ubuntu,
205.174.165.68

July 4, 2017

DDoS Kali,
205.174.165.73

Web Server Ubuntu,
205.174.165.68

July 5, 2017

Web
Attack

Kali,
205.174.165.73

Victim: Web Server Ubuntu,
205.174.165.68

July 6, 2017,
morning

Infiltration Kali,
205.174.165.73

Windows Vista,
192.168.10.8

July 6, 2017,
afternoon

Port Scan Kali,
205.174.165.73

Ubuntu16, 205.174.165.68 Friday, July 7,
2017

Normal – – Monday, July
3, 2017

Table 5
NSL-KDD dataset.

Data Files Description

KDDTrainþ The full NSL-KDD train set
KDDTestþ The full NSL-KDD test set
KDDTest-21 A subset of the KDDTestþ.arff file which does not include records

with the difficulty level of 21 out of 21
KDDTrainþ_20% A 20% subset of the KDDTrainþ.arff file

F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204
shows network traffic instances correctly or incorrectly classified as
normal or abnormal. The evaluation matrices are shown in Equations
(4)–(6)

Recall ¼ FP
ðFPþ TNÞ (4)
197
Precision ¼ TP
ðTPþ FPÞ (5)
F1� score ¼ ð2*TPÞ
ð2TPþ FPþ FNÞ (6)

Accuracy ¼ ðTPþ TNÞ
ðTPþ TN þ FPþ FNÞ (7)

4.3. Results analysis and comparison

To test and compare the proposed research, we developed three
commonly used hybrid deep learning models: CNN-LSTM, CNN-Recur-
rent Neural Network (CNN-RNN), and CNN-Gated Recurrent Unit (CNN-
GRU). Fig. 6 shows the dynamic accuracy epoch curves for the UNSW-
NB15 dataset during training and testing, respectively. Because this
dataset is divided into four subsets based on the nature of the network
flows, the proposed IDS-INT is tested on all four subsets. For instance, the
accuracy curves for four subsets using CNN-LSTM are shown in a)-d).
CNN-RNN appears in e)-h) for the same four subsets, whereas CNN-
GRU appears in i)-l). The red color represents the train, while the blue
color represents the test data. It can be seen that curves with a basic
subset using CNN-LSTM outperform others. For instance, the training
curve begins at 10% while the test curve begins at 55% and gradually
increases to 93% on the 20th epoch. Following that, both curves began to
bend with each epoch and became more or less constant when 99% is
been reached on the 35th epoch. The curves are quite close to each other
and behave normally, indicating that there is no overfitting problem. In
comparison to CNN-GRU, CNN-RNN is the next model that provides good
detection results. CNN-RNN accuracy curves are quite dynamic, but the
training and testing curves behave similarly. For instance, in part e), the
training and testing curves begin at 90%, increase to 99%, and then
suddenly drop to 97% on the 4th epoch. With abruptions, both curves
behave similarly. Because of this discontinuity, the overall detection
rates are lower than those of CNN-LSTM. The accuracy curves for CNN-
RNN and CNN-GRU fall between 8% and 98%, respectively. Overall,
CNN-LSTM provides the best epoch curves for accuracy values using four
subsets of data.

Fig. 7 illustrates the loss epoch curves for training and test data
derived from the four subsets of the UNSW-NB15 dataset.

The loss curves for four subsets using CNN-LSTM are shown in a)-d).
For the same four subsets, CNN-RNN appears in e)-h) and CNN-GRU in i)-
l). Training data is represented by yellow, while the test data is repre-
sented by green. The epoch loss curves using CNN-LSTM using the basic
subset appear to be better because both the training and testing curves
behave quite similarly as compared to the other three subsets. For
instance, at first, both curves are greater than 100%, but by the 15th

epoch, they have dropped to 40%. Following that, they dropped by 18%
on the 20th epoch. On the 35th epoch, the test curve is increased to 40%
and the training curve is reduced to 8%. CNN-RNNmodel is the next best,
providing steady curves with lower loss values. CNN-RNN offers up to 5%
epoch while CNN-GRU offers a 10% loss. Overall, CNN-LSTM provides
the best epoch curves for loss values using four subsets of data.

Table 6 compares the performance of the four subsets of the UNSW-
NB15 dataset. Three different hybrid deep learning models are used to
investigate performance measures. It can be seen that using the basic
subset with CNN-LSTM produces better results than the other three
subsets. For instance, Precision, Recall, F1-score, and detection accuracy
are all 99%, 100%, 99%, and 99.21%, respectively. CNN-LSTM with
connection subset achieves Precision, Recall, F1-score, and Accuracy
performance measures of 98%, 99%, 99%, and 98.92%, respectively. The
CNN-RNN deep learning model comes next, with good detection results,
while CNN-GRU has the worst. When compared to CNN-RNN and CNN-
GRU, CNN-LSTM provides the highest values for the given performance
measures. Fig. 8 depicts performance measures for various types of



Fig. 6. Comparison of accuracy epoch curves for train and test data using the UNSW-NB15 dataset.

F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204
attacks using the UNSW-NB15 dataset. Blue, orange, and grey colors are
used to represent Precision, Recall, and F1-score, respectively. When
compared to Recall and F1-score, Precision is generally higher for normal
and most attacks. Normal has 97%, analysis has 98%, exploits have
100%, generic has 99%, and so on. Fuzzers and exploits have the lowest
Recall, while DoS and generic have the highest. This experiment shows
how effective the proposed approach is for each type of attack.

The performance measure for each type of attack is shown in Table 7
198
using the CIC-IDS2017 dataset. Web attacks have the highest Precision,
Recall, F1-score, and Accuracy of 99%, 100%, 99%, and 99.32%,
respectively when compared to other attacks. The portscan attack is the
next most correctly detected, with Precision, Recall, F1-score, and Ac-
curacy scores of 99%, 100%, 99%, and 99.23%, respectively. The next
correctly detected attack is an infiltration attack, followed by a DDoS
attack. As can be seen, CNN-RNN is the next best performer in terms of
four different types of attacks, while CNN-GRU is the worst. Table 8



Fig. 7. Comparison of loss epoch curves for train and test data using the UNSW-NB15 dataset.

F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204
shows the performancemeasures for four different subsets extracted from
the NSL-KDD dataset. The proposed IDS-INT achieves the best detection
results when using CNN-LSTM. For instance, with the KDDTest þ subset,
Precision is 98%, Recall is 99%, F1-score is 98%, and Accuracy is
98.45%. When compared to CNN-RNN and CNN-GRU, these are the best
detection results.

Fig. 9 depicts the classification and misclassification matrices for each
type of attack using the UNSW-NB15 dataset. The dataset is divided into
199
four subsets, each of which contains nine different types of attack classes
and one normal class. The diagonal values represent the correct classi-
fication values, whereas the off-diagonal values represent the misclassi-
fication results. For each type of attack, CNN-LSTM with a basic subset
has the highest classification values. For instance, 97%, 98%, 98%, 97%,
94%, 97%, 100%, 99%, and 98% for analysis, backdoor, DoS, exploits,
fuzzers, generic, reconnaissance, shellcode, and worms, respectively. As
can be seen, CNN-GRU with connection subset has the lowest detection



Table 6
Comparison of performance measures using the UNSW-NB15 dataset.

Models Features Precision
(%)

Recall
(%)

F1-score
(%)

Accuracy
(%)

CNN-
LSTM

basic 99 100 99 99.21
connection 98 99 99 98.92
contents 99 98 99 98.60
time 98 99 100 98.52

CNN-
RNN

basic 97 97 96 97.14
connection 96 97 98 96.76
contents 96 96 98 96.88
time 97 98 98 97.43

CNN-
GRU

basic 95 94 95 94.20
connection 94 95 94 94.18
contents 93 93 94 93.71
time 93 93 92 92.62

Table 7
Comparison of performance measures using the CIC-IDS2017 dataset.

Attacks Precision
(%)

Recall
(%)

F1-score
(%)

Accuracy
(%)

CNN-
LSTM

DDoS 99 99 99 98.96
PortScan 99 100 99 99.23
Infiltration 100 98 99 99.12
WebAttacks 99 100 99 99.32

CNN-
RNN

DDoS 98 98 96 97.45
PortScan 97 96 97 96.88
Infiltration 97 97 96 96.72
WebAttacks 98 98 97 97.94

CNN-
GRU

DDoS 96 97 95 96.4
PortScan 96 96 96 95.76
Infiltration 95 95 94 95.1
WebAttacks 98 97 97 97.24

Table 8
Comparison of performance measures using the NSL-KDD dataset.

Data Precision
(%)

Recall
(%)

F1-score
(%)

Accuracy
(%)

CNN-
LSTM

KDDTrainþ 99 98 97 98.1
KDDTestþ 98 99 98 98.45
KDDTest-21 97 99 98 98.32
KDDTrainþ_20% 98 96 98 97.81

CNN-
RNN

KDDTrainþ 97 96 96 96.22
KDDTestþ 96 97 97 96.1
KDDTest-21 95 96 95 95.38
KDDTrainþ_20% 97 95 95 95.28

CNN-
GRU

KDDTrainþ 96 95 95 95.1
KDDTestþ 95 94 95 94.62
KDDTest-21 95 93 94 94.22
KDDTrainþ_20% 94 94 93 93.96

F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204
results. For instance, 77%, 87%, 83%, 100%, 64%, 71%, 99%, 96%, 80%,
and 96% for analysis, backdoor, DoS, exploits, fuzzers, generic, recon-
naissance, shellcode, and worms, respectively. Overall, CNN-LSTM has
the best classification for all four subsets, with CNN-RNN coming in
second and CNN-GRU coming in last.

The confusion matrices for four subsets of the NSL-KDD dataset are
shown in Fig. 10. Each subset contains four distinct attacks: DoS, probe,
U2R, and R2L, and one benign. For benign, DoS, probe, U2R, and R2L,
the proposed approach with the KDDTrain þ subset has classification
values of 98%, 99%, 98%, 97%, and 99%, respectively. Similarly, the
classification values for benign, DoS, probe, U2R, and R2L in KDDTest þ
are 97%, 99%, 99%, 97%, and 98%, respectively. Using four different
subsets of the NSL-KDD dataset, it is demonstrated that the proposed
approach provides the highest classification values for each type of
attack. In [13], the authors used Android network traffic features to
classify malware. The authors used the BERT base model with the
traditional machine learning methods to detect Android malware with a
classification accuracy of 99%. The proposed work used the advanced
version of BERT, i.e., BERT large, with the combined approach of deep
learning methods such as CNN-LSTM to develop IDS-INT. This method
detects different types of intrusions with an accuracy of 99.21%. It
demonstrates that increasing the size of the model from BERT base to
BERT large using deep learning techniques improves performance.
Fig. 8. Performance measures for different type

200
4.4. Model interpretation using explainable AI

Explainable AI technology evaluates model input features and iden-
tifies the features that drive the model. It gives us a sense of control
because we can choose whether or not to trust the predictions of these
models. An explainable AI strategy is employed to interpret and evaluate
the proposed IDS-INT. The Local InterpretableModel-agnostic Explanation
s of attacks using the UNSW-NB15 dataset.



Fig. 9. Comparison of confusion matrices using the UNSW-NB15 dataset.

F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204

201



Fig. 10. Comparison of confusion matrices using the NSL-KDD dataset. Fig. 11. A chunk of feature with their importance level.

Fig. 12. The waterfall plot compares feature SHAP values to data distribution.

F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204
(LIME) and Shapley Additive exPlanations (SHAP) libraries are utilized to
explain the effect of each feature on the accuracy of the IDS-INT [39].
There are a total of 49 features in the UNSW-NB15 dataset, and we need to
demonstrate the impact of features among each other to show the effec-
tiveness of our approach. We selected a subset of 32 features to better
visualize and analyze the impact of features on output behavior. This
experiment exhibits the most valuable features out of a set of 32 features.
The features are presented in the following order: (F1: source IP, F2:
source port, F3: destination IP, F4: destination port, F5: transaction pro-
tocol, F6: state of the protocol, F7: duration, F8: source-to-destination
transaction bytes, F9: destination-to-source transaction bytes, F10:
source-to-destination TTL, F11: destination-to-source TTL, source packets
retransmitted, F12: destination packets retransmitted, F13: protocol ser-
vice, F14: source bits per second, F15: destination bits per second, F16:
source-to-destination packet count, F17: destination-to-source packet
count, F18: source TCP window, F19: source window advertisement, F20:
destination window advertisement, F21: source sequence number, F22:
destination sequence number, F23: mean packet size from source, F24:
mean packet size from destination, F25: pipelined depth into the
connection, F26: uncompressed content size, F27: source jitter, F28:
destination jitter, F29: record start time, F30: record last time, F31: source
inter-packet arrival time, F32: destination inter-packet arrival time). The
relative strength of the first 32 features is depicted in Fig. 11. For instance,
the F2 feature is the most important, while the F19 feature is the least
important of the 32 features. The F3 and F24 features are the next most
important. By doing so, we can extract the most important features of the
proposed approach one by one. The SHAP values represent the level of
support that a feature provides for a model result. Fig. 12 depicts how
feature SHAP values influence output data ranging from prior expectations
to detection accuracy. SHAP attributes are used to order the features, with
the lowest values at the bottom of the peak showcase. The colors red and
blue represent the contributions of abnormal (attacks) and normal
(benign) features, respectively. There are 32 features in total, with the top
nine most powerful ones highlighted. The F1 feature has a value of 244
and is colored red, indicating that it is the most important contributor to
detecting abnormal network behavior. Overall, the features F1, F19, F8,
F28, F5, and F3 can contribute to abnormal traffic. Whereas, F16, F17, and
F20, can contribute to normal traffic.
202
Fig. 13 depicts the importance of features in obtaining abnormal
traffic from a set of measurements with a threshold level of normal
traffic. The 0.74 threshold divides feature influence into two categories:
normal and abnormal network traffic. The colors red and blue represent
the presence of features in abnormal and normal traffic, respectively. It is
discovered that the F1 feature contributed significantly to abnormal
network traffic while the F17 feature contributed significantly to normal
network traffic. This allows us to quickly identify the features that
contribute significantly to each type of network traffic. Fig. 14 illustrates
the influence of selected features on predicted value. The red color re-
flects the significant response of each feature, whereas the green color
reflects the lesser impact. As can be seen, the cumulative impact of the F2
feature is substantial, whereas F20 is the least. This makes it simple to
characterize the influence of each feature for a specific network type,
such as normal or abnormal. This test demonstrates how each feature
affects a specific type of network traffic. Further, to prevent positive and
negative SHAP values from canceling each other, we use absolute values.
Fig. 15 captures the main and interaction effects of the initial ten



Fig. 13. Feature contribution to a class based on a threshold using SHAP force plot.

Fig. 14. The combined feature importance with feature effects.

Fig. 15. Absolute means of main effects and their interactions for the first
10 features.

Fig. 16. Feature interaction for model output.

F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204

203
features. For instance, it can be seen that the primary average impact for
F1, F2, F5, and F8 is greater. These features are more likely to have major
negative or positive impacts. In other words, these traits have a signifi-
cant impact on the detection of different types of network traffic. The
interaction effects of the F6, F7, and F9 are also considerable. Fig. 16
captures the contact of features relating to final detection. On the di-
agonals, we see the SHAP values for the main effects, whereas the off-
diagonals display the interaction effects. The main and interaction ef-
fects are highlighted, which can shed light on absolute mean values. High
absolute mean values are associated with high SHAP values. Analyzing
the connections shown by the interaction values provides further insight.
For instance, F1, F2, F5, and F8 features have greater effects.

5. Conclusion

An intelligent network intrusion detection system can protect against
different types of malicious attacks. The network behavior representation
includes a wide range of features such as attack reference, attack and host
details, malicious script, etc. When compared to typical network trends,
network traffic can have an imbalanced variety of hazardous intrusions.
It is challenging to develop a transfer learning-based method for
detecting a particular type of network attack due to complex attributes
and data imbalance issues. To address these concerns, this study proposes
the IDS-INT method for detecting various types of attacks using imbal-
anced network traffic. The transfer learning method is used by IDS-INT to
discover feature relationships in data imbalance and network represen-
tation learning. The network interaction descriptions—including
network nodes, attack type, reference, host information, etc.—are used to
gather attack details. To discover the specific feature map with the help
of their contextual anchors. Next, the SMOTE method is implemented to
balance the network traffic by learning more about minority attacks. The
CNN model has been developed for dee-featuring extraction from
balanced network data. The CNN-LSTM model is designed to learn the
deep features for detecting different types of attacks. We have analyzed
the proposed IDS-INT with three big and standard datasets namely CIC-
IDS2017, UNSW-NB15, and NSL-KDD. Further, baseline experiments
are conducted with CNN-RNN and CNN-GRU to compare the proposed
IDS-INT. Our approach outperformed the baseline methods with 99%
Precision, 100% Recall, 99% F1-score, and 99.21% Accuracy. To inter-
pret the proposed IDS-INT and develop a trustworthy model, an
explainable AI approach has been implemented. The real-time network



F. Ullah et al. Digital Communications and Networks 10 (2024) 190–204
can be extremely dynamic and imbalanced. Furthermore, it may contain
malicious scripts and attack references that move from random clients to
the server. The proposed method helped to address the problem of
imbalanced data traffic and overfitting. The transformer-based transfer
learning approach is used to extract meaningful information from
transmitted data between network nodes. Furthermore, the proposed
method effectively interprets and explains the impact and features to
develop a trustworthy and reliable model.

Our proposed IDS-INT method can be used on a variety of mobile
devices, including Android and Windows-based network edges. In the
future, we will try to develop a client-server communication model using
an advanced deep learning approach, i.e., federated learning, to detect
various types of attacks on network edges.

Data availability

Data that support the findings of this study are openly available:
UNSW-NB15,1 CIC-IDS2017,2 NSL-KDD3

References

[1] B.B. Zarpel~ao, R.S. Miani, C.T. Kawakani, S.C. de Alvarenga, A survey of intrusion
detection in internet of things, J. Netw. Comput. Appl. 84 (2017) 25–37.

[2] R. Samrin, D. Vasumathi, Review on anomaly based network intrusion detection
system, in: 2017 International Conference on Electrical, Electronics,
Communication, Computer, and Optimization Techniques (ICEECCOT), IEEE, 2017,
pp. 141–147.

[3] S.R. Davies, R. Macfarlane, W.J. Buchanan, Differential area analysis for
ransomware attack detection within mixed file datasets, Comput. Secur. 108 (2021)
102377.

[4] J. Liu, Y. Gao, F. Hu, A fast network intrusion detection system using adaptive
synthetic oversampling and lightgbm, Comput. Secur. 106 (2021) 102289.

[5] T. Mehmood, H.B.M. Rais, Machine learning algorithms in context of intrusion
detection, in: 2016 3rd International Conference on Computer and Information
Sciences (ICCOINS), IEEE, 2016, pp. 369–373.

[6] N. Shone, T.N. Ngoc, V.D. Phai, Q. Shi, A deep learning approach to network
intrusion detection, IEEE transactions on emerging topics in computational
intelligence 2 (1) (2018) 41–50.

[7] B.B. Rao, K. Swathi, Fast knn classifiers for network intrusion detection system,
Indian Journal of Science and Technology 10 (14) (2017) 1–10.

[8] L. Koc, T.A. Mazzuchi, S. Sarkani, A network intrusion detection system based on a
hidden naïve bayes multiclass classifier, Expert Syst. Appl. 39 (18) (2012)
13492–13500.

[9] S. Sahu, B.M. Mehtre, Network intrusion detection system using j48 decision tree,
in: 2015 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), IEEE, 2015, pp. 2023–2026.

[10] Y. Chang, W. Li, Z. Yang, Network intrusion detection based on random forest and
support vector machine, in: 2017 IEEE International Conference on Computational
Science and Engineering (CSE) and IEEE International Conference on Embedded
and Ubiquitous Computing (EUC), vol. 1, IEEE, 2017, pp. 635–638.

[11] A. Rosay, F. Carlier, P. Leroux, Mlp4nids: an efficient mlp-based network intrusion
detection for cicids2017 dataset, in: International Conference on Machine Learning
for Networking, Springer, 2019, pp. 240–254.

[12] C. Yue, L. Wang, D. Wang, R. Duo, X. Nie, An ensemble intrusion detection method
for train ethernet consist network based on cnn and rnn, IEEE Access 9 (2021)
59527–59539.

[13] F. Ullah, A. Alsirhani, M.M. Alshahrani, A. Alomari, H. Naeem, S.A. Shah,
Explainable malware detection system using transformers-based transfer learning
and multi-model visual representation, Sensors 22 (18) (2022) 6766.

[14] Y.E. Seyyar, A.G. Yavuz, H.M. Ünver, Detection of web attacks using the bert model,
in: 2022 30th Signal Processing and Communications Applications Conference
(SIU), IEEE, 2022, pp. 1–4.

[15] K. Yu, L. Tan, S. Mumtaz, S. Al-Rubaye, A. Al-Dulaimi, A.K. Bashir, F.A. Khan,
Securing critical infrastructures: deep-learning-based threat detection in iiot, IEEE
Commun. Mag. 59 (10) (2021) 76–82.
1 https://research.unsw.edu.au/projects/unsw-nb15-dataset.
2 https://www.unb.ca/cic/datasets/ids-2017.html.
3 https://www.unb.ca/cic/datasets/nsl.html).

204
[16] P. He, J. Zhu, S. He, J. Li, M.R. Lyu, Towards automated log parsing for large-scale
log data analysis, IEEE Trans. Dependable Secure Comput. 15 (6) (2017) 931–944.

[17] J. Li, H. Zhang, Z. Wei, The weighted word2vec paragraph vectors for anomaly
detection over http traffic, IEEE Access 8 (2020) 141787–141798.

[18] S. Huang, Y. Liu, C. Fung, R. He, Y. Zhao, H. Yang, Z. Luan, Hitanomaly:
hierarchical transformers for anomaly detection in system log, IEEE transactions on
network and service management 17 (4) (2020) 2064–2076.

[19] E. Min, J. Long, Q. Liu, J. Cui, W. Chen, Tr-ids: Anomaly-Based Intrusion Detection
through Text-Convolutional Neural Network and Random Forest, Security and
Communication Networks, 2018.

[20] B. Aslahi-Shahri, R. Rahmani, M. Chizari, A. Maralani, M. Eslami, M.J. Golkar,
A. Ebrahimi, A hybrid method consisting of ga and svm for intrusion detection
system, Neural Comput. Appl. 27 (6) (2016) 1669–1676.

[21] H. Alazzam, A. Sharieh, K.E. Sabri, A feature selection algorithm for intrusion
detection system based on pigeon inspired optimizer, Expert Syst. Appl. 148 (2020)
113249.

[22] C. Khammassi, S. Krichen, A ga-lr wrapper approach for feature selection in
network intrusion detection, Comput. Secur. 70 (2017) 255–277.

[23] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M.P. Reyes, M.-L. Shyu, S.-C. Chen,
S.S. Iyengar, A survey on deep learning: algorithms, techniques, and applications,
ACM Comput. Surv. 51 (5) (2018) 1–36.

[24] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-Nemrat,
S. Venkatraman, Deep learning approach for intelligent intrusion detection system,
IEEE Access 7 (2019) 41525–41550.

[25] S. Jian, G. Pang, L. Cao, K. Lu, H. Gao, Cure: flexible categorical data representation
by hierarchical coupling learning, IEEE Trans. Knowl. Data Eng. 31 (5) (2018)
853–866.

[26] S. Naseer, Y. Saleem, S. Khalid, M.K. Bashir, J. Han, M.M. Iqbal, K. Han, Enhanced
network anomaly detection based on deep neural networks, IEEE Access 6 (2018)
48231–48246.

[27] F.A. Acheampong, H. Nunoo-Mensah, W. Chen, Transformer models for text-based
emotion detection: a review of bert-based approaches, Artif. Intell. Rev. 54 (8)
(2021) 5789–5829.

[28] A. Yates, R. Nogueira, J. Lin, Pretrained transformers for text ranking: bert and
beyond, in: Proceedings of the 14th ACM International Conference on Web Search
and Data Mining, 2021, pp. 1154–1156.

[29] A. Fern�andez, S. Garcia, F. Herrera, N.V. Chawla, Smote for learning from
imbalanced data: progress and challenges, marking the 15-year anniversary,
J. Artif. Intell. Res. 61 (2018) 863–905.

[30] M. Azizjon, A. Jumabek, W. Kim, 1d cnn based network intrusion detection with
normalization on imbalanced data, in: 2020 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC), IEEE, 2020, pp. 218–224.

[31] Y. Li, Y. Xu, Z. Liu, H. Hou, Y. Zheng, Y. Xin, Y. Zhao, L. Cui, Robust detection for
network intrusion of industrial iot based on multi-cnn fusion, Measurement 154
(2020) 107450.

[32] X. Zhang, J. Ran, J. Mi, An intrusion detection system based on convolutional
neural network for imbalanced network traffic, in: 2019 IEEE 7th International
Conference on Computer Science and Network Technology (ICCSNT), IEEE, 2019,
pp. 456–460.

[33] R. Vinayakumar, K. Soman, P. Poornachandran, Applying convolutional neural
network for network intrusion detection, in: 2017 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), IEEE, 2017,
pp. 1222–1228.

[34] P. Sun, P. Liu, Q. Li, C. Liu, X. Lu, R. Hao, J. Chen, Dl-ids: Extracting Features Using
Cnn-Lstm Hybrid Network for Intrusion Detection System, Security and
Communication Networks, 2020.

[35] N. Moustafa, J. Slay, Unsw-nb15: a comprehensive data set for network intrusion
detection systems (unsw-nb15 network data set), in: 2015 Military Communications
and Information Systems Conference (MilCIS), IEEE, 2015, pp. 1–6.

[36] N. Moustafa, J. Slay, The evaluation of network anomaly detection systems:
statistical analysis of the unsw-nb15 data set and the comparison with the kdd99
data set, Inf. Secur. J. A Glob. Perspect. 25 (1–3) (2016) 18–31.

[37] I. Sharafaldin, A.H. Lashkari, A.A. Ghorbani, Toward generating a new intrusion
detection dataset and intrusion traffic characterization, ICISSp 1 (2018) 108–116.

[38] M. Tavallaee, E. Bagheri, W. Lu, A.A. Ghorbani, A detailed analysis of the kdd cup
99 data set, in: 2009 IEEE Symposium on Computational Intelligence for Security
and Defense Applications, Ieee, 2009, pp. 1–6.

[39] D.L. Marino, C.S. Wickramasinghe, M. Manic, An adversarial approach for
explainable ai in intrusion detection systems, in: IECON 2018-44th Annual
Conference of the, IEEE Industrial Electronics Society, IEEE, 2018, pp. 3237–3243.

http://refhub.elsevier.com/S2352-8648(23)00064-0/sref1
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref1
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref1
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref1
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref2
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref2
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref2
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref2
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref2
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref3
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref3
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref3
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref4
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref4
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref5
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref5
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref5
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref5
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref6
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref6
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref6
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref6
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref7
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref7
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref7
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref8
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref8
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref8
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref8
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref9
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref9
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref9
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref9
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref10
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref10
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref10
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref10
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref10
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref11
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref11
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref11
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref11
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref12
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref12
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref12
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref12
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref13
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref13
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref13
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref14
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref14
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref14
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref14
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref15
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref15
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref15
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref15
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref16
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref16
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref16
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref17
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref17
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref17
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref18
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref18
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref18
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref18
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref19
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref19
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref19
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref20
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref20
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref20
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref20
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref21
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref21
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref21
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref22
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref22
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref22
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref23
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref23
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref23
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref23
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref24
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref24
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref24
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref24
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref25
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref25
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref25
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref25
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref26
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref26
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref26
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref26
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref27
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref27
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref27
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref27
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref28
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref28
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref28
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref28
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref29
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref29
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref29
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref29
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref29
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref30
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref30
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref30
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref30
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref31
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref31
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref31
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref32
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref32
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref32
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref32
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref32
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref33
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref33
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref33
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref33
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref33
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref34
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref34
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref34
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref35
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref35
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref35
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref35
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref36
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref36
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref36
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref36
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref36
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref37
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref37
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref37
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref38
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref38
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref38
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref38
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref39
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref39
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref39
http://refhub.elsevier.com/S2352-8648(23)00064-0/sref39
https://www.unb.ca/cic/datasets/nsl.html

	IDS-INT: Intrusion detection system using transformer-based transfer learning for imbalanced network traffic
	1. Introduction
	2. Related work
	2.1. Semantic-based methods
	2.2. Features selection methods
	2.3. Deep learning methods

	3. Proposed IDS-INT scheme
	3.1. Network traffic analysis
	3.2. Transformer-based transfer learning
	3.3. Handling imbalance network traffic
	3.4. Deep features extraction
	3.5. Network-based intrusion detection system (N-IDS)

	4. Results and discussions
	4.1. Dataset preparation
	4.2. Performance indicators
	4.3. Results analysis and comparison
	4.4. Model interpretation using explainable AI

	5. Conclusion
	Data availability
	References


